Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Demonstrations Track

A Testbed for Studying COVID-19 Spreading in Ride-Sharing Systems

Harrison Jun Yong Wong' , Zichao Deng'?, Han Yu'*, Jiangiang Huang?,

Cyril Leung'* and Chunyan Miao

1,2+

1School of Computer Science and Engineering, Nanyang Technological University (NTU), Singapore
2Alibaba-NTU Singapore Joint Research Institute, Singapore
3 Alibaba Group, Hangzhou, China
‘Department of Electrical and Computer Engineering, the University of British Columbia, Canada
{han.yu, ascymiao} @ntu.edu.sg

Abstract

Order dispatch is an important area where artificial
intelligence (AI) can benefit ride-sharing systems
(e.g., Grab, Uber), which has become an integral
part of our public transport network. In this paper,
we present a multi-agent testbed to study the spread
of infectious diseases through such a system. It
allows users to vary the parameters of the disease
and behaviours to study the interaction effect be-
tween technology, disease and people’s behaviours
in such a complex environment.

1 Introduction

Typical artificial intelligence (AI)-empowered ride-sharing
systems employ order dispatch algorithms which take into
account of the states of drivers and passengers, such as loca-
tion, availability, and time to match cars to passengers. These
factors are formulated into a combinatorial optimization to
crowdsource [Pan et al., 2016] cars to satisfy user demand-
s. Such algorithms often aim to find trade-offs among mul-
tiple objectives including improving access for passengers,
reduce emissions and congestion, sustain the long term prof-
itability of the system, and managing divers’ wellbeing and
social welfare [Yu et al., 2018]. [Maximilian et al., 2016;
Yu et al., 2019b; Armant and Brown, 2020].

Recently, the 2019 Novel Coronavirus Disease (COVID-
19) outbreak has been declared a pandemic by the World
Health Organization (WHO) [WHO, 2020]. It has seriously
disrupted people’s daily life. Being a confined space which
the driver and passengers need to share for prolonged peri-
ods of time, ride-sharing systems can be a potential channel
through which infectious diseases spread [REUTERS, 2020].
Currently, there is no tool available for studying how COVID-
19 spreads through Al-empowered ride-sharing systems.

To bridge this gap, this paper reports a testbed based
on multi-agent systems [Yu et al., 2007; Yu et al., 2008;
Yu et al., 2010; Yu et al., 2011; Wu et al., 2013] to support
the study of the spread of infectious diseases through a ride-
sharing system with Al-empowered order dispatch. It is built
on an open dataset of real-world ride-sharing in Chengdu,
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China with a fair and explainable order dispatch optimiza-
tion algorithm based on [Yu er al., 2013a; Yu ef al., 2017,
Yu ef al., 2019b]. Tt allows users to vary the parameters of
the disease and people’s behaviours to study the interaction
effect between technology, disease and behaviours in such a
complex environment.

2 The Testbed System

The testbed (Figure 1) is designed based on the dataset
of ride-sharing activities from Chengdu, China published
by DiDi through its GAIA Open Dataset Initiative (https:
/loutreach.didichuxing.com/research/opendata/en/). It con-
sists of an order dispatcher and a disease spread simulator.

2.1 Order Dispatcher

The Order Dispatcher in the testbed jointly considers the fol-
lowing factors.

Order: The order is a ride requested by a passenger. An
order consists of a start position and end position.

Driver: A driver is a worker in the ride sharing system. A
driver consist of regret, fatigue, reputation and motivation to
work. These variables can change with the situation.

Regret: The regret of the driver is modelled as a queue.
The queuing dynamics of a driver ¢’s pending regret queue
can be expressed as: Y;(¢t + 1) = maz{0,Y;(t) — v;(t) +
U,(t)} where Y;(¢t + 1) is driver 4’s regret at time (¢ + 1),
Y; is driver ¢’s regret at time ¢, v;(t) is the value of the order
which driver i takes at time ¢, and v,.(¢) is the average value of
orders which other drivers (with similar reputation as driver
1) take at time ¢. The Lyapunov function for the regret among

drivers is defined as L(t) = %Zivzl Y;(t)?. By letting Y{;
be a vector of all drivers’ regret queues at time ¢. Using the
Lyapunov drift, A(Y(4)), the variation in drivers’ regret can
be expressed as: A(Y(y)) = E{L41 — LY }-

Social Welfare: The expected social welfare of a strategy
which dispatches orders among N drivers at time ¢ is Uy =

Zf’zl v; () (r; (t) —w; (t)) where v;(t) is the value of the order
which driver ¢ take at time ¢. r;(¢) and w; (t) are the reputation
and fatigue of driver ¢ at time ¢, respectively.

The objective of efficiently dispatching a large number of
orders among drivers can be defined as (social welfare - re-

gret): L ST (o4 (t) x B{U)|Y(sy — A(Y(1)). This objec-
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Figure 1: The Interface of the Testbed

tive function can be optimized through an index ranking ap-
proach. The formula is described as @;(t) = o;(t) X (r;(t) —
w;(t)) + Y;(t) where ¢ is the ranking index, o is the motiva-
tion, r; is the reputation, w; is the fatigue and Y; is the regret
of the driver at time ¢. The ranking index is used to prioritize
the drivers by the order dispatcher.

In the testbed, we simulate a uniform distribution of driver-
s’ motivation at the start of each run. The beta reputation
model [Pan et al., 2009; Shen et al., 2011; Yu et al., 2013b]
is adopted to compute drivers’ reputation as they complete
tasks. Drivers’ fatigue levels are set to O at the start of a run
and increase gradually as they complete more tasks without
rest. All these values are normalized before performing the
calculation in order to remove distortions.

2.2 Disease Spread Simulator

The spread of a disease in a ride-sharing system is formulated
as: pr = s;(m) A b(v) A ri(m) where p is the probability of
a person k being infected by a person ¢. s is the probability of
spread if person ¢ wears a mask m. b is the probability of the
infection with respect to the virus v level (i.e. Mild, Moderate
or Severe). r is the probability of a person k being infected
if he wears a mask m. The mask m has a effectiveness rate
between 0 and 1. This formula is executed when driver is
fetching the passenger to its destination. The longer the ride,
the higher probability of getting infected provided there is one
infected person in the car.

With COVID-19, symptoms may not appear for some time
while the carrier is infectious. Hence, we implementation a
probability evolution mechanism: v~ = f(t,v) where v’ is
the next stage of virus, and is determined by the current time
t and the current stage of virus v. Each stage (except last one
- Severe) has a non-zero probability of transiting to the next
stage. The aforementioned variables can be adjusted before
each run to simulate different disease characteristics and peo-
ple’s behaviour patterns.

To show how infections spread through the ride-sharing
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Figure 2: Effects of mask wearing.

system, we vary the percentage of the infected drivers and
passengers. The simulation runs are based on the first 1,000
passengers of a day. The mask effectiveness is set to 95%.

In Figure 2, if only the passengers or only the drivers wear
masks, the trends of infection based on the percentage of them
wearing masks are similar. The higher the percentage of peo-
ple wearing masks, the fewer infections. With only drivers
wearing masks results in lower number of infections com-
pared to with only passengers wearing masks. This is due to
the effect that an infected driver can pass the disease on to
more unprotected passengers before succumbing to the dis-
ease. If both groups wear masks, the spread of the disease
decreases as a faster rate as they are both less exposed.

In Figure 3 shows the trends of infected passengers based
on different percentage of initial infected drivers without
wearing masks. It can be observed that early adoption of good
personal hygiene practices can help slow down the spread of
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Figure 3: Effects of driver infection.

the disease. A video demonstration on the visualization of
the virus spread among passengers and drivers under various
conditions can be found at (https://youtu.be/ABf13AeUrVI).

3 Discussions and Future Work

In this paper, we present a testbed that can be used to study
the spread of infectious diseases through ride-sharing systems
under different conditions based on real-world data.

In subsequent research, we will focus on incorporating
more diverse order dispatch algorithms and providing more
flexible settings of disease characteristics and behaviour pat-
terns to enable the tool to offer more insight into this research
topic. We will also develop actionable explanation techniques
[Yu et al., 2019a] to help discover emerging behaviour pat-
terns which can significantly mitigate the situation and are
easy for the majority of the population to adopt.
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