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Abstract

Ontology-mediated query answering is an extensively studied
paradigm, where the conceptual knowledge provided by an
ontology is leveraged towards more enhanced querying of data
sources. A major advantage of ontological reasoning is its
interpretability, which allows one to derive explanations for
query answers. Indeed, explanations have a long history in
knowledge representation, and have also been investigated for
ontology languages based on description logics and existential
rules. Existing works on existential rules, however, merely fo-
cus on understanding why a query is entailed, i.e., explaining
positive query answers. In this paper, we continue this line
of research and address another important problem, namely,
explaining why a query is not entailed under existential rules,
i.e., explaining negative query answers. We consider various
problems related to explaining non-entailments from the ab-
duction literature, and also introduce new problems. For all
considered problems, we give a detailed complexity analysis
for a wide range of existential rule languages and complexity
measures.

1 Introduction
Ontology-based query answering aims to enhance querying
of data sources with an ontology that encodes domain knowl-
edge. The idea is to view the ontology and the user query as
a composite query, called ontology-mediated query (OMQ),
and the task of evaluating such queries is then called ontology-
mediated query answering (OMQA) (Bienvenu et al. 2014).
OMQA is an important paradigm in knowledge representa-
tion with many application areas. Description logics (DLs)
(Baader et al. 2007) and existential rules (Calì, Gottlob, and
Kifer 2013; Calì, Gottlob, and Lukasiewicz 2012) are two
families of languages, which are commonly used to formulate
ontologies.

With the increasing demand for more explainable and in-
terpretable systems, providing explanations for OMQA has
recently seen a surge in interest. The most basic problem is
that of explaining why a query is entailed, i.e., explaining
positive query answers. This problem has been studied for
ontology languages based on DLs (Borgida, Calvanese, and
Rodriguez-Muro 2008; Ceylan et al. 2020) and existential
rules (Ceylan et al. 2019). The main idea is to view an ex-
planation as a set of facts from the database, which together
with the ontology are sufficient to entail the query.

The complementary problem of explaining why a query
is not entailed, i.e., explaining negative query answers, has
only been studied in the context of DLs (Calvanese et al.
2013), where the problem is modeled as an abduction task.
Intuitively, a (minimal) explanation for a non-entailment can
be seen as a (minimal) set of facts such that, if the database
were extended with this set, the query would be entailed,
while the knowledge base would remain consistent with the
added information. This is a natural choice for explaining
non-entailments of monotonic queries, as a non-entailment
can be attributed to missing facts.

In this paper, we continue this line of research, and address
the problem of explaining negative answers in OMQA based
on existential rules (rather than DLs) as underlying ontology
languages. While DLs are popular formalisms for modeling
ontologies, it is generally agreed that existential rules are
well-suited for data-intensive applications, since they allow
us to conveniently deal with higher-arity relations, which
naturally occur in standard relational databases.

We consider the following computational problems of ex-
plaining negative query answers in OMQA with existential
rules: (i) deciding whether a given set of facts is a minimal
explanation, (ii) deciding whether there exists a minimal ex-
planation at all, (iii) deciding whether a given fact is relevant
or necessary, and (iv) deciding whether a given set of facts
contains exactly all relevant or exactly all necessary facts.
While the problems in (i) to (iii) have been considered be-
fore for DLs (Calvanese et al. 2013), they have not been
considered yet for existential rules, and the problems in (iv)
are considered for the first time in this paper. We give an
intuitive example to illustrate the above concepts.
Example 1. We encode the functionality of a mechanical
system that may experience certain issues as an OMQA prob-
lem. The system consists of four parts (p1, p2, p3, and p4),
and each may cause some issues (among overheat , leakage ,
high_pressure , non_start , burnt_smell , flow_blockage,
and pipes_rattling) when faulty. For example, (1) if p1 is
faulty, then the issues overheat and leakage may occur, (2) if
p2 is faulty, then the issues high_pressure and non_start
may occur, and (3) if p3 is faulty, then the issues leakage and
burnt_smell may occur. This functionality of the system is
encoded via facts in a database D and ontological axioms
(i.e., existential rules) in a program Σ.

When issues occur in the system, we would like to under-
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stand which parts may be causing the issues, so that we can
restrict the search for the causes to a limited number of parts.
This is a problem of fault diagnosis, which can be modeled
via explanations of negative query answers as follows.

In our example, the issues observed in the mechanical
system (e.g., leakage and non_start) can be encoded as
queries. Such queries are not entailed by the database D
alone. However, by adding to D facts about the potential
faultiness of the four parts (forming the set of hypotheses
H), the query can be derived, and hence an explanation built
from H can be interpreted as a possible set of causes for the
observed issues.

For example, under the above specification, the observed
issues leakage and non_start have the explanations of (a) p1

and p2 being faulty or (b) p2 and p3 being faulty. These are
also minimal explanations, and they are the only minimal
ones. Hence, p1, p2, and p3 are all relevant facts (which
belong to some minimal explanation), while p2 is the only
necessary fact (which is in every minimal explanation).

The precise definitions and details for this example will be
given later in the paper. �

In this paper, we provide a precise picture of the complex-
ity of the following computational tasks around explanations
for negative answers in OMQA for a wide range of existential
rule languages and under different complexity measures:

• Deciding the existence of a minimal explanation, and de-
ciding whether a given set of facts is an explanation.

• Deciding whether a given fact is relevant (i.e., belongs to
at least one minimal explanation), and deciding whether a
given set of facts contains exactly all relevant facts.

• Deciding whether a given fact is necessary (i.e., belongs to
every minimal explanation), and deciding whether a given
set of facts contains exactly all necessary facts.

2 Preliminaries
In this section, we recall some basics on existential rules (Calì,
Gottlob, and Pieris 2012; Calì, Gottlob, and Kifer 2013;
Calì, Gottlob, and Lukasiewicz 2012) and the paradigm of
ontology-mediated query answering. We also give some
complexity-theoretic background relevant to our study.

2.1 General
We consider a relational vocabulary consisting of mutually
disjoint, possibly infinite sets R, C, N, and V of predicates,
constants, nulls, and variables, respectively. Each predicate
is associated with an arity, i.e., a non-negative integer. A term
is a constant, a null, or a variable. An atom is an expression
of the form P (t1, . . . , tn), where P is an n-ary predicate,
and t1, . . . , tn are terms. A ground atom (or fact) has only
constants as terms. Conjunctions of atoms are often identified
with the sets of their atoms.

An instance I is a (possibly infinite) set of atoms con-
taining constants and nulls only. A database D is a finite
instance that contains only constants. A homomorphism is a
mapping h : C ∪N ∪V → C ∪N ∪V that is the identity
on C and maps N to C ∪N. With a slight abuse of notation,
homomorphisms are applied also to (sets of) atoms.

A conjunctive query (CQ) Q(X) is a first-order formula
of the form ∃Yφ(X,Y), where φ(X,Y) is a conjunction of
atoms without nulls. The answer to Q(X) over an instance I ,
denoted Q(I), is the set of all tuples t ∈ C|X| for which
there is a homomorphism h such that h(φ(X,Y)) ⊆ I and
h(X) = t. A union of conjunctive queries (UCQ) Q(X) has
the form Q1(X)∨ · · · ∨Qn(X), where each Qi(X) is a CQ.
The evaluation of Q(X) over an instance I , denoted Q(I), is
defined as the set of tuples

⋃
1≤i≤nQi(I). A Boolean UCQ

Q is a UCQ where all variables are existentially quantified.
We say that Q is true over I , denoted I |= Q, if Q(I) 6= ∅.
In the rest of the paper, we only focus on Boolean UCQs.

2.2 Existential Rules
A tuple-generating dependency (TGD) σ is a first-order for-
mula of the form ∀X∀Y Φ(X,Y)→ ∃ZΨ(X,Z), where
Φ(X,Y) is a conjunction of atoms, called the body of
the TGD and denoted body(σ), and Ψ(X,Z) is a conjunc-
tion of atoms, called the head of the TGD and denoted
head(σ), all without nulls. Classes of TGDs are also known
as existential rules, or Datalog± languages in the literature.
An instance I satisfies σ, written I |= σ, if the following
holds: whenever there exists a homomorphism h such that
h(Φ(X,Y)) ⊆ I , then there exists h′ ⊇ h|X, where h|X is
the restriction of h on X, such that h′(Ψ(X,Z)) ⊆ I .

A negative constraint (NC) ν is a first-order formula of the
form ∀XΦ(X)→ ⊥, where Φ(X) is a conjunction of atoms
without nulls, called the body of ν and denoted body(ν), and
⊥ denotes the truth constant false . An instance I satisfies ν,
written I |= ν, if there is no homomorphism h such that
h(Φ(X)) ⊆ I .

A program (or ontology) is a finite set Σ of TGDs and NCs.
We denote by ΣT and ΣNC the subsets of Σ containing the
TGDs and NCs of Σ, respectively. An instance I satisfies Σ,
written I |= Σ, if I satisfies each TGD and NC of Σ. For
brevity, we omit the universal quantifiers in front of TGDs
and NCs, and use the comma (instead of ∧) for conjoining
atoms. Given a class of TGDs C, we denote by C⊥ the
formalism obtained by combining C with arbitrary NCs. For
a program Σ, Σ ∈ C (resp., Σ ∈ C⊥) denotes that all TGDs
of Σ belong to C.

The Datalog± languages that we consider to guarantee
decidability are among the most frequently analyzed in the
literature, namely, linear (L) (Calì, Gottlob, and Lukasiewicz
2012), guarded (G) (Calì, Gottlob, and Kifer 2013), sticky
(S) (Calì, Gottlob, and Pieris 2012), and acyclic TGDs (A),
along with the “weak” (proper) generalizations weakly sticky
(WS) (Calì, Gottlob, and Pieris 2012) and weakly acyclic
TGDs (WA) (Fagin et al. 2005), as well as their “full” (i.e.,
existential-free) proper restrictions linear full (LF), guarded
full (GF), sticky full (SF), and acyclic full TGDs (AF), re-
spectively, and full TGDs (F) in general. We also recall the
following further inclusions: L⊂G and F⊂WA⊂WS.

2.3 Ontology-Mediated Query Answering
The paradigm of ontology-mediated query answering gen-
eralizes query answering over databases by incorporating
additional background knowledge in terms of an ontology.
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L Data fp-comb. ba-comb. Comb.

L, LF, AF ≤ AC0 NP NP PSPACE
S, SF ≤ AC0 NP NP EXP
A ≤ AC0 NP NEXP NEXP
G P NP EXP 2EXP

F, GF P NP NP EXP
WS, WA P NP 2EXP 2EXP

Table 1: Complexity of OMQA under existential rules.

Formally, an ontology-mediated query (OMQ) is a
pair (Q,Σ), where Q is a query, and Σ is an ontology. Let L
be an ontology language. If Σ ∈ L, then we say that (Q,Σ) is
anL-OMQ. Consider a databaseD and an OMQ (Q,Σ). The
set of models of (D,Σ), denoted mods(D,Σ), is the set of in-
stances {I | I ⊇ D ∧ I |= Σ}. We say that D entails (Q,Σ),
denoted D |= (Q,Σ), if I |= Q for every I ∈ mods(D,Σ).
Ontology-mediated query answering (OMQA) is the task of
deciding whether D |= (Q,Σ) for a given database D and
an OMQ (Q,Σ). Table 1 summarizes the known complexity
results for OMQA in the different classes of TGDs that we
consider. We denote by OMQA(L) the problem of OMQA
when restricted over ontologies belonging to L. We say that
(D,Σ) is consistent if mods(D,Σ) 6= ∅, otherwise (D,Σ) is
inconsistent. When OMQA(L) is restricted to the case where
(D,Σ) is consistent, we talk of consistent-OMQA(L).

A key paradigm in OMQA is the FO-rewritability of
queries: an OMQ (Q,Σ) is FO-rewritable, if there exists
a query QΣ such that, for all databases D that are consistent
relative to Σ, we have that D |= (Q,Σ) iff D |= QΣ. In this
case, QΣ is called an FO-rewriting of (Q,Σ). A class of
programs L is FO-rewritable, if it admits an FO-rewriting for
every query and program in L. All languages from Table 1
with AC0 data complexity are FO-rewritable.

2.4 Computational Complexity
In our complexity analysis, we make the standard assump-
tions (Vardi 1982): the combined complexity of query answer-
ing is calculated by considering all the components (i.e., the
database, the program, and the query) as part of the input. The
bounded-arity combined complexity (or simply ba-combined
complexity) assumes that the maximum arity of the predicates
in R is bounded by a constant integer. The fixed-program
combined complexity (or simply fp-combined complexity) is
calculated by considering the ontology as fixed. Finally, the
data complexity is calculated by considering the database as
the input, i.e., everything else is fixed. This paper’s most
relevant complexity classes and their relations are as follows:

AC0 ⊆ P ⊆ NP, coNP ⊆ DP ⊆ ΣP
2,ΠP

2 ⊆ DP
2 ⊆ PSPACE

⊆ EXP ⊆ NEXP, coNEXP ⊆ DEXP ⊆ PNEXP ⊆ 2EXP.

3 Explanations for Negative Query Answers
In this section, we formally define explanations and minimal
explanations for negative query answers in OMQA along
with several important computational problems for them.

Definition 2. Let D be a database, let (Q,Σ) be an OMQ,
with D 6|= (Q,Σ), and let H be a finite set of facts. An
explanation for D 6|= (Q,Σ) w.r.t. H is a subset E of H
such that (D ∪ E,Σ) is consistent and D ∪ E |= (Q,Σ).
A minimal explanation (or MinEX) for D 6|= (Q,Σ) w.r.t.
H is an explanation E for D 6|= (Q,Σ) w.r.t. H that is
inclusion-minimal, i.e., no set E′ ( E is an explanation for
D 6|= (Q,Σ) w.r.t. H .

Notice that, in order for D 6|= (Q,Σ) to hold, (D,Σ) must
be consistent.
Example 3. Consider again the mechanical system in Ex-
ample 1. We can encode the fault diagnosis problem as
follows. In the database D, we store the relationships be-
tween the faulty parts and the caused issues. The binary
predicate FaultIssue(X,Y ) describes that when the part
X is faulty, we may observe the issue Y . For example,
FaultIssue(p1, overheat) states that when p1 is faulty, we
may observe an overheat of the system. Consider the follow-
ing database:

D = {FaultIssue(p1, overheat),FaultIssue(p1, leakage),

FaultIssue(p2, high_pressure),FaultIssue(p2,non_start),

FaultIssue(p3, leakage),FaultIssue(p3, burnt_smell),

FaultIssue(p4,flow_blockage)} .

The set H of the possible causes of the observed issues is:

H = {Fault(p1),Fault(p2),Fault(p3),Fault(p4)} .

OMQs (Q,Σ) then encode the issues that we observe (in Q)
and our additional knowledge about the functioning of the
system (in Σ). Consider the following program:

Σ = {Fault(p1),Fault(p4) → ⊥; Fault(p1) → Fault(p3);

Fault(p1),Fault(p2) → Issue(pipes_rattling);

FaultIssue(X,Y ), Fault(X) → Issue(Y )} .

The first rule in Σ (an NC) says that the parts p1 and p4

cannot be faulty at the same time. The second one encodes
that if p1 is faulty, then so is p3. The third one says that when
p1 and p2 are both faulty, then we observe rattling pipes. The
last one encodes that if X is a part causing the issue Y , and
X is faulty, then we observe the issue Y .

Consider now the following OMQ:

(Q = Issue(leakage) ∧ Issue(non_start),Σ) ,

where Σ is the program defined above. In the query, we state
that we observe a leakage and that the system does not start.
The OMQ is not entailed by the database D alone. However,
by adding to D facts taken from H , the OMQ can be derived,
and hence an explanation built from H can be interpreted as
a possible set of causes for the issues observed. �

The first computational problem for explanations for neg-
ative query answers in OMQA is deciding whether a set of
facts is a minimal explanation for a negative answer.

Problem: IS-MINEX 6|=(L).
Input: A databaseD, an L-OMQ (Q,Σ), whereD 6|= (Q,Σ),
a finite set of facts H , and E ⊆ H .
Question: Is E a MinEX for D 6|= (Q,Σ) w.r.t. H?
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Example 4. Consider again the database D, the program Σ,
and the set H of Example 3. Then, for the OMQ

(Q = Issue(burnt_smell) ∧ Issue(leakage),Σ),

the sets E1 = {Fault(p1)} and E2 = {Fault(p3)} are mini-
mal explanations, while E′ = {Fault(p1),Fault(p3)} is an
explanation, but not a minimal one. �

Another computational problem is deciding whether there
exists a minimal explanation at all for a given OMQ.
Problem: MINEX-EXISTS 6|=(L).
Input: A databaseD, an L-OMQ (Q,Σ), whereD 6|= (Q,Σ),
and a finite set of facts H .
Question: Is there a MinEX for D 6|= (Q,Σ) w.r.t. H?

Example 5. Consider again the database D, the program Σ,
and the set H of Example 3. Then, for the OMQ

(Q = Issue(flow_blockage) ∧ Issue(burnt_smell),Σ),

the set E = {Fault(p3),Fault(p4)} is an explanation, but
not E′ = {Fault(p1),Fault(p4)}, as the simultaneous pres-
ence of Fault(p1) and Fault(p4) is not admitted by the NC.
On the other hand, for the OMQ

(Q = Issue(flow_blockage) ∧ Issue(overheat),Σ),

there is no explanation. �

Two other computational problems are recognizing rel-
evant facts and recognizing necessary facts. A fact ψ is
relevant (resp., necessary) for D 6|= (Q,Σ) w.r.t. H iff ψ ap-
pears in at least one (resp., in every) MinEX for D 6|= (Q,Σ)
w.r.t. H .
Problem: MINEX-REL 6|=(L).
Input: A databaseD, an L-OMQ (Q,Σ), whereD 6|= (Q,Σ),
a finite set of facts H , and a fact ψ.
Question: Is ψ relevant for D 6|= (Q,Σ) w.r.t. H?

Problem: MINEX-NEC 6|=(L).
Input: A databaseD, an L-OMQ (Q,Σ), whereD 6|= (Q,Σ),
a finite set of facts H , and a fact ψ.
Question: Is ψ necessary for D 6|= (Q,Σ) w.r.t. H?

Example 6. Consider again the database D, the program Σ,
and the set H of Example 3. Then, for the OMQ

(Q = Issue(non_start) ∧ Issue(leakage),Σ),

the setsE1 = {Fault(p1), Fault(p2)} andE2 = {Fault(p2),
Fault(p3)} are all the minimal explanations for the OMQ.
Hence, the facts Fault(p1), Fault(p2), and Fault(p3) are
relevant, while the only necessary fact is Fault(p3). �

The computational problems introduced so far are those
commonly addressed in the context of abductive reasoning
and negative answer explanations. In addition, we introduce
two novel important problems. The first one asks whether a
set H ′ of facts contains exactly all the relevant facts, i.e., H ′
is the union of all MinEXs. The problem is particularly inter-
esting, as H ′ can be seen as a minimal over-approximation of
all MinEXs, i.e., for every MinEX E, it holds that E ⊆ H ′,
and H ′ is the smallest set enjoying this property.
Problem: MINEX-ALLREL 6|=(L).
Input: A databaseD, an L-OMQ (Q,Σ), whereD 6|= (Q,Σ),

a finite set of facts H , and a set H ′ ⊆ H .
Question: Does H ′ contain exactly all the relevant facts
for D 6|= (Q,Σ) w.r.t. H?

The second novel computational problem that we consider
asks whether a set H ′ contains exactly all the necessary facts,
i.e., H ′ is the intersection of all MinEXs. Interestingly, H ′
can be seen as a maximal under-approximation of all MinEXs,
i.e., for every MinEX E, it holds that H ′ ⊆ E, and H ′ is the
biggest set enjoying this property.

Problem: MINEX-ALLNEC 6|=(L).
Input: A databaseD, an L-OMQ (Q,Σ), whereD 6|= (Q,Σ),
a finite set of facts H , and a set H ′ ⊆ H .
Question: Does H ′ contain exactly all the necessary facts
for D 6|= (Q,Σ) w.r.t. H?

Example 7. For the OMQ in Example 6

(Q = Issue(non_start) ∧ Issue(leakage),Σ),

the sets of all relevant and necessary facts are {Fault(p1),
Fault(p2),Fault(p3)} and {Fault(p3)}, respectively. �

4 Positive vs. Negative Explanations
Explaining positive query answers, i.e., why a database D
entails an OMQ (Q,Σ), where Σ is a set of TGDs, has been
recently investigated by Ceylan et al. (2019). Specifically,
an explanation for D |= (Q,Σ) is a set E ⊆ D such that
E |= (Q,Σ). A minimal explanation for D |= (Q,Σ) is an
inclusion-minimal explanation for D |= (Q,Σ).

In this paper, we deal with “negative” explanations. One
may nevertheless wonder whether there are easy reductions
mapping one problem into the other and covering the prob-
lems that are considered. It is possible, as we show, to
leverage a reduction from the positive to the negative setting
to derive the lower bounds for the problems IS-MINEX 6|=

and MINEX-REL 6|=. For the remaining problems, however,
there is no straightforward correspondence between positive
and negative explanation problems, and hence, they required
novel proofs.

One important difference between the positive and neg-
ative setting is that positive explanations are subsets of the
database, while negative explanations are subsets of a set H
of abducible facts and must be added to the entire database.
This makes simple reductions from the negative to the posi-
tive setting fail. As an example, suppose in our setting that
we are given a database D, an OMQ (Q,Σ), and a finite
set of facts H . One might try to derive an instance of the
positive explanation problem where the database is D ∪H
and the OMQ remains (Q,Σ). However, a set E that is a
minimal explanation for D ∪ H |= (Q,Σ) might not be a
minimal explanation for D 6|= (Q,Σ) w.r.t. H (because E
is not minimal or it is not an explanation at all). As an ex-
ample, consider the database D = {R(a)}, the OMQ (Q,Σ)
with Q = ∃X,Y R(X), S(Y ) and Σ = ∅, and the set of ab-
ducible facts H = {R(b), S(b)}. Then, E = {R(b), S(b)}
is a minimal explanation for D ∪H |= (Q,Σ), but it is not a
minimal explanation for D 6|= (Q,Σ) w.r.t. H (because it is
not minimal).
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5 Overview of Complexity Results
We give a precise picture of the complexity for all the ex-
planation problems. An overview of our complexity results
is given in Tables 2–7. They range from membership in
P to 2EXP-completeness; all entries without ‘≤’ are com-
pleteness results. For all problems and complexity measures,
H (as well as E in IS-MINEX 6|=, ψ in MINEX-REL 6|=and
MINEX-NEC 6|=, and H ′ in MINEX-ALLREL 6|=and MINEX-
ALLNEC 6|=) is always part of the input, that is, it is treated
like the database.

MINEX-REL 6|= and MINEX-NEC 6|= always have com-
plementary complexity classes, except in the fp-combined
complexity, where MINEX-REL 6|= is ΣP

2-complete, while
MINEX-NEC 6|= is coNP-complete. Intuitively, the reason is
that to decide whether a fact ψ is not necessary, we can guess
a subset E of H and check whether E is an explanation that
does not include ψ, and verifying minimality of E can be
avoided. In contrast, deciding relevance requires verifying
minimality of a guessed set, which in turn requires verifying
non-entailment. Such a check is in coNP in the fp-combined
complexity and yields a membership in NPcoNP = ΣP

2. This
also explains the difference between MINEX-ALLREL 6|= and
MINEX-ALLNEC 6|=in the fp-combined complexity.

The discussion above is also related to why MINEX-
EXISTS 6|= has a lower complexity than MINEX-REL 6|=in the
fp-combined complexity: a minimal explanation exists iff
an explanation (not necessarily minimal) exists; we can then
avoid verifying minimality of a guessed subset of H .

For the linear, full, and sticky languages, as well as for their
sublanguages, OMQA is NP-complete both in the fp- and
in the ba-combined complexity. One may expect that, for a
fixed problem, the complexity does not change in such cases,
as the complexity of OMQA remains the same across them.
However, this is not the case for MINEX-EXISTS 6|=, MINEX-
NEC 6|=, and MINEX-ALLNEC 6|=, where the complexity goes
from NP-, coNP-, and DP-completeness in the fp-combined
complexity to ΣP

2-, ΠP
2-, and DP

2-completeness in the ba-
combined complexity, respectively. The reason is that for
such problems, consistency checking can be done in P in
the fp-combined complexity, as the program is fixed, and
it is not required to check minimality of a guessed set. In
contrast, in the ba-combined complexity, the program is not
fixed anymore, and checking consistency requires a linear
number of checks for non-entailment, whose cost increases
the overall complexity by one level.

We analyze the complexity of IS-MINEX 6|= and MINEX-
EXISTS 6|= in Section 6, of MINEX-REL 6|= and MINEX-
ALLREL 6|= in Section 7, and of MINEX-NEC 6|= and MINEX-
ALLNEC 6|= in Section 8. For each problem, we first discuss
membership and then hardness results. We first prove general
procedures for the upper bounds that apply to all languages
and complexity measures, and we separately show tighter
upper bounds, when required. As an example, the data com-
plexity of all problems for FO-rewritable languages is in P.
In many cases, this is a tighter upper bound than the one pro-
vided by the general procedure, and it is derived by leveraging
rewritability into unions of conjunctive queries. Hardness
results are stated for the most specific languages that they

L Data fp-comb. ba-comb. Comb.
L⊥, LF⊥, AF⊥ ≤ P DP DP PSPACE

S⊥, SF⊥ ≤ P DP DP EXP

A⊥ ≤ P DP DEXP DEXP

G⊥ P DP EXP 2EXP
F⊥, GF⊥ P DP DP EXP

WS⊥, WA⊥ P DP 2EXP 2EXP

Table 2: Complexity of IS-MINEX 6|=(L).

apply to (and then hold for all generalizations, of course).

6 IS-MINEX 6|=and MINEX-EXISTS 6|=

We now analyze the complexity of recognizing a MinEX
and deciding the existence of a MinEX for a given database
and an OMQ. We start with IS-MINEX 6|=(L), i.e., deciding
whether a given set of facts is a minimal explanation for a
negative query answer, and the membership results. The
following theorem proves all upper bounds in Table 2.

Theorem 8. For any language L considered in this paper,
if OMQA(L) is in the complexity class C in the combined
(resp., ba-combined, fp-combined, data) complexity, then
IS-MINEX 6|=(L) can be decided with a C check and a linear
number of co-C checks in the combined (resp., ba-combined,
fp-combined, data) complexity.

Proof sketch. Deciding whether a given set E of facts is a
MinEX requires to carry out essentially three tasks: (1) decid-
ing whether (D ∪ E,Σ) is consistent; (2) deciding whether
D ∪ E |= (Q,Σ); and (3) deciding whether E is inclusion-
minimal. Task (1) can be solved by checking thatD∪E does
not entail the body of any negative constraint, which hence
consists of a linear number of non-entailment tests. Task (2)
can be carried out by performing a single entailment test.
Task (3) can be decided by checking that all facts in E are
required to entail (Q,Σ), and this can be done by verifying
that removing every single fact ψ from E in turn leads to a
set of facts not entailing (Q,Σ). Also this task consists of a
linear number of non-entailment tests.

We now focus on the hardness results for IS-MINEX 6|=(L).
Among others, Ceylan et al. (2019) studied the problem
of deciding whether a set E is a minimal explanation for
D |= (Q,Σ), called IS-MINEX(L). All the lower bounds in
Table 2 are obtained from the following result that establishes
a connection between “positive” and “negative” explanations.

Lemma 9. For any language L considered in this pa-
per, IS-MINEX(L) is reducible in polynomial time to IS-
MINEX 6|=(L) in the data, fp-combined, ba-combined, and
combined complexity.

We now focus on the problem MINEX-EXISTS 6|=(L) of
deciding the existence of (minimal) explanations for nega-
tive query answers. We start by providing the membership
results. The following theorem proves all the upper bounds
in Table 3 but the NP and P ones, for which we need tighter
results stated next. Intuitively, to decide whether there exists
a minimal explanation for a negative query answer, it suffices
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L Data fp-comb. ba-comb. Comb.
L⊥, LF⊥, AF⊥ ≤ P NP ΣP

2 PSPACE
S⊥, SF⊥ ≤ P NP ΣP

2 EXP

A⊥ ≤ P NP PNEXP PNEXP

G⊥ NP NP EXP 2EXP
F⊥, GF⊥ NP NP ΣP

2 EXP
WS⊥, WA⊥ NP NP 2EXP 2EXP

Table 3: Complexity of MINEX-EXISTS 6|=(L).

to check whether there is any explanations for the negative
query answers, i.e., there is no need to double check the min-
imality. Hence, we guess a set E ⊆ H of facts (feasible in
NP), and then check via oracle calls that E is consistent and
allows us to entail the OMQ (Tasks (1) and (2) in the proof
sketch of Theorem 8).
Theorem 10. For any language L considered here, if
OMQA(L) is in the complexity class C in the combined (resp.,
ba-combined, fp-combined, data) complexity, then MINEX-
EXISTS 6|=(L) is in NPC in the combined (resp., ba-combined,
fp-combined, data) complexity.

The following theorem provides the NP upper bounds in
the fp-combined complexity in Table 3. The result is obtained
from the proof of Theorem 8 with the additional observation
that in the fp-combined setting, for the Datalog± languages
considered, checking whether a set of facts is consistent is
feasible in P, because the negative constraints are fixed.

Theorem 11. MINEX-EXISTS 6|=(L) is in NP in the fp-
combined complexity for all languages L considered here.

We conclude the discussion of the membership results for
MINEX-EXISTS 6|= by showing that the problem is in P in the
data complexity for all the FO-rewritable languages consid-
ered, namely, L, S, and A (as well as their full restrictions).
The proof relies on the fact that, for these languages, any
OMQ can be rewritten into an equivalent FO query Q, which
is a union of conjunctive queries. Starting from the values of
the tuples in the database andH , it is possible to build in poly-
nomial time the set D containing all the polynomially-many
sets of facts that can possibly satisfy Q. Once D is com-
puted, all its elements can be tested in turn, and we verify (in
polynomial time) whether any of them is a (non-necessarily
minimal) explanation for the negative answer of the OMQ.
Theorem 12. If L is FO-rewritable language, then MINEX-
EXISTS 6|=(L) is in P in the data complexity.

As for the hardness results for MINEX-EXISTS 6|=(L),
the following theorem proves the lower bounds in the data
complexity in Table 3 for the non-FO-rewritable languages,
namely, GF⊥ and its generalizations. Its proof is a reduc-
tion from the satisfiability of 3CNF Boolean formulas φ(X).
Intuitively, in a fixed program, there are rules deciding the
satisfiability of φ(X). The set H contains facts associated
with truth assignments for the variables X . A candidate ex-
planation E encodes a truth assignment σE for the variables
X , and E is actually an explanation iff σE satisfies φ(X).

Theorem 13. MINEX-EXISTS 6|=(GF⊥) is NP-hard in the
data complexity.

The hardness results in Table 3 in the fp-combined, ba-
combined, and combined complexity can mainly be ob-
tained from the following lemma showing a link between
the complexity of consistent-OMQA(L) and of MINEX-
EXISTS 6|=(L). The ΣP

2-hardness and the PNEXP-hardness re-
sults in Table 3 require tighter theorems, which will be stated
next.
Lemma 14. For any language L considered here, consistent-
OMQA(L) is reducible in polynomial time to MINEX-
EXISTS 6|=(L) in the data, fp-combined, ba-combined, and
combined complexity.

The following theorem proves the ΣP
2-hardness results

(in the ba-combined complexity) in Table 3. The proof
uses a reduction from the ΣP

2-complete problem QBFDNF
2,∀ :

decide the validity of a quantified Boolean formula Φ =
∃X∀Y φ(X,Y ), where φ(X,Y ) is in 3DNF. We need to en-
code the validity of the quantified formula. In H , there are
facts associated with the various truth assignments for the
variables X . The test for the unsatisfiability of φ(X,Y ),
when a truth assignment for X is encoded in a candidate
explanation, is captured with a negative constraint. A can-
didate explanation E encoding a truth assignment σE for X
is actually an explanation iff ∀Y φ(X/σE , Y ) is valid. So, if
∀X∃Y ¬φ(X,Y ) holds, then there are no explanations.
Theorem 15. MINEX-EXISTS 6|=(L) is ΣP

2-hard in the ba-
combined complexity for all languages L considered here.

The following theorem proves the two PNEXP-hardness
results in Table 3 for A in the ba-combined and combined
complexity. The result can be shown via a reduction from
the problem ETP defined by Eiter, Lukasiewicz, and Pre-
doiu (2016): given a triple (m,TP1,TP2), where m is a
number in unary, and TP1 and TP2 are two tiling problems
for the exponential square 2n × 2n, decide whether there ex-
ists an initial tiling conditions w of length m such that TP1

has a solution with w and TP2 has no solution with w. The
idea of the reduction is to have the candidate explanations
taken from H to encode the possible initial tiling conditions.
Then, there are rules that allow us to derive the query if TP1

has a solution with the initial condition w encoded in the
explanation, and TP2 has no solution with w.
Theorem 16. MINEX-EXISTS 6|=(A⊥) is PNEXP-hard in the
ba-combined and combined complexity.

7 MINEX-REL 6|=and MINEX-ALLREL 6|=

In this section, we deal with the problems regarding relevant
facts, i.e., facts appearing in at least one minimal explanation.
In particular, we analyze the problem of deciding whether
a fact is relevant and the problem of deciding whether a set
of facts is the set of all and only the relevant facts. We start
by looking at the problem MINEX-REL 6|=(L) of deciding
whether a fact is relevant or not, and first provide the mem-
bership results. The following theorem proves all the upper
bounds in Table 4, except for those in the data complexity for
FO-languages, for which we need a tighter statement. Intu-
itively, to decide whether ψ is relevant, it suffices to guess a
set E of facts containing ψ (feasible in NP), and then, via an
oracle call, check that E is a minimal explanation.
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L Data fp-comb. ba-comb. Comb.
L⊥, LF⊥, AF⊥ ≤ P ΣP

2 ΣP
2 PSPACE

S⊥, SF⊥ ≤ P ΣP
2 ΣP

2 EXP

A⊥ ≤ P ΣP
2 PNEXP PNEXP

G⊥ NP ΣP
2 EXP 2EXP

F⊥, GF⊥ NP ΣP
2 ΣP

2 EXP
WS⊥, WA⊥ NP ΣP

2 2EXP 2EXP

Table 4: Complexity of MINEX-REL 6|=(L).

L Data fp-comb. ba-comb. Comb.
L⊥, LF⊥, AF⊥ ≤ P DP

2 DP
2 PSPACE

S⊥, SF⊥ ≤ P DP
2 DP

2 EXP

A⊥ ≤ P DP
2 PNEXP PNEXP

G⊥ DP DP
2 EXP 2EXP

F⊥, GF⊥ DP DP
2 DP

2 EXP
WS⊥, WA⊥ DP DP

2 2EXP 2EXP

Table 5: Complexity of MINEX-ALLREL 6|=(L).

Theorem 17. For any language L considered here, if IS-
MINEX 6|=(L) is in the complexity class C in the combined
(resp., ba-combined, fp-combined, data) complexity, then
MINEX-REL 6|=(L) is in NPC in the combined (resp., ba-
combined, fp-combined, data) complexity.

For the FO-rewritable languages, the following theorem
proves the P-membership results in the data complexity
shown in Table 4 that are not obtained via Theorem 17. To
prove this result, we exploit, also in this case, the rewritabil-
ity of the OMQ into an FO query Q and the possibility to
compute in polynomial time the set D containing all the
polynomially many sets of facts that can possibly satisfy Q.
With D at hand, its elements can be considered in turn to
verify whether there exists a minimal explanation containing
the fact to be tested for relevance.

Theorem 18. For any FO-rewritable language L considered
here, MINEX-REL 6|=(L) is in P in the data complexity.

We now consider the hardness results. To study the hard-
ness of MINEX-REL 6|=(L), we can resort to its “positive”
variant. Ceylan et al. (2019) studied the problem of deciding
whether a fact ψ belongs to some minimal explanation for
D |= (Q,Σ), called MINEX-REL(L). It is possible to show
that MINEX-REL(L) reduces to MINEX-REL 6|=(L), thereby
obtaining all the hardness results in Table 4.

Theorem 19. For any language L considered here, MINEX-
REL(L) is reducible in polynomial time to MINEX-REL 6|=(L)
in the data, fp-combined, ba-combined, and combined com-
plexity.

We now analyze the problem MINEX-ALLREL 6|=(L) of
deciding whether a set contains all and only the relevant facts.
We focus on the membership results first. The following
theorem proves all the upper bounds in Table 5. Intuitively,
to check that H ′ is the set of all and only the relevant facts, it
suffices to check that all facts in H ′ are relevant, and all facts
outside H ′ are not relevant.

Theorem 20. For any language L considered here, if
MINEX-REL 6|=(L) is in the complexity class C in the com-
bined (resp., ba-combined, fp-combined, data) complex-
ity, then MINEX-ALLREL 6|=(L) can be decided with a C
check and a co-C in the combined (resp., ba-combined, fp-
combined, data) complexity.

As for hardness, the following theorem proves all the hard-
ness results in Table 5 in the data complexity for the non-
FO-rewritable languages via a reduction from the classical
DP-complete problem SAT-UNSAT: given two Boolean for-
mulas in 3CNF φ(X) and ψ(X), decide whether φ is satis-
fiable, and ψ is not satisfiable. In a fixed program, there are
the rules to check the satisfiability of the formulas. In H ,
there are facts to encode possible truth assignments for the
Boolean variables X , plus some additional facts to recognize
the satisfaction of φ and ψ, for the specific truth assignments
in the candidate explanations. The idea is to have all facts
in H to be relevant, apart from the one associated with the
satisfaction of ψ.

Theorem 21. MINEX-ALLREL 6|=(GF⊥) is DP-hard in the
data complexity.

The following theorem proves all the DP
2 lower bounds

in Table 5 in the fp-combined complexity. It also gives
hardness results matching the upper bounds for L⊥, F⊥,
S⊥, and their specializations in the ba-combined complex-
ity. We show a reduction from the prototypical DP

2-complete
problem QBFCNF

2,∀,¬ ∧ QBFCNF
2,∃ : decide the validity of two

quantified Boolean formulas Φ = ∃X∀Y ¬φ(X,Y ) and
Ψ = ∀X∃Y ψ(X,Y ) (notice that by an argument similar
to the one in the proof of Theorem 3.9 in (Lukasiewicz and
Malizia 2017), X and Y can be assumed w.l.o.g. to be the
same in φ(X,Y ) and ψ(X,Y )). The tests of satisfaction of
φ(X,Y ) and ψ(X,Y ) are in the query. In H , there are facts
representing truth assignments for variables X , plus addi-
tional facts to recognize the validity of Φ and Ψ: we check
for the relevance or not of these additional facts.

Theorem 22. For any language L considered here, MINEX-
ALLREL 6|=(L) is DP

2-hard in the fp-combined complexity.

The remaining hardness results in the ba-combined com-
plexity as well as all the hardness results in the combined
complexity are established via the following theorem, which
shows that MINEX-EXISTS 6|=can be reduced to the comple-
ment of MINEX-ALLREL 6|=.

Theorem 23. For any language L considered here, MINEX-
EXISTS 6|=(L) is reducible in polynomial time to the comple-
ment of MINEX-ALLREL 6|=(L) in the data, fp-combined,
ba-combined, and combined complexity.

8 MINEX-NEC 6|=and MINEX-ALLNEC 6|=

In this section, we study the problems regarding necessary
facts, i.e., facts appearing in all the minimal explanations. In
particular, we analyze the problem of deciding whether a fact
is necessary and the problem of deciding whether a set of
facts is the set of all and only the necessary facts.

We now focus on the problem MINEX-NEC 6|=(L) of de-
ciding whether a fact is necessary. As for the membership
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results, the following theorem proves all upper bounds in
Table 6 but the coNP and P ones, for which we need tighter
results, as stated next. Intuitively, we can disprove that a fact
ψ is necessary by checking that there is a (non-necessarily
minimal) explanation excluding ψ. Hence, we can answer by
guessing a set E ⊆ H \ {ψ} of facts (feasible in NP), and
then check via oracle calls that E is consistent and entails the
OMQ (Tasks (1) and (2) in the proof sketch of Theorem 8).
Theorem 24. For any language L considered here, if
OMQA(L) is in the complexity class C in the combined
(resp., ba-combined, fp-combined, data) complexity, then
MINEX-NEC 6|=(L) is in co-(NPC) in the combined (resp.,
ba-combined, fp-combined, data) complexity.

The following theorem provides the coNP upper bounds in
the fp-combined complexity in Table 6. The result is obtained
from the proof of Theorem 24 with the additional observation
that in the fp-combined setting, for the Datalog± languages
considered, checking whether a set of facts is consistent is
feasible in P, because the negative constraints are fixed.
Theorem 25. For any language L considered here, MINEX-
NEC 6|=(L) is in coNP in the fp-combined complexity.

We conclude the discussion of the membership results
for MINEX-NEC 6|=(L) by showing that the problem is in P
in the data complexity for all the FO-rewritable languages
considered, namely, L, S, and A (as well as their full re-
strictions). For the FO-rewritable languages, the following
theorem proves the P membership results in the data complex-
ity shown in Table 6 that are not obtained via Theorem 24. To
prove this result, we exploit the rewritability of an OMQ into
an FO query Q and the possibility to compute in polynomial
time the set D containing all the polynomially many sets of
facts that can possibly satisfy Q. Once D has been computed,
its elements can be considered in turn to verify whether there
exists a non-necessarily minimal explanation excluding the
fact to be tested for necessity. If such an explanation is found,
we answer no, otherwise we answer yes.
Theorem 26. For any FO-rewritable language L considered
here, MINEX-NEC 6|=(L) is in P in the data complexity.

Regarding the hardness results of MINEX-NEC 6|=(L), they
can be proven by showing a reduction from the complement
of MINEX-EXISTS 6|=(L) to MINEX-NEC 6|=(L).
Theorem 27. For any language L considered here, the com-
plement of MINEX-EXISTS 6|=(L) is reducible in polynomial
time to MINEX-NEC 6|=(L) in the data, fp-combined, ba-
combined, and combined complexity.

We now study the problem MINEX-ALLNEC 6|=(L) of de-
ciding whether a set contains all and only the necessary facts.
We start by looking at the membership results. The following
theorem proves all upper bounds in Table 7. Intuitively, to
check that H ′ is the set of all and only the necessary facts,
it suffices to check that all facts in H ′ are necessary and all
facts outside H ′ are not necessary.
Theorem 28. For any language L considered here, if
MINEX-NEC 6|=(L) is in the complexity class C in the com-
bined (resp., ba-combined, fp-combined, data) complexity,
then MINEX-ALLNEC 6|=(L) can be decided by a check in

L Data fp-comb. ba-comb. Comb.
L⊥, LF⊥, AF⊥ ≤ P coNP ΠP

2 PSPACE
S⊥, SF⊥ ≤ P coNP ΠP

2 EXP

A⊥ ≤ P coNP PNEXP PNEXP

G⊥ coNP coNP EXP 2EXP
F⊥, GF⊥ coNP coNP ΠP

2 EXP
WS⊥, WA⊥ coNP coNP 2EXP 2EXP

Table 6: Complexity of MINEX-NEC 6|=(L).

L Data fp-comb. ba-comb. Comb.
L⊥, LF⊥, AF⊥ ≤ P DP DP

2 PSPACE
S⊥, SF⊥ ≤ P DP DP

2 EXP

A⊥ ≤ P DP PNEXP PNEXP

G⊥ DP DP EXP 2EXP
F⊥, GF⊥ DP DP DP

2 EXP
WS⊥, WA⊥ DP DP 2EXP 2EXP

Table 7: Complexity of MINEX-ALLNEC 6|=(L).

C and a check in co-C in the combined (resp., ba-combined,
fp-combined, data) complexity.

As for the hardness results, the following theorem proves
all the hardness results in Table 7 in the data complexity for
the languages considered here that are not FO-rewritable. The
proof is via a reduction from SAT-UNSAT. In H , there are
facts associated with the possible truth assignments for the
variables X of the formulas, plus additional facts allowing to
recognize that the formulas φ and ψ are unsatisfiable. In this
case, the idea is to have all facts in H to be non-necessary,
apart from the one associated with the unsatisfaction of ψ.

Theorem 29. MINEX-ALLNEC 6|=(GF⊥) is DP-hard in the
data complexity.

The next theorem proves all the hardness results in Table 7
in fp-combined complexity. Also here, we provide a reduc-
tion from SAT-UNSAT. The set H includes a couple of facts
allowing to recognize the unsatisfiability of φ and ψ. We
check that the fact associated with the unsatisfiability of ψ is
necessary.
Theorem 30. For any language L considered here, MINEX-
ALLNEC 6|=(L) is DP-hard in the fp-combined complexity.

The following theorem proves the DP
2-hardness in the ba-

combined complexity for all the languages we consider. The
theorem then provides matching lower bounds for the DP

2-
completeness results in Table 7, while for the remaining
languages we need tighter lower bounds shown next.

The proof uses a reduction from the DP
2-complete problem

QBFCNF
2,∀,¬ ∧QBFCNF

2,∃ : given two quantified Boolean formu-
las Φ = ∃X∀Y ¬φ(X,Y ) and Ψ = ∀Z∃Kψ(Z,K), decide
whether Φ and Ψ are both valid. In H , there are facts associ-
ated with the various valid truth assignments for the variables
in X and Z. The test for the satisfiability of φ(X,Y ) and
ψ(Z,K), when a truth assignment for X and Z is encoded
in a candidate explanation, is captured with two negative con-
straints. Additionally, H contains facts encoding a special
truth assignment (using a special truth value) for the variables
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in X and Z that allow us to bypass the satisfiability tests for
φ(X,Y ) and ψ(Z,K). Then, H ′ contains the facts encod-
ing the special truth assignment for Z. All facts encoding
valid truth assignments are not necessary. Thus, H ′ contain
exactly all necessary facts iff all facts encoding the special
truth assignment for Z are necessary and all facts encoding
the special truth assignment for X are not necessary. Then,
Φ is valid iff we can build an explanation not using any of
the facts encoding the special truth assignment for X; Ψ is
valid iff every explanation that we can build must contain all
facts encoding the special truth assignment for Z.
Theorem 31. For any language L here considered, MINEX-
ALLNEC 6|=(L) is DP

2-hard in the ba-combined complexity.
The remaining hardness results in the ba-combined com-

plexity as well as all the hardness results in the combined
complexity are established via the following theorem, which
shows that MINEX-EXISTS 6|=can be reduced to the comple-
ment of MINEX-ALLNEC 6|=.
Theorem 32. For any language L considered here, MINEX-
EXISTS 6|=(L) is reducible in polynomial time to the comple-
ment of MINEX-ALLNEC 6|=(L) in the data, fp-combined,
ba-combined, and combined complexity.

9 Related Work
The literature on explanations is very rich. Abstracting away
from subtle differences, the study of explanations can be clas-
sified in accordance to the (i) underlying logical formalism,
(ii) reasoning task to be explained (e.g., query answering and
consistency checking), and (iii) type of consequences to be
explained (e.g., entailments vs. non-entailments). We focus
on existential rules as the underlying logical formalism, on
OMQA as the reasoning task, and on non-entailments.

Our study may be seen as an instance of abductive reason-
ing, explaining observations in terms of sets of hypotheses
that may have led to those observations. Abductive reasoning
has been studied for several formalisms, such as proposi-
tional logic (Eiter and Gottlob 1995), logic programs (Eiter,
Gottlob, and Leone 1997b), default theories (Eiter, Gottlob,
and Leone 1997a), probabilistic temporal logic (Molinaro,
Sliva, and Subrahmanian 2014), and DLs (Du et al. 2011;
Du, Wang, and Shen 2014; Del-Pinto and Schmidt 2019;
Wang et al. 2015; Klarman, Endriss, and Schlobach 2011;
Calvanese et al. 2013). The study of ABox abduction by Klar-
man, Endriss, and Schlobach (2011) is related to our ap-
proach, as they also view a set of assertions (i.e., facts) as ex-
planations. The closest work to ours is the one by Calvanese
et al. (2013): for a given query that is not entailed from the
knowledge base, the idea is to find a set of assertions such
that, when they are added to the ABox, the entailment holds
(avoiding inconsistencies). They consider arbitrary, inclusion-
minimal, and cardinality-minimal explanations. Differently
from their work, we focus on existential rules, and also con-
sider novel explanation problems. One important difference
is in the way abducibles are defined, which in turn affects how
explanations are defined: in our case, explanations are subsets
of a given setH of abducible facts; in contrast, they start with
a set of abducible predicates, called signature, and explana-
tions are sets of facts whose predicate belongs to the signature.

This formulation is suitable when abducible predicates are
known, but relevant constants may not be known. The same
problem formalization has been adopted in (Du et al. 2011;
Du, Wang, and Shen 2014). The latter work also identi-
fied a class of TBoxes guaranteeing the existence of a finite
number of minimal explanations (as there can be infinitely
many minimal explanations). Furthermore, they introduced
a special kind of minimal explanations, called represen-
tative explanations, from which all minimal explanations
can be retrieved. Different works have focused on the effi-
cient computation of explanations, e.g., see (Du et al. 2011;
Du, Wang, and Shen 2014; Wang et al. 2015).

Explanations for positive entailments have been studied in
DLs extensively; see, e.g., (McGuinness and Borgida 1995;
Borgida, Franconi, and Horrocks 2000), where explana-
tions are in the form of proofs. Most of the subsequent
works focused on explanations, which are minimal subsets
of the given theory (Schlobach and Cornet 2003). This
is known as axiom pinpointing (Kalyanpur et al. 2007;
Baader and Suntisrivaraporn 2008; Peñaloza and Sertkaya
2017), and such explanations are called justifications (Hor-
ridge, Parsia, and Sattler 2008). These works focus on DLs,
and on explaining classical reasoning tasks. Explanations for
(positive) OMQA has been first investigated for the DL-Lite
family of languages (Borgida, Calvanese, and Rodriguez-
Muro 2008). Recently, a thorough investigation is given by
Ceylan et al. (2019) for existential rules and by Ceylan et
al. (2020) for DLs. These works address the problem of ex-
plaining why a query is entailed, as opposed to our approach.

Explaining query answers has also been studied in the
context of inconsistency-tolerant query answering. The
problem has been addressed in (Du, Wang, and Shen 2015;
Bienvenu, Bourgaux, and Goasdoué 2019) for DL languages
and in (Hecham et al. 2017; Lukasiewicz, Malizia, and Moli-
naro 2020) for existential rule languages. The main differ-
ence between this paper and the aforementioned ones is that
we provide explanations under standard semantics and for
consistent knowledge bases.

10 Summary and Outlook

We have addressed the problem of explaining why a query
is not entailed in OMQA under existential rules. (Minimal)
Explanations for a non-entailment can be seen as a (minimal)
set of facts such that, if the database were extended with this
set, the query would be entailed, while the knowledge base
would remain consistent with the added information. We
have conducted a detailed complexity analysis for various
explanation problems, for a wide range of existential rule
languages under different complexity measures.

As for future work, it would be interesting to study our
framework under different minimality criteria (e.g., by con-
sidering cardinality-minimal explanations) or to express other
forms of preferences among explanations. Another interest-
ing direction for future work is to study the problems of
computing all explanations or relevant/necessary facts.
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