
Balancing Expressiveness and Inexpressiveness in View Design
Michael Benedikt1 , Pierre Bourhis2 , Louis Jachiet3 , Efthymia Tsamoura4

1University of Oxford
2CRIStAL, CNRS, University of Lille & INRIA

3LTCI, IP Paris
4Samsung AI Research

michael.benedikt@cs.ox.ac.uk, pierre.bourhis@inria.fr, louis.jachiet@telecom-paris.fr,
efi.tsamoura@samsung.com

Abstract

We study the design of data publishing mechanisms that al-
low a collection of autonomous distributed datasources to col-
laborate to support queries. A common mechanism for data
publishing is via views: functions that expose derived data to
users, usually specified as declarative queries. Our autonomy
assumption is that the views must be on individual sources,
but with the intention of supporting integrated queries. In de-
ciding what data to expose to users, two considerations must
be balanced. The views must be sufficiently expressive to
support queries that users want to ask – the utility of the pub-
lishing mechanism. But there may also be some expressive-
ness restriction. Here we consider two restrictions, a minimal
information requirement, saying that the views should reveal
as little as possible while supporting the utility query, and a
non-disclosure requirement, formalizing the need to prevent
external users from computing information that data owners
do not want revealed. We investigate the problem of design-
ing views that satisfy both an expressiveness and an inexpres-
siveness requirement, for views in a restricted declarative lan-
guage (conjunctive queries), and for arbitrary views.

1 Introduction
The value of data is increased when data owners make their
data available through publicly-accessible interfaces. The
value is magnified even further when multiple data owners
publish information from related datasets; this allows users
to answer queries that require linking information across
datasources.

But the benefits of data publishing come with a corre-
sponding risk of revealing too much. For example, there
may be information that a data owner wishes to protect, and
a user may be able to infer this information either from the
published data in isolation, or from the data published by
all parties as a whole. There is thus a need to provide data
publishing mechanisms that are simultaneously expressive
enough to be useful – they enable users to answer appropri-
ate queries – while satisfying some expressiveness restric-
tion.

In data publishing much of the focus has been on dis-
closure via the familiar mechanism of views – declarative
queries whose output is made available to users as a ta-
ble. In this context the competing requirements on a pub-
lishing mechanism have been primarily studied in isolation.
There is extensive work on analysis of the utility of a set

of views: namely given a query, can it be answered us-
ing the views, see, e.g. (Halevy 2001; Calvanese et al.
2012). There has also been research concerning analysis of
whether a given set of views obeys some expressiveness re-
striction. The negation of answerability is clearly too weak a
restriction, since it just guarantees that on some instance the
query answer can not be computed from the view images.
A relevant query-based notion of expressiveness restriction
is data-independent privacy: given the views and a set of
“secret” queries, check that the secret query answers can not
be computed from the views on any source data. Variants of
this problem have been studied in (Nash and Deutsch 2007;
Benedikt et al. 2016; Benedikt, Cuenca Grau, and Kostylev
2018; Benedikt et al. 2019). Expressiveness restrictions with
a similar flavor have also been studied in the context of
ontologies (Bonatti and Sauro 2013). But the question of
whether there is an expressiveness restriction for views that
does not require the specification of a particular set of se-
crets, as well as the question of how one obtains views that
satisfy both expressiveness and inexpressiveness require-
ments, has not been considered in the context of traditional
queries and views, to the best of our knowledge.

A larger body of work comes from privacy research,
considering the design of mechanisms achieving a mix of
expressiveness (“utility”) and inexpressiveness (“privacy”)
goals. But the focus is on probabilistic transformations or,
more generally, probabilistic protocols (see e.g. (Chaum,
Crépeau, and Damgard 1988; Dwork 2006; Dwork and Roth
2014)). The guarantees are probabilistic, sometimes alterna-
tively or additionally with computational restrictions on an
external party. Recent efforts (Li et al. 2017) have consid-
ered a family of mechanisms that look at database queries,
with the utility of a mechanism defined (as in our case) us-
ing the notion of query determinacy. But randomness still
plays a central role in the mechanism and in the definition of
privacy.

In contrast, we consider the question of designing views
that use traditional database queries, with no randomiza-
tion, so that conflicting requirements of expressiveness and
inexpressiveness are satisfied. Both our expressiveness and
inexpressiveness requirements will be given in terms of ex-
act information-theoretic criteria: they will be defined in
terms of what queries can be answered exactly (as opposed
to probabilistically) by a party with unlimited computation

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

109

power. Due both to the difference in the mechanisms we
consider and the requirements we impose, our contribution
has a very different flavor from prior lines of work.

Example 1. A health study hosted by a government
agency holds information about certain treatments, with
an abstraction of the data being a database with schema
Trtmnt(pid, tinfo, tdate), where pid might be a national in-
surance number.

Demographic information about patients is stored by an-
other agency, in a table Patient(pid, age, address). The
agencies are completely autonomous, perhaps even in dis-
tinct administrative regions. But they want to co-operate
to support certain queries over the data that legitimate re-
searchers might wish; for example about the relationships
between treatment and age:

Q = ∃pid, address, tdate.Trtmnt(pid, tinfo, tdate)

∧Patient(pid, age, address)

Of course, the parties could agree to an encryption
scheme on the patient identifiers, and then expose encrypted
versions of their local data. But this would require both
strong co-operation of the parties, and the use of views be-
yond traditional database queries.

But assuming that the parties are restricted to using tra-
ditional queries, what is the most restrictive thing that they
can do while supporting the ability to answerQ? Intuitively,
the most restrictive views would correspond to one party re-
vealing the projection of the Trtmnt table on pid and tinfo
and the other revealing the projection of the Patient table
on pid and address.

If this intuition is correct, it would imply that nothing the
parties can do with traditional queries can avoid revealing
which patients had particular treatments. That is, they have
no choice but to allow an external party to learn the answer
to query

p = ∃tdate.Trtmnt(pid, tinfo, tdate)

Our results will validate this obvious answer – in this ex-
ample, the projections described above are the CQ views
that reveal minimal information, and one can not support
the disclosure of the join query while protecting a query on
these join attributes. Further we will show that even using
encryption – indeed, even using any deterministic function
– the parties can not not reveal less information while sup-
porting exact answering of the query Q. In contrast, we will
also show that in some cases the parties can obtain combi-
nations of expressiveness and inexpressiveness requirements
by using counter-intuitive view combinations.

Our goal here is to look at the problem of designing in-
dependent views over multiple relational datasources that
satisfy both expressiveness and inexpressiveness require-
ments. Our expressiveness requirement (usefulness) will be
phrased in terms of the ability to answer a relational query,
where answering is the traditional deterministic notion used
in database theory and knowledge representation. For ex-
pressiveness limitations we require the views to be useful
but to minimize information within a class of views. We

also consider an expressiveness limitation specified by non-
disclosure of a set of secret queries. Our contributions in-
clude formalizing these notions, characterizing when mini-
mal information views exist and what form they take, and
determining when views exist that satisfy utility and expres-
siveness limitations. We look at these problems both for
views given in the standard view language of conjunctive
queries, and for arbitrary views. We also consider the im-
pact of background knowledge on these problems.

Organization. Section 2 gives database and logic pre-
liminaries, and then goes on to formalize our expressiveness
and inexpressiveness requirements. Section 3 deals with the
variant of the problem where the only views considered are
conjunctive query views, while Section 4 shows how the sit-
uation changes when arbitrary views can be utilized. Sec-
tion 5 contains extensions when background knowledge is
present. Section 5 consider background knowledge about
connections across sources. We close with conclusions in
Section 6. Full proofs can be found on arXiv.

2 Preliminaries
2.1 Basic Definitions
The bulk of this subsection reviews standard definitions
from databases and knowledge representation. But it in-
cludes two notions, DCQs and distributed schemas, that are
less standard.

Databases and queries. A schema consists of a finite set
of relations, each with an associated arity (a non-negative
number). An instance of a schema is an assignment of each
relation in the schema of arity n to a collection (finite or
infinite) of n-tuples of elements. Given an instance I and
a relation R, we let I(R) be the n-tuples assigned to R in
I. The active domain of an instance I, denoted adom(I), is
the set of elements occurring in some tuple of some I(R).
A fact consists of a relation R of arity n and an n-tuple t.
We write such a fact as R(t). An instance can equivalently
be thought of as a set of facts.

An n-ary query is a function from instances of a fixed
schema S to some set. We refer to S as the input schema
of the query. A Conjunctive Query (CQ) is a formula of the
form ∃y

∧
iAi where Ai are atoms from the schema. A

Boolean CQ (BCQ) is a CQ with no free variables. Follow-
ing the notation used in several places in the literature (e.g.
(Arenas, Barceló, and Reutter 2011)) we define a union of
CQs (UCQ) to be a disjunction of CQs satisfying the safety
condition where the free variables of each disjunct are the
same. Disjunctions of CQs where the safety condition is
dropped will play a key role in this paper. The terminology
for such queries is less standardized, but we refer to them as
disjunctions of CQs (DCQs). UCQs can be extended to re-
lational algebra, the standard algebraic presentation of first-
order relational queries: queries are build up from relation
symbols by union, difference, selection, and product (Abite-
boul, Hull, and Vianu 1995).

For a logical formula ρ with free variables x1, . . . , xn and
an instance I, a variable binding σ for ρ in I is a map-
ping taking each xi to an element of adom(I). We can ap-
ply σ to ρ to get a new formula σ(ρ) where each x is re-

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

110

placed by σ(x). Assuming an ordering of the free variables
as x1, . . . , xn we may identify a k-tuple t, writing ρ(t) to
mean that ti is substituted for xi in ρ.

A homomorphism between instances I1 and I2 is
a function f from adom(I1) to adom(I2) such that
R(c1, . . . , cm) ∈ I1 implies R(f(c1), . . . , f(cm)) ∈ I2.

The canonical database of a CQQ, denoted canondb(Q),
is the instance whose facts are the atoms of Q, where each
variable v corresponds to an element cv . The notion of ho-
momorphism from a CQ Q to an instance I is just a homo-
morphism from canondb(Q) to I. A homomorphism from
a CQ Q to a CQ Q′ is just a homomorphism between their
canonical databases, where we additionally require that the
mapping be the identity on any free variables or constants.
The output of a CQ Q on an instance I, denoted Q(I) con-
sists of the restrictions to free variables of Q of the homo-
morphisms of Q to I. The output of a UCQ is defined sim-
ilarly. We can choose an ordering of the free variables of
Q, and can then say that the output of Q on I consists of
n-tuples. We write I, t |= Q for an n-tuple t, if t ∈ Q(I).
We analogously define I, σ |= Q for a variable binding σ.
We sometimes refer to a homomorphism of a BCQ into an
instance as a match. For a logical formula ρ(x) and a tu-
ple of elements t, ρ(t) denotes the formula where each xi is
substituted with ti.

A CQ Q0 is a subquery of a CQ Q if the atoms of Q0 are
a subset of the atoms of Q and a variable of Q0 is free in
Q0 if and only if it is free in Q. A strict subquery of Q is a
subquery of Q that is not Q itself; Q is minimal if there is
no homomorphism from Q to a strict subquery of Q.

A view over a schema S consists of an n-ary relation V
and a corresponding n-ary query QV over relations from S .
Given a collection of views V and instance I, the view-image
of I, denoted V(I) is the instance that interprets each V ∈ V
by QV(I). We thus talk about CQ views, UCQ views, etc:
views defined by formulas within a class.

Distributed data and views. A distributed schema (d-
schema) S consists of a finite set of sources Srcs, with each
source s associated with a local schema Ss. We assume
that the relations in distinct local schemas are pairwise dis-
joint. In Example 1 our distributed schema consisted of two
sources, one containing Trtmnt and the other containing
Patient. A distributed instance (d-instance) is an instance
of a distributed schema. For a source s, an s-instance is an
instance of the local schema Ss. Given a d-instance D, we
denote by Ds the restriction of D to relations in s. If d-
schema S is the disjoint union of S1 and S2, and we have
sources I1 for S1 and I2 for S2, then we use (I1, I2) to
denote the union of I1 and I2, which is an instance of S .

For a given d-schema a distributed view (d-view) V is an
assignment to each source s of a finite set Vs of views over
its local schema. Note that here is our “autonomy” assump-
tion on the instances: we are free to design views on each
local source, but views can not cross sources. We can simi-
larly talk about CQ-based d-views, relational algebra-based
d-views, etc.

Tuple Generating Dependencies. Many semantic rela-
tionships between relations can be described using the well-
known formalism called Tuple Generating Dependencies

(TGDs), which we now review. These are logical sentences
of the form ∀x.λ → ∃y.ρ, where λ and ρ are conjunctions
of relational atoms. The notion of a formula ρ holding in
I (or I satisfying ρ, written I |= ρ) is the standard one in
first-order logic. A trigger for τ in I is a homomorphism h
of λ(x) into I. Moreover, a trigger h for τ is active if no
extension of h to a homomorphism of ρ(x,y) into I exists.
Note that a dependency τ is satisfied in I if there does not
exist an active trigger for τ in I.

Let Σ be a set of TGDs, I be a finite instance, and Q be a
BCQ. We write I ∧ Σ |= Q to mean that every instance con-
taining I and satisfying Σ also satisfies Q. For two CQs Q
and Q′, we similarly write Q ∧ Σ |= Q′ to mean that every
instance satisfying Q and Σ satisfies Q′.

2.2 Problem Formalization
We now give the key definitions in the paper, capturing
our expressiveness requirements (“usefulness”) and expres-
siveness limitations (“minimally informative” and “non-
disclosing”). Our expressiveness requirement is via the con-
cept of determinacy (Nash, Segoufin, and Vianu 2010), for-
malizing the idea that on any instance there is sufficient in-
formation in the views to recapture the query.

Definition 1. Two d-instances D and D′ are indistin-
guishable by a d-view V (or just V-indistinguishable) if
V (D) = V (D′) holds, for each view V ∈ V .

Since each view V ∈ Vs is defined over relations oc-
curring only in Vs, we can equivalently say that D and D′

are V-indistinguishable if V (Ds) = V (D′
s) holds, for each

V ∈ Vs.
Definition 2. A d-view V determines a query Q at a d-
instance D if Q(D′) = Q(D) holds, for each D′ that is V-
indistinguishable from D.

The d-view V is useful for Q if V determines Q on every
d-instance (for short, just “V determines Q”).

Usefulness for a given query Q will be our expressive-
ness requirement on d-views. Our first inexpressiveness re-
quirement captures the idea that we want to reveal as little
as possible:

Definition 3 (Minimally informative useful views). Given
a class of views C and a query Q, we say that a d-view
V is minimally informative useful d-view for Q within C
(“Min.Inf. d-view”) if V is useful for Q and for any other
d-view V ′ useful for Q based on views in C, V ′ determines
the view definition of each view in V .

We look at another inexpressiveness requirement that re-
quires an external party to not learn about another query.

Definition 4 (Non-disclosure). A non-disclosure function
specifies, for each query p, the set of d-views V that are
said to disclose p. We require such a function F to be
determinacy-compatible: if V2 discloses p according to F
and V1 determines each view in V2, then V1 also discloses
p according to F . If V does not disclose p, we say that V
is non-disclosing for p (relative to the given non-disclosure
function).

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

111

When we can find minimally informative useful d-views,
this tells us something about non-disclosure, since it is easy
to see that if we are looking to design views that are useful
and non-disclosing, it suffices to consider minimally infor-
mative views, assuming they exist:
Proposition 1. Suppose V is a minimally informative useful
d-view for Q within C, and there is a d-view based on views
in C that is useful for Q and non-disclosing for p according
to non-disclosure function F . Then V is useful for Q and
non-disclosing for p according to F .

There are many disclosure functions that are determinacy-
compatible. But in our examples, our complexity results,
and in Section 5, we will focus on a specific non-disclosure
function, whose intuition is that an external party “never in-
fers any answers”.
Definition 5. A d-view V is universal non-inference non-
disclosing (UN non-disclosing) for a CQ p if for each in-
stance I and each tuple t with I, t |= p, V does not deter-
mine p(t) at I. Otherwise V is said to be UN disclosing for
p.

This non-disclosure function is clearly determinacy-
compatible, so Proposition 1 will apply to it. Thus we will
be able to utilize UN non-disclosure as a means of showing
that certain d-views are not minimally informative.

Variations: background knowledge, and finite in-
stances. All of these definitions can be additionally parame-
terized by background knowledge Σ, consisting of integrity
constraints in some logic. Given d-instance D satisfying Σ
and a d-view V , V determines a query Q over the d-schema
at D relative to Σ if: for every D′ satisfying Σ that is V-
indistinguishable from D, Q(D′) = Q(D). We say that V is
useful for a queryQ relative to Σ if it determinesQ on every
d-instance satisfying Σ. We say V is UN non-disclosing for
query p with respect to Σ if V does not determine p on any
d-instance satisfying Σ.

By default, when we say “every instance”, we mean all
instances, finite or infinite. There are variations of this prob-
lem requiring the quantification in both non-disclosure and
utility to be over finite instances. The advantage of dealing
with the unrestricted variant of the problem is that for views
and queries in relational algebra the determinacy problem
is semi-decidable, and is equivalent to the standard notion
of rewritability in relational algebra (Nash, Segoufin, and
Vianu 2010). In contrast, the finite version is not semi-
decidable even for conjunctive queries and views (Gogacz
and Marcinkowski 2016). The use of the unrestricted ver-
sion will also allow us to make use of the chase construction,
which will be convenient in Section 3. However, most of the
results in the paper do not depend on this design choice: see
Section 6 for further discussion of this.

Main problem. We focus on the problem of determin-
ing whether minimally informative useful d-views exist for
a given query Q and class C, and characterizing such views
when they do exist. When minimally informative useful d-
views do not exist, we consider the problem of obtaining a
d-view that is useful for Q and which minimizes the set of
secrets p that are UN disclosed for p. We refer to Q as the
utility query, and p as the secret query.

Discussion. Our formalization of utility of views is
information-theoretic and exact: a view is useful if a party
with access to the view can compute the exact output of the
query (as opposed to the correct output with high probabil-
ity), with no limit on how difficult the computation may be.
The generality of this notion will make our negative results
stronger. And it turns out the generality will not limit our
positive results, since these will be realized by very simply
views.

Our formalization of minimally informative views is like-
wise natural if one seeks an ordering on sets of views
measuring the ability to support exact information-theoretic
query answering. Our query-based inexpressiveness notion,
non-disclosure, gives a way of seeing the impact of mini-
mally informative useful views on protecting information,
and it is also based on information-theoretic and exact cri-
teria. We exemplify our general definition of non-disclosure
function with UN non-disclosure, which has been studied in
prior work under several different names (Nash and Deutsch
2007; Benedikt et al. 2016; Benedikt, Cuenca Grau, and
Kostylev 2018; Benedikt et al. 2019). We choose the name
“non-disclosing” rather than “private” for all our query-
based expressiveness restrictions, since they are clearly very
different from more traditional probabilistic privacy guar-
antees (Dwork and Roth 2014). On the one hand the UN
non-disclosure guarantee is weak in that p is considered safe
for V (UN non-disclosed) if an attacker can never infer that
p is true with absolutely certainty. Given a distribution on
source instances, the information in the views may still in-
crease the likelihood that p holds. On the other hand, UN
non-disclosure is quite strong in that it must hold on every
source instance. Thus, although we do not claim that this
captures all intuitively desirable properties of privacy, we do
feel that it allows us to explore the ability to create views that
simultaneously support the strong ability to answer certain
queries in data integration and the strong inability to answer
other queries.

Restrictions and simplifications. Although the utility
and non-disclosure definitions make sense for any queries,
in this paper we will assume that Q and p are BCQs with-
out constants (abusing notation by dropping “without con-
stants”). While we restrict to the case of a single utility
query and secret query here, all of our results have easy
analogs for a finite set of such queries.

2.3 Some Tools
Throughout the paper we rely on two basic tools.

Canonical views. Recall that we are looking for views
that are useful for answering a CQ Q over a d-schema. The
“obvious” set of views to try are those obtained by partition-
ing the atoms ofQ among sources, with the free variables of
the views including the free variables of Q and the variables
occurring in atoms from different sources.

Given a CQ Q over a d-schema, and a source s, we de-
note by SVars(s,Q) the variables of Q that appear in an
atom from source s. We also denote by SJVars(s,Q), the
“source-join variables of s” in Q: the variables that are in
SVars(s,Q) and which also occur in an atom of another
source.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

112

Definition 6. The canonical view of Q for source s,
CanViews(Q), has a view definition formed by conjoining
all s-source atoms in Q and then existentially quantifying
all bound variables ofQ in SVars(s,Q)\SJVars(s,Q). The
canonical d-view of Q is formed by taking the canonical
view for each source.

In Example 1, the canonical d-view is what we referred
to as “the obvious view design”. It would mean that one
source has a view exposing ∃tdate Trtmnt(pid, tinfo, tdate)
– since pid is a source-join variable while tinfo is a free vari-
able of Q. The other source should expose a view revealing
∃address.Patient(pid, age, address), since address is neither
a free variable nor shared across sources.

The critical instance. In the definition of UN non-
disclosure of a query by a set of views, we required that
on any instance of the sources, a user who has access to
the views cannot reconstruct the answer to the query p. An
instance that will be helpful in several examples is the fol-
lowing “most problematic” instance (Marnette 2009).

Definition 7. The critical instance of a schema S is the in-
stance whose active domain consists of a single element ∗
and whose facts are R(∗, . . . , ∗) for all relational names R
in S .

Note that every BCQ over the relevant relations holds on
the critical instance of the source. The critical instance is
the hardest instance for UN non-disclosure in the following
sense:

Theorem 1. (Benedikt et al. 2016; Benedikt, Cuenca Grau,
and Kostylev 2018) Consider any CQ views V , and any BCQ
p. If p is determined by V at some instance of the source
schema then it is determined by V at the critical instance.

3 CQ Views
Returning to Example 1, recall the intuition that the canon-
ical d-view of Q is the “least informative d-view” that sup-
ports the ability to answer Q. We start our analysis by prov-
ing such a result, but with two restrictions: Q must be a
minimal CQ, and we only consider views specified by CQs:

Theorem 2. [Minimally informative useful CQ views] For
every minimal BCQ Q, the canonical d-view of Q is min-
imally informative. That is, if any CQ-based d-view V
determines a Q, then V determines each canonical view
CanViews(Q) of Q.

We only sketch the proof here. The first step is to
show that the determinacy of a CQ Q by a CQ-based d-
view V leads to a certain homomorphism of Q to itself.
This step follows using a characterization of determinacy of
CQ queries by CQ views via the well-known chase proce-
dure (See (Benedikt, ten Cate, and Tsamoura 2016) or the
“Green-Red chase” in (Gogacz and Marcinkowski 2015)).
The second step is to argue that if this homomorphism is
a bijection, then it implies that the canonical d-view deter-
minesQ, while if the homomorphism is not bijective, we get
a contradiction of minimality. This step relies on an analysis
of how the chase characterization of determinacy factorizes
over a d-schema.

Consequences. Combining Theorem 2 and Proposition 1
gives a partial answer to the question of how to obtain useful
and non-disclosing views:
Corollary 1. For any non-disclosure function F , BCQs Q
and p, if there is a CQ-based d-view that is useful for Q and
non-disclosing for p according to F , then the canonical d-
view of Qmin is such a d-view, where Qmin is any minimal
CQ equivalent to Q.

If we consider the specific non-disclosure notion, UN
non-disclosure, we can infer a complexity bound from com-
bining these results with prior work on the complexity of
checking non-disclosure (Theorem 44 of (Benedikt, Cuenca
Grau, and Kostylev 2018)):
Corollary 2. There is a Σp2 algorithm taking as input BCQs
Q and p and determining whether there is a CQ-based d-
view that is useful for Q and UN non-disclosing for p. If Q
is assumed minimal then the algorithm can be taken to be in
CONP.

The following example shows that the requirement that Q
is minimal (that is, has no redundant conjuncts) in Theorem
2 is essential.
Example 2. Consider two sources. The first source com-
prises the relations R1, R2 and R3, while the second source
comprises a single relation T . Consider also the conjunc-
tions of atoms C1 and C2 defined as:

C1 = R1(x, y) ∧ T (x)

C2 = R1(x′, y′) ∧R1(y′, z′) ∧R1(z′, x′) ∧
T (x′) ∧R2(y′) ∧R3(z′)

The conjunction C1 states that there is an element in T that
is the source of an R edge. The conjunction C2 states that
there is anR1-triangle with one vertex in T , a second inR2,
and a third in R3. Consider now the query Q defined as

∃x, y, x′, y′, z′. C1 ∧ C2

Note that the conjunction of atoms C1 in Q is redundant.
Indeed, the query Qmin = ∃x′, y′, z′.C2 is equivalent to Q.

The canonical view of Q for the Ri’s source is:

∃y, y′, z′.R1(x, y) ∧R1(x′, y′)∧
R1(y′, z′) ∧R1(z′, x′) ∧R2(y′) ∧R3(z′)

But the canonical view of Qmin for this source is

∃y′, z′. R1(x′, y′) ∧R1(y′, z′) ∧R1(z′, x′)∧
R2(y′) ∧R3(z′)

Theorem 2 tells us that the canonical d-view of Qmin is a
minimally informative useful d-view within the class of CQ
views. We claim that the canonical d-view of Q is not min-
imally informative for this class, and in fact reveals signifi-
cantly more than the canonical d-view ofQmin. Consider the
secret query p = ∃t.R1(t, t) stating that there is an R1 self-
loop. The canonical d-view ofQmin is UN non-disclosing for
p. Indeed, given any instance D, consider the instance D′

in which the T source is identical to the one in D, but the R
source is replaced by one where each node e in the canonical

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

113

view for D is in a triangle with distinct elements for y′, z′.
Such a D′ does not satisfy p, and is indistinguishable from
D according to the canonical d-view of Qmin.

In contrast, the canonical d-view ofQ is UN disclosing for
p. Consider D0, the critical instance for the source schema
(see Section 2). On D0 the returned bindings have x as only
∗, and from this we can infer that the witness elements for y′
and z′ can only be ∗, and hence the d-view discloses p with
D0 as the witness.

By Proposition 1 the canonical d-view of Q can not be
minimally informative within the class of CQ views.

4 Arbitrary Views
In the previous section we showed that the canonical d-view
is minimally informative within the class of CQ views, as-
suming that the utility query is minimized. We now turn to
minimally informative useful views, not restricting to views
given by CQ view definitions.

Our goal will be to arrive at a generalization of the notion
of canonical d-view that gives the minimal information over
arbitrary d-views that are useful for a given BCQ Q. That
is we want to arrive at an analog of Theorem 2 replacing
“CQ views” by “arbitrary views” and “canonical view” by a
generalization.

An equivalence class representation of minimally in-
formative views. Recall that general views are defined by
queries, where a query can be any function on instances. An
Equivalence Class Representation of a d-view (ECR) con-
sists of an equivalence relation ≡s for each source s. An
ECR is just another way of looking at a d-view defined by a
set of arbitrary functions on instances: given a function F ,
one can define an equivalence relation by identifying two lo-
cal instances when the values of F are the same. Conversely,
given an equivalence relation then one can define a function
mapping each instance to its equivalence class. A d-instance
D is indistinguishable from a d-instance D′ by the d-view
specified by ECR 〈≡s: s ∈ Srcs〉 exactly when Ds ≡s D′

s
holds for each s. Determinacy of one d-view by another cor-
responds exactly to the refinement relation between the cor-
responding ECRs. We will thus abuse notation by talking
about indistinguishability, usefulness, and minimal informa-
tiveness of an ECR, referring to the corresponding d-view.

Our first step will be to show that there is an easy-to-
define ECR whose corresponding d-view is minimally in-
formative. For a source s, an s-context is an instance for
each source other than s. Given an s-context C and an s-
instance I, we use (I, C) to denote the d-instance formed
by interpreting the s-relations as in I and the others as in C.

We say two s-instances I, I ′ are (s,Q)-equivalent if for
any s-context C, (I, C) |= Q⇔ (I ′, C) |= Q. We say two
d-instances D and D′ are globally Q-equivalent if for each
source s, the restrictions of D and D′ over source s, are (s,
Q)-equivalent.

Global Q-equivalence is clearly an ECR. Via “swapping
one component at a time” we can see that the corresponding
d-view is useful for Q. It is also not difficult to see that this
d-view is minimally informative for Q within the class of all
views:

Proposition 2. The d-view corresponding to global Q-
equivalence is a minimally informative useful d-view for Q
within the collection of all views.

Note that the result can be seen as an analog of Theorem
2. From it we conclude an analog of Corollary 1:

Proposition 3. If there is any d-view that is useful for BCQ
Q and non-disclosing for BCQ p, then the d-view given by
global Q-equivalence is useful for Q and non-disclosing for
p.

From an ECR to a concrete d-view. We now have a
useful d-view that is minimally informative within the set
of all d-views, but it is given only as the ECR global Q-
equivalence, and it is not clear that there are any views in the
usual sense – isomorphism-invariant functions mapping into
relations of some fixed schema — that correspond to this
ECR. Our next goal is to show that global Q-equivalence
is induced by a d-view defined using standard database
queries.

A shuffle of a CQ is a mapping from its free variables
to themselves (not necessarily injective). Given a CQ Q
and a shuffle µ, we denote by µ(Q) the CQ that results af-
ter replacing each variable occurring in Q by its µ-image.
We call µ(Q) a shuffled query. For example, consider
the query ∃y.R(x1, x2, x2, y) ∧ S(x2, x3, x3, y). Then, the
query ∃y.R(x2, x1, x1, y) ∧ S(x1, x1, x1, y) is a shuffle of
Q.

The canonical context query for Q at source s,
CanCtxts(Q), is the CQ whose atoms are all the atoms of
Q that are not in source s, and whose free variables are
SJVars(s,Q).

Definition 8. For a source s, a BCQ Q and a variable bind-
ing σ for Q, a shuffle µ of CanViews(Q) is invariant rel-
ative to 〈σ,CanCtxts(Q)〉 if for any d-instance I ′ where
I ′, σ |= CanCtxts(Q), we have I ′, σ |= µ(CanCtxts(Q)).

Note that we can verify this invariance by finding a homo-
morphism from σ(µ(CanCtxts(Q))) to σ(CanCtxts(Q)).

Invariance talks about every binding σ. We would like
to abstract to bindings satisfying a set of equalities. A type
for SJVars(s,Q) is a set of equalities between variables in
SJVars(s,Q). The notion of a variable binding satisfying a
type is the standard one. For a type τ , we can talk about a
mapping µ being invariant relative to 〈τ,CanCtxts(Q)〉: the
invariance condition holds for all bindings σ satisfying τ .

For a source s and a CQ Q, let τ1, . . . , τn be all the equal-
ity types over the variables in SJVars(s,Q) and x be the
variables in SJVars(s,Q).

Definition 9. The invariant shuffle views of Q for source s
is the set of views Vτ1 , . . . , Vτn where each Vτi is defined as
τi(x) ∧

∨
µ µ(CanViews(Q)), where x are the source-join

variables of Q for source s, and where the disjunction is
over shuffles invariant relative to τi.

Note that since the domain of µ is finite, there are only
finitely many mappings on them, and thus there are finitely
many disjuncts in each view up to equivalence.

We can show that global Q equivalence corresponds to
agreement on these views:

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

114

Proposition 4. For any BCQ Q and any source s, two s-
instances are (s,Q)-equivalent if and only if they agree on
each invariant shuffle view of Q for s.

Putting together Proposition 3 and 4, we obtain:

Theorem 3. [Minimally informative useful d-views among
the class of all views] The invariant shuffle views are mini-
mally informative for Q within the class of all views.

This yields a corollary for non-disclosure analogous to
Corollary 1:

Corollary 3. If an arbitrary d-view V is useful for BCQ Q
and non-disclosing for BCQ p, then the d-view containing,
for each source s, the invariant shuffle views of Q for s, is
useful and non-disclosing. In particular, some DCQ is useful
for Q and non-disclosing for p.

In Example 1 there are no nontrivial shuffles, so we can
conclude that the canonical d-view is minimally informative
within the class of all views. In general the invariant shuffle
views can be unsafe: different disjuncts may contain distinct
variables. Of course, they can be implemented easily by us-
ing a wildcard to represent elements outside the active do-
main. Further, we can convert each of these unsafe views to
an “information-equivalent” set of relational algebra views:

Proposition 5. For every view defined by a DCQ (possibly
unsafe), there is a finite set of relational algebra-based views
V ′ that induces the same ECR. Applying this to the invariant
shuffle views for a CQ Q, we can find a relational algebra-
based d-view that is minimally informative for Q within the
class of all views.

The intuition behind the proposition is to construct sepa-
rate views for different subsets of the variables that occur as
a CQ disjunct. A view with a given set of variables S will
assert that some CQ disjunct with variables S holds and that
no disjunct corresponding to a subset of S holds.

Example 3. Consider a d-schema with two sources, one
containing a ternary relation R and the other containing a
unary relation S. Consider the utility query Q:

∃x1, x2, y.R(x1, x2, y) ∧R(y, x2, x1) ∧ S(x1) ∧ S(x2)

The canonical view for the R source CanViewR(Q) is
∃y. R(x1, x2, y) ∧R(y, x2, x1).

Observe that Q is a minimal CQ, and hence by Theorem
2 the canonical d-view of Q is minimally informative among
the CQ-based d-views. We will argue that this d-view is not
minimally informative useful for Q among all d-views, by
arguing that it discloses more secrets than the shuffle views
disclose.

Consider the secret query p = ∃x.R(x, x, x). We
show that the canonical d-view of Q is UN disclosing
for p. Consider the critical instance of the R-source.
An external party will know that the instance contains
{R(∗, ∗, y0), R(y0, ∗, ∗)} for some y0. On the other hand,
if y0 6= ∗, then the canonical d-view would reveal x1 =
y0, x2 = ∗. So y0 must be ∗, and therefore p is disclosed. By
Corollary 1, we know that no CQ-based d-view can be UN
non-disclosing for p and useful for Q.

The shuffle views of Q are always useful for Q. We will
show that they are UN non-disclosing for p. Let us start by
deriving the invariant shuffle views for the R source. There
are two types, τ1 in which x1 = x2, and τ2 in which the
variables are not identified.

For a binding satisfying τ1, the canonical view of Q for
the R source is equivalent to

∃y.R(x1, x1, y) ∧R(y, x1, x1)

Since there is only one free variable in it, there is only one
invariant shuffle, the identity. Thus

Vτ1 = ∃y.R(x1, x1, y) ∧R(y, x1, x1)

For bindings satisfying τ2 there are several shuffles invariant
for CanCtxtR(Q) = S(x1) ∧ S(x2): the identity, the shuffle
which swaps x1 and x2, the shuffle in which x1 and x2 both
go to x1, and the shuffle in which both x1 and x2 go to x2.
Thus we get the view Vτ2 defined as x1 6= x2 conjoined with:

∃y.R(x1, x2, y) ∧R(y, x2, x1)∨
∃y.R(x1, x1, y) ∧R(y, x1, x1)∨
∃y.R(x2, x2, y) ∧R(y, x2, x2)∨
∃y.R(x2, x1, y) ∧R(y, x1, x2)

This last view is unsafe, but via Proposition 5 we can con-
vert it into a safe relational algebra view that yields the same
ECR, Vsafe

τ2 defined as x1 6= x2 conjoined with:

¬(∃y.R(x1, x1, y) ∧R(y, x1, x1))∧
¬(∃y.R(x2, x2, y) ∧R(y, x2, x2))∧

[(∃y.R(x1, x2, y) ∧R(y, x2, x1)∨
∃y.R(x2, x1, y) ∧R(y, x1, x2))]

We now argue that the shuffle views are UN non-
disclosing for p. This is because in any d-instance we can
replace each fact R(x0, x0, x0) by facts R(x0, x0, c) and
R(c, x0, x0) for a fresh c, obtaining an indistinguishable
instance where p does not hold. Hence by Proposition 1,
the canonical views of Q can not be minimally informative
within the class of all views, or even within the class of rela-
tional algebra views.

5 Impact of Background Knowledge
We now look at how the problem of designing views
that balance expressiveness and inexpressiveness restric-
tions changes in the presence of background knowledge on
the sources.

Local background knowledge. We start with the case
of a background theory Σ in which each sentence is local,
referencing relations on a single source.

It is easy to show that we can not generalize the prior
results for CQ views to arbitrary local background knowl-
edge. Intuitively using such knowledge we can encode de-
sign problems for arbitrary views using CQ views.

Thus we restrict to local constraints Σ that are existential
rules. We show that the results on CQ views extend to this
setting. We must now consider utility queries Q that are
minimal with respect to Σ, meaning that there is no strict
subquery equivalent to Q under Σ. By modifying the chase-
based approach used to prove Theorem 2, we show:

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

115

Theorem 4. [Min.Inf. CQ views w.r.t. local rules] Let Σ be
a set of local existential rules, Q a CQ minimal with respect
to Σ. Then the canonical d-view of Q is minimally informa-
tive useful within the class of CQ views relative to Σ.

The analog of Corollary 1 follows from the theorem:
Corollary 4. If any CQ based d-view is useful for Σ-
minimal Q and non-disclosing for p relative to Σ, then the
canonical d-view ofQ is useful forQ and non-disclosing for
p relative to Σ.

Consequences for decidability. Theorem 4 shows that
even in the presence of arbitrary local existential rules Σ it
suffices to minimize the utility query under Σ and check the
canonical d-view for non-disclosure under Σ. For arbitrary
existential rules, even CQ minimization is undecidable. But
for well-behaved classes of rules (e.g. those with terminat-
ing chase (Cuenca Grau et al. 2013; Baget et al. 2014), or
frontier-guarded rules (Baget et al. 2011)) we can perform
both minimization and UN non-disclosure checking effec-
tively (Benedikt et al. 2019).

We can also extend the results on arbitrary d-views to ac-
count for local existential rules Σ. The notion of a shuffle
being Σ-invariant is defined in the obvious way, restricting
to instances that satisfy the constraints in Σ. The Σ-invariant
shuffle views are also defined analogously; they are DCQ
views, but can be replaced by the appropriate relational al-
gebra views. Following the prior template, we can show:
Theorem 5. [Min.Inf. views w.r.t. local rules] For any set of
local existential rules Σ, the Σ-invariant shuffle views of Q
provide a minimally informative useful d-view for Q within
the class of all views, relative to Σ.

The result has effective consequences for “tame” rules
(e.g. with terminating chase) with no non-trivial invariant
shuffles. In such cases, the Σ-invariant shuffle views degen-
erate to the canonical d-view, and we can check whether the
canonical d-view is non-disclosing effectively (Benedikt et
al. 2016; Benedikt et al. 2019).

Non-local background knowledge. The simplest kind
of non-local constraint is the replication of a table between
sources. Unlike local constraints, these require some com-
munication among the sources to enforce. Thus we can
consider a replication constraint to be a restricted form of
source-to-source communication.

We will see that several new phenomena arise in the pres-
ence of replication constraints. Recall that with only local
constraints, we have useful d-views with minimal informa-
tion. We can not guarantee the existence of such a d-view in
the presence of replication:
Proposition 6. There is a schema with replication con-
straint Σ and a BCQ Q where there is no minimally infor-
mative useful d-view for Q within the class of all views w.r.t.
Σ.

Our proof of Proposition 6 uses a schema with unary re-
lations R, S, T . There are two sources: R and T are in dif-
ferent sources, and S is replicated between the two sources.
Let Q be ∃x.R(x) ∧ S(x) ∧ T (x).

We will explain how our views act when the active domain
of our instances is over the integers. The proof will easily

be seen to extend to arbitrary instances (e.g. by having the
views reveal all information outside of the integers).

Consider the functions F1(x) = 2x + 3 for x even and
2x + 2 for x odd. F2(x) = 2x + 4 for x even and 3x for
x odd. Let Str1 be the function that applies F1 to a relation
element-wise, and similarly define Str2 using F2. Notice
that F1 maps 0 to 3 and 1 to 4, while F2 maps 0 to 4 and 1
to 3.

We define a d-view V1 via an ECR, relating two instances
I and I ′ of the source exactly when I ′ can be obtained from
applying Str1 on I some number of times (applying it to
both relations of the source) or vice versa. That is, the ECR
of V1 is the smallest equivalence relation containing each
pair (I, Str1(I)). Let V2 be defined analogously using Str2.
To see that V1 and V2 are useful we will use the following
claim, which captures their key properties:

Claim 1. If we have two d-instances satisfying the repli-
cation constraint, (I1, I2) and (I ′1, I ′2), with the replicated
relation instances non-empty, then:
• We cannot have I ′1 = Stri1(I1), I ′2 = Strj1(I2) with
i 6= j; and similarly for Str2.

• We cannot have I ′1 = Stri1(I1) and I2 = Strj1(I ′2) unless
i = j = 0; and similarly for Str2.

Proof. Let S be the content of the replicated relation in
(I1, I2), while S′ is the content of the replicated relation
in (I ′1, I ′2).

We focus first on Str1. For the first item, let c(S) =
max{|x + 2| | x ∈ S}. We can check directly that for
any non-empty S, c(Str1(S)) > c(S). Then Stri1(S) =

S′ = Strj1(S) implies that i = j as otherwise c(Stri1(S)) >

c(Strj1(S)) when i > j and c(Stri1(S)) < c(Strj1(S)) when
i < j. For the second item we would have, Stri1(S) = S′

and Strj1(S′) = S which means Stri+j1 (S) = S which is
only possible for i+ j = 0.

For Str2, the proof is the same, but now using the function
d defined as d(S) = max{|x+1.5| | x ∈ S}. We can check
that d(S) < d(Str2(S)) for any non-empty S.

From the claim, usefulness follows easily. Suppose we
have (I1, I2) satisfying Q, and (I ′1, I ′2) is equivalent to
(I1, I2). From (I1, I2) satisfies Q, we know that the repli-
cated relation in I1 and I2 is non-empty, so the claim applies
to tell us that I ′1 = I1, I ′2 = I2.

Now suppose V were a minimally informative useful d-
view for Q. We must have V1 and V2 determine V . Thus in
particular if we have two local instances that agree on either
V1 or V2, then they agree on V .

Consider a d-instance D with R = {0}, S = {0, 1},
T = {0}, and a d-instance D′ with R = {3}, S = {3, 4},
T = {4}. These are both valid instances (i.e. the replication
constraint is respected). But D′ is obtained from D by ap-
plying Str1 on the source with R, and by applying Str2 on
the other source.

Thus D′ and D are indistinguishable by V , but Q has a
match in D but not in D′. This contradicts the assumption
that V is useful for Q.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

116

Given Proposition 6, for the remainder of we will focus on
obtaining useful views that minimize the set of queries that
are UN non-disclosed. If Q is a CQ, we say that a d-view V
is UN non-disclosure minimal for Q within a class of views
C if: V is useful forQ and for any BCQ p, if there is a d-view
based on C which is useful for Q and UN non-disclosing for
p, then V is UN non-disclosing for p Proposition 1 implies
that if V is Min.Inf. within C, then it is UN non-disclosure
minimal for any BCQ Q within C.

We can use the technique in the proof of Proposition 6
to show a more promising new phenomenon: there may be
d-views that are useful for CQ Q and UN non-disclosing
for CQ p, but they are much more intricate than any query
related to the canonical d-view of Q. In fact we can show
that with a fully-replicated relation in the utility query we
can can get useful and UN non-disclosing views whenever
this is not ruled out for trivial reasons:

Theorem 6. [UN non-disclosure minimal d-views in the
presence of replication] If BCQ Q contains a relation of
non-zero arity replicated across all sources then there is a
d-view that is useful for Q and UN non-disclosing for BCQ
p if and only if there is no homomorphism of p to Q. Fur-
ther we can use the same d-view for every such p without a
homomorphism into a given Q. In particular, there is a view
that is UN non-disclosure minimal for Q.

Thus even though we do not have minimally informative
useful d-views, we have d-views that are optimal from the
perspective of UN non-disclosure and utility for a fixed Q.

We sketch the idea of the proof of Theorem 6. Given util-
ity query Q and local instance I we can form the “product
instance” of I and Q. The elements of a product instance
will be pairs (x, c) where x is a variable of Q and c an ele-
ment of I, and there will be atom R((x1, c1), . . . , (xn, cn))
in the product exactly when there are corresponding atoms
in CanViews(Q) and I. Thus we will have homomor-
phisms from this instance to both I and CanViews(Q). We
use ECRs that make an s-instance I equivalent to all in-
stances formed by iterating this product construction of I
with CanViews(Q). The d-views corresponding to these
ECRs will be UN non-disclosing because in the product we
will have a fresh copy of any partial match of Q, and so the
only way for the secret query p to hold in the product will be
if it has a homomorphism into Q, which is forbidden by hy-
pothesis. The replication constraint ensures that if we have
two d-instances that are equivalent, where the interpretation
of the replicated relation is non-empty, the number of itera-
tions of the product construction is the same on each source.
Using this fact we can ensure that the d-views are useful.

Example 4. We give an example of the power of Theo-
rem 6, and we highlight the difference from the situation
with only local constraints. Suppose we have two sources,
with one binary relation S replicated between the two, and
each source having one non-replicated binary relation, R
in one source and T in the other. The utility query Q is
∃x, y.R(x, y) ∧ S(x, y) ∧ T (x, y) and the secret query p is
∃x.R(x, x).

Since p is not entailed by Q, Theorem 6 implies that there
are views that are useful for Q but UN non-disclosing for p.

But it is easy to see that the canonical d-view of Q is UN
disclosing for p.

The views used in Theorem 6 are not isomorphism-
invariant: like the views from Proposition 6, the product
construction can be seen as applying some value transfor-
mation on the elements of each instance. We can show —
in sharp contrast to the situation with only local constraints
— that with replication, even to achieve this weaker notion
of minimality, it may be essential to use d-views based on
queries that are not isomorphism-invariant.

Proposition 7. There is a d-schema with replication, and
BCQs Q and p such that there is a d-view useful for Q and
UN non-disclosing for p, but there is no such d-view based
on queries returning values in the active domain and com-
muting with isomorphisms. In particular, we cannot find
a UN non-disclosure minimal d-view that is isomorphism-
invariant in the above sense.

6 Discussion and Outlook
We have studied the ability to design views that satisfy di-
verse goals: expressiveness requirements in terms of full dis-
closure of a specified set of queries in the context of data
integration, and inexpressiveness restrictions in terms of ei-
ther minimal utility or minimizing disclosure of queries. Our
main results characterize information-theoretically minimal
views that support the querying of a given CQ.

We consider only a limited setting; e.g. CQs for the util-
ity query. Our hope is that the work can serve as a basis
for further exploration of the trade-offs in using query-based
mechanisms in a variety of settings.

Even in this restricted setting, our contribution focuses
primarily on expressiveness, leaving open many questions of
decidability and complexity. In particular we do not know
whether the Σp2 bound of Corollary 2 is tight. Nor do we
know whether the analogous question for arbitrary views –
whether there is an arbitrary d-view that is useful for a given
Q but UN non-disclosing for a given p – is even decidable.
Our results reduce this to a non-disclosure question for the
shuffle views.

Lastly, we mention that our positive results about CQ
views (e.g. in Section 3) rely on an analysis of the chase,
which can be infinite. Thus they are only proven for a se-
mantics of usefulness that considers all instances. We be-
lieve that the analogous results where only finite instances
are considered can easily be proven using the techniques of
Section 4, but leave this for future work.

Acknowledgements
Benedikt was supported by EPSRC grant EP/M005852/1.

References
Abiteboul, S.; Hull, R.; and Vianu, V. 1995. Foundations of
Databases. Addison-Wesley.
Arenas, M.; Barceló, P.; and Reutter, J. L. 2011. Query
languages for data exchange: Beyond unions of conjunctive
queries. Theory Comput. Syst. 49(2):489–564.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

117

Baget, J.-F.; Mugnier, M.-L.; Rudolph, S.; and Thomazo, M.
2011. Walking the complexity lines for generalized guarded
existential rules. In IJCAI.
Baget, J.; Garreau, F.; Mugnier, M.; and Rocher, S. 2014.
Extending acyclicity notions for existential rules. In ECAI.
Benedikt, M.; Bourhis, P.; ten Cate, B.; and Puppis, G. 2016.
Querying visible and invisible information. In LICS.
Benedikt, M.; Bourhis, P.; Jachiet, L.; and Thomazo, M.
2019. Reasoning about disclosure in data integration in the
presence of source constraints. In IJCAI.
Benedikt, M.; Cuenca Grau, B.; and Kostylev, E. V. 2018.
Logical foundations of information disclosure in ontology-
based data integration. AI 262:52–95.
Benedikt, M.; ten Cate, B.; and Tsamoura, E. 2016. Gener-
ating plans from proofs. In TODS.
Bonatti, P. A., and Sauro, L. 2013. A confidentiality model
for ontologies. In ISWC.
Calvanese, D.; De Giacomo, G.; Lenzerini, M.; and Rosati,
R. 2012. View-based Query Answering in Description
Logics: Semantics and Complexity. J. Comput. Syst. Sci.
78(1):26–46.
Chaum, D.; Crépeau, C.; and Damgard, I. 1988. Multiparty
unconditionally secure protocols. In STOC.
Cuenca Grau, B.; Horrocks, I.; Krötzsch, M.; Kupke, C.;
Magka, D.; Motik, B.; and Wang, Z. 2013. Acyclicity no-
tions for existential rules and their application to query an-
swering in ontologies. JAIR 47:741–808.
Dwork, C., and Roth, A. 2014. The algorithmic foundations
of differential privacy. Found. & Trends in Th. Comp. Sci.
9(3&4):211–407.
Dwork, C. 2006. Differential privacy. In ICALP.
Gogacz, T., and Marcinkowski, J. 2015. The hunt for a red
spider: Conjunctive query determinacy is undecidable. In
LICS.
Gogacz, T., and Marcinkowski, J. 2016. Red spider meets a
rainworm: Conjunctive query finite determinacy is undecid-
able. In PODS.
Halevy, A. Y. 2001. Answering queries using views: A
survey. VLDB J. 10(4):270–294.
Li, C.; Li, D. Y.; Miklau, G.; and Suciu, D. 2017. A theory
of pricing private data. CACM 60(12):79–86.
Marnette, B. 2009. Generalized schema-mappings: from
termination to tractability. In PODS.
Nash, A., and Deutsch, A. 2007. Privacy in GLAV informa-
tion integration. In ICDT.
Nash, A.; Segoufin, L.; and Vianu, V. 2010. Views and
queries: Determinacy and rewriting. TODS 35(3).

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

118

	Introduction
	Preliminaries
	Basic Definitions
	Problem Formalization
	Some Tools

	CQ Views
	Arbitrary Views
	Impact of Background Knowledge
	Discussion and Outlook

