Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Demonstrations Track

A Multi-player Game for Studying Federated Learning Incentive Schemes

Kang Loon Ng', Zichen Chen?, Zelei Liu', Han Yu'?*, Yang Liu®' and Qiang Yang>*
1School of Computer Science and Engineering, Nanyang Technological University (NTU), Singapore
2Joint NTU-WeBank Research Centre on FinTech, NTU, Singapore
$Department of Al, WeBank, Shenzhen, China

“Department of Computer Science and Engineering, Hong Kong University of Science and Technology
han.yu@ntu.edu.sg, yangliu@webank.com

Abstract

Federated Learning (FL) enables participants to
“share” their sensitive local data in a privacy pre-
serving manner and collaboratively build machine
learning models. In order to sustain long-term par-
ticipation by high quality data owners (especially
if they are businesses), FL systems need to provide
suitable incentives. To design an effective incen-
tive scheme, it is important to understand how FL
participants respond under such schemes. This pa-
per proposes FedGame, a multi-player game to s-
tudy how FL participants make action selection de-
cisions under different incentive schemes. It allows
human players to role-play under various condi-
tions. The decision-making processes can be ana-
lyzed and visualized to inform FL incentive mech-
anism design in the future.

1 Introduction

Artificial intelligence (AI) has enjoyed rapid developmen-
t benefiting from availability of big data. Traditionally, da-
ta are stored in a centralized entity for training of machine
learning models. However, centralized training may intrude
user privacy as specified under the General Data Protection
Regulation (GDPR) [Yang er al., 2019b]. Federated Learning
(FL) has been proposed as an alternative paradigm for build-
ing Al models in a distributed and privacy-preserving manner
[McMahan et al., 2016; Yang et al., 2019a; Kairouz er al.,
2019]. It enables multiple participants to collaboratively train
Al models without exposing potentially sensitive local data,
thereby, improving users’ trust in the AI model [Pan er al.,
2009; Shen et al., 2011; Yu et al., 2018].

Participating in FL incurs costs, which can be significant
for business participants [Yu er al., 2020] under Horizontal
Federated Learning (HFL), in which participants have signif-
icant overlap in the feature space but little overlap in the sam-
ple space [Yang et al., 2019b]. These costs can arise from
communication, technical, compliance, risk of market share
erosion and free-riding problems (i.e. participants may only
join FL training with low-quality data) [Yang et al., 2019b].
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To sustain the long-term viability of FL ecosystems, effective
incentive mechanisms are needed. To this end, the research
community needs to understand how FL participants behave
under given incentive schemes.

In this paper, we bridge this gap with FedGame - a multi-
player game [Yu et al., 2017] which aims to study how FL
participants act under different incentive schemes through
crowdsourcing [Pan et al., 2016]. It supports multiple FL
payoff-sharing schemes (currently including Linear, Equal,
Individual, Labour Union and Shapley, with the possibility to
extend to others) [Yang et al., 2017; Gollapudi et al., 2017;
Jia et al., 2019]. Through FedGame, researchers can analyze
human players’ behaviours to improve FL incentive schemes.

2 System Architecture

Figure 1 illustrates the FedGame system architecture. In the
game, a number of Al players and Federations are created to
simulate the FL environment. A human player plays the role
of a business (with an arbitrary amount of data and resources
allocated to him at the beginning of the game) joining the fed-
eration. His business is assumed to be from the same market
sector as the Al players’, which means contributing his da-
ta to the federation might result in an FL model that helps
himself as well as his competitors [Yu et al., 2020].

Key information such as resource quantity, data quality,
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Figure 1: FedGame system architecture.
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data quantity and payment are involved in decision-making.
Multi-agent AI players [Yu er al., 2010; Yu et al., 2011;
Wau et al., 2013] follow existing approaches to determine how
much data they want to contribute during FL. model training
[Yu et al., 2020]. The human players decide how to allo-
cate their resources that they want to contribute to the training
of FL model based on individual free will. The Federations
will receive payoffs from the virtual marketplace based on the
market share their FL. models occupy. Participants will be re-
warded with a portion of their Federation’s payoff according
to the incentive scheme adopted by Federation during a game
session. The players’ in-game behaviour data are recorded.

3 Game Design

Each game instance ends after a fixed number of turns have
passed. The ultimate goal for a player is to receive as much
payoff as possible at the end of a game instance. In order to
incentivize participants to contribute high-quality data to FL
model training and truthfully report private cost types, the de-
sign of the game firstly focuses on illustrating the FL environ-
ment from the perspective of business enterprises. A player
can decide to join, leave or remain in a Federation at any point
in the game. The game system provides functions for game
designers to modify existing incentive schemes or add new
incentive schemes by creating new levels in the game. Each
time when a player enters the game, he/she will be random-
ly assigned to a starting characteristic in terms of the amount
and quality of the local data. This will be done through the
randomization of allocated variables to players. With a differ-
ent initialization at the start of every new game, players will
not be lulled into following the same decision-making pattern
but instead, be forced to adapt their behaviours.

Each Federation will be initialized with a fixed amount of
credits for paying out incentives. The credits will change over
time based on the market share its FL model occupies. A
player can choose not to join any Federation and just train
models with their local dataset, or participate in a Federa-
tion. The process for joining a Federation involves three dif-
ferent stages: 1) Bidding, 2) FL. model training and 3) Profit-
sharing. In the bidding stage, participants choose bid to join a
given Federation with his stated resource quantity, data quali-
ty, data quantity and payment. In the FL. model training stage,
the game simulates the training of the FL. model based on the
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Figure 2: An example FedGame interface.
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participants’ bids. In the Profit-sharing stage, the Federation
delivers payoffs to each participant following the incentive
scheme it adopted before transitioning to the next bidding
stage. FedGame supports the following incentive schemes
[Yu et al., 20201:

e Linear: a participant’s share of the total payoff is pro-
portional to the usefulness of its contributed data;

e Equal: the federation profit is equally divided among its
participants;

e Individual: a participant’s share of the total payoff is
proportional to its marginal contribution to the federa-
tion profit;

e Union: participant ¢’s share of the total payoff follows
the Labour Union game payoff scheme and is propor-
tional to the marginal effect on the FL. model if < were to
be removed;

e Shapley: the federation revenue is shared among partic-
ipants according to their Shapley values.

At the same time, the system variable values which make up
the context within which the players make decisions are also
recorded to support further analysis of participant behaviours.

4 System Settings

The game system is configured using a text file that follows
the XML format. Specified game settings, such as the number
of players, types of Federations can be adjusted in FedGame
through this configuration file. This facilitate game design-
ers to vary the FL environment the players are exposed to.
Besides the environmental variables, designers can adjust the
time for FL. model training, and the time taken for each round.
Modification of these variables will allow for a shorter or
longer game duration to influence participants’ behaviour.

5 Visualization

Figure 2 shows a screenshot for a player of the FedGame sys-
tem. The game visualizes information including Federation
information, game session overview, human player’s statistic-
s, and game round summary to facilitate decision-making. It
provides a continuous real-time view of the participants’ data
quality, quantity, change of market share, profit/loss, and Fed-
erations’ participants. This simulates the information avail-
able to a sophisticated business joining FL to help researcher-
s study possible reactions to given incentive mechanisms. A
video and of the game system are available online'.

6 Conclusions and Future Work

The proposed FedGame system is, to the best of our knowl-
edge, the first game for studying participants’ reactions under
various incentive mechanisms in federated learning scenar-
ios. Data collected can be used to analyse behaviour patterns
exhibited by human players, and inform future FL incentive
mechanism design research. In the future, we plan to ex-
tend the game with more complex processes and parameters
to simulate Vertical Federated Learning (VFL) and Federated
Transfer Learning (FTL) situations [Yang et al., 2019b].

'https://youtu.be/UnAMVx8SOES
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