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Abstract

We study a simple version of multi-agent epistemic planning
with common knowledge where the number of parallel steps
has to be minimized. We prove that this extension of clas-
sical planning is in PSPACE. We propose an encoding in
PDDL and present some experiments providing evidence that
it allows us to solve practical problems. The types of prob-
lems we can encode include problems in which one agent can
teach another agent how to perform a task and communica-
tion problems where some information must not be revealed
to some agents.

1 Introduction

Epistemic planning is important in multiagent systems.
None of these approaches investigated up to now studied
the construction of parallel epistemic plans. Such plans are
however particularly interesting when there is more than one
agent. In this paper we investigate how multiple agents can
act in parallel in order to achieve a common goal.
Simultaneous actions of several agents may conflict, and
several notions of interference have been proposed to char-
acterise this (Knoblock 1994; Dimopoulos, Nebel, and
Koehler 1997). Most approaches to parallel classical plan-
ning choose the framework of independent parallel actions
that was introduced in the planner GRAPHPLAN (Blum and
Furst 1997) where two actions interfere if either their effects
are contradictory or one effect contradicts the precondition
of the other. Non-interfering actions can be arranged in any
sequential order with exactly the same outcome. In a pre-
vious paper we used this framework in order to solve clas-
sical planning tasks with parallel plans (Herzig, Maris, and
Vianey 2019). In that work we supposed that agents always
have perfect knowledge of the current state and of the oc-
currence of actions. We here relax this hypothesis: an agent
may fail to observe the truth value of a given propositional
variable. Moreover, she may not know other agents’ obser-
vational capabilities. The object of these capabilities can
be a propositional variables, but also the other agents’ vis-
ibility; in other words, we consider higher-order visibility
information. This is the general setting of planning in Dy-
namic Epistemic Logic DEL (Bolander and Andersen 2011;
Lowe, Pacuit, and Witzel 2011). DEL combines standard
epistemic logic (the static component) with event models
describing actions and their perception by the agents (the
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dynamic component). As DEL-based planning is unde-
cidable (Bolander and Andersen 2011), restrictions of ei-
ther the static or the dynamic component were explored.
Most approaches focussed on the latter. It turned out
that undecidability is already the case under severe restric-
tions: basically, DEL planning tasks are only decidable
when all actions are public (Aucher and Bolander 2013;
Bolander, Jensen, and Schwarzentruber 2015; Cong, Pinchi-
nat, and Schwarzentruber 2018), which is not the case in
many real world multiagent applications.

We here simplify the static component: we replace stan-
dard epistemic logic by a lightweight version, Epistemic
Logic of Observation (EL-O), which is based on the notion
of observability of a propositional variable by an agent. In
EL-O it is supposed that agent ¢ knows that p is true when
p is true and ¢ observes p. Symmetrically, ¢ knows that p is
false when p is false and ¢ observes p. Thus when ¢ observes
p then ¢ knows either that p is true or that p is false. The
other way round, when ¢ does not observe p then ¢ does not
know whether p: both p and —p are possible for 7. This ex-
tends to higher-order observability: ¢ may observe whether j
observes p, and so on. We showed that EL-O is suitable for
sequential epistemic planning (Cooper et al. 2016). We here
apply it to parallel epistemic planning: we provide a reduc-
tion of EL-O-based parallel planning to classical planning,
which allows us to translate planning tasks into PDDL and
use classical planners. We illustrate our approach with a par-
allel version of the epistemic gossip problem (Cooper et al.
2019) where n agents initially each know their secret but not
the others’; agents can exchange all secrets they know dur-
ing a phone call to another agent; and the goal is to achieve
shared knowledge of all secrets, i.e., everybody knows every
secret. A parallel solution is a sequence of sets of calls. This
can be generalised to shared knowledge of depth k: it can be
achieved in O(k[log, n]) time steps, for n > 2 (Cooper et
al. 2019, Proposition 6).

The paper is organised as follows. Section 2 overviews
related work and Section 3 recalls EL-O. Section 4 defines
epistemic planning tasks and Section 5 their parallel solu-
tions. We then provide a polynomial translation into classi-
cal planning tasks, leading to complexity results (Section 6).
We exploit it further to encode planning tasks into PDDL
(Section 7) and to use classical planners for some experi-
ments (Section 8). Section 9 concludes.
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2 Related Work

We overview existing work on decidable epistemic planning
in the DEL paradigm. We focus on sequential plans: as far
as we know parallel plans have not been investigated yet.

The approach of (Muise et al. 2015) is most related to
ours. It is based on a lightweight epistemic logic where
the scope of the epistemic operator K is restricted to lit-
erals that are preceded by a sequence of epistemic oper-
ators and negations (Muise et al. 2015); in other words,
no conjunctions or disjunctions can occur in the scope of
K;. Such restrictions however exclude formulas such as
K;(K;p Vv K;—p) expressing that agent 7 knows that agent
7 knows whether the propositional variable p is true. This
is a major drawback because such formulas are fundamental
in communication and more generally in any forms of inter-
action: a situation where agent ¢ does not know whether or
not p is the case (—K;p A = K;—p) but knows that j knows
(K;(K;pV K;—p)) may lead agent i to ask j about p. In our
EL-O-based approach all these formulas can be expressed.

(Kominis and Geffner 2015) keep the language of stan-
dard epistemic logic (so their language is not restricted to
epistemic literals) and restrict the dynamic component. It
requires that the initial state is common knowledge and that
all action occurrences are either public or semi-public. This
makes it impossible to account for many natural everyday
situations such as gossiping.

A series of papers by Liu et col. investigates epistemic
planning with common knowledge based on the situation
calculus paradigm (Liu and Liu 2018; Huang et al. 2017).
They represent KD45 knowledge in a particular normal form
that generalises Moss’ characteristic formulas. Their actions
have very general effects, such as a disjunction becoming
common knowledge, which requires the integration of be-
lief update and revision operations.

Le et al. study DEL-based planning with common knowl-
edge under compact representations of the initial epistemic
state and of event models (Le et al. 2018). For the former
they use what they call S5-theories (although their epistemic
logic is K, not S5); for the latter they use the action lan-
guage m.A, which has statements of the kind “agent i ob-
serves action a”. This differs from our modelling where
agents observe propositional variables, which makes it dif-
ficult to compare the two approaches. We can however also
model their ‘coin in the box’ example which they claim no
approach can deal with. A limitation of m.A is that only lit-
erals can be announced. Agents therefore cannot communi-
cate higher-order knowledge, as required in the generalised
gossip problem. We note that they mention the issue of in-
terfering actions but do not develop this further because it is
not clear how to compute effects under m.A.

3 EL-O: Epistemic Logic of Observation

We recall the Epistemic Logic of Observation, abbreviated
EL-O. Its language is a fragment of that of the dynamic epis-
temic logic DEL-PAO (Herzig, Lorini, and Maffre 2015).
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3.1 Atoms and Introspective Atoms

Let Prop be a countable set of propositional variables and
let Agt be a finite set of agents. The set of observability
operators is

Obs ={S; : i € Agt} U{JS},
where S; stands for individual visibility of agent ¢ and
JS stands for joint visibility of all agents. The set of
all sequences of visibility operators of length at most £ is
noted Obs=". Then Obs* = J,5, Obs=" and Obs* =

U1 Obs=*. Elements of Obs* are noted o, o, etc.

Visibility atoms, or atoms for short, are finite sequences
of visibility operators followed by a propositional variable.
The set of all atoms is

Atm ={op : o € Obs*,p € Prop}.

We use a, o, f3,...to denote atoms. For example, S| p reads
“1 sees the value of p”; it means that 1 knows whether p is
true or false. JS S q reads “all agents jointly see whether
agent 2 sees the value of ¢”: there is joint attention in the
group of all agents concerning 2’s observation of ¢; agent
2 may or may not see the value of ¢, and in both cases this
is jointly observed. S; S5 S3 p reads “1 sees whether 2 sees
whether 3 sees p”. Atoms with an empty sequence of ob-
servability operators are nothing but propositional variables.

Principles of introspection play an important role in epis-
temic logic: when agent ¢ knows that p then 7 also knows
that she knows that p; and when agent ¢ does not know
that p then 7 also knows that she does not know that p. In
our visibility-based epistemic logic, introspection can be ex-
pressed as .S; S; . Likewise, joint introspection is expressed
as JS JS a. The latter implies ¢ JS « for every non-empty o
because joint visibility implies any nesting of individual vis-
ibility. We therefore call an atom introspective if it contains
two consecutive S;, or a JS that is preceded by a non-empty
sequence of observability operators. The set of all introspec-
tive atoms is

I-Atm = {0 S;S;a : 0 € Obs™ and aw € Atm} U
{oJSa: o€ Obs" anda € Atm}.

The complement of I-Atm is the set of relevant atoms:
R-Atm = Atm \ I-Atm.

3.2 Atomic Consequence

We define a relation of atomic consequence between visibil-
ity atoms as follows:
a=f if eithera=pB,ora=JSa’ and 3 =00
for some o € Obs™.
For example, JSp = S;p and JS p = JS S; p. The rela-
tion = is reflexive and transitive. When o = 3, we say that
« is a cause of 5 and that 5 is a consequence of a. We will
ensure that atomic consequences are valid implications. We
note o< the set of causes of o, and o™ the set of its con-
sequences. Clearly, (p)™ = (p)< = {p} for p € Prop.
Moreover, (S;p)~ = {Sp} (Sp)= = {Sp.JSp}
(JSp)= = {op : 0 € Obs™}, and (JSp)= = {JSp}.
Observe that < is always finite while o™ is either infinite
(namely when « starts by JS) or the singleton {a:} (namely
when « is a propositional variable or starts by some S;).
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sEa if aesTUI-Atm
sk if s
sEeny if sEgands

Table 1: Interpretation of formulas

Proposition 1. The following hold for every A, B C Atm.
1. (AUI-Atm)™ = A= U I-Atm;
2. AZNBTS =0 iff A nB=0if ANBT =0.

3.3 Language of EL-O
The language of EL-O is defined by the following grammar:

pu=al-e|(@Ap)
where « ranges over Atm. The boolean operators T, L, V,
— and <> are defined in the standard way. The set of EL-O
Sformulas is noted Fmlg .. The set of relevant formulas is
R-FmlgL.o = {p € Fmlg.o : Atm(yp) C R-Atm}. The
set Atm(¢p) is the set of atoms occurring in . For exam-
ple, Atm(JS g A S p) = {JS ¢, % p} and Atm/(S, JS p) =
{51 JS p}. Note that neither p nor JS p are atoms of Sy JS p.
The length of a formula is defined recursively by:

Lop)=Lo)+1
l(p) = Up) +1
e Ng') =LU(e) + L) +1

where £(o) is the length of the finite sequence o. For exam-
ple, 0(S S p) =3and {(SSpA—pAJSq) =8 If =«
then the length of [ is less than or equal to the length of a.
Moreover, the set of causes of « has at most £(«) elements:
|a=| < £(«). Tt follows that the sum of the lengths of all
causes of « is at most quadratic in the length of a:
Proposition 2. Forevery a, 5. 5., £(8) < (K(a))Q.

Example 1. In the generalised gossip problem, for Agt =
{1,...,n} the set of secrets is Prop = {s; : i € Agt}. The
goal is to obtain shared knowledge of depth k:

Goal®* = /\ /\

1€AGt o €Obst b(0)<k

g S;.

Gi _ g
Hence Goal™ = N;c e Njeage Si i

3.4 Semantics of EL-O

A state is a subset of the set of atoms A¢m. We denote states
by s, s’, etc. The set of all states is STATES = 2Atm  The
set of relevant states is R-STATES = 2F-Atm

A way of guaranteeing introspection was proposed in
(Herzig, Lorini, and Maffre 2015) where formulas are in-
terpreted exclusively in introspectively closed states: states
that contain all introspective atoms and are closed under =,
i.e., sets of atoms that equal s U I-Atm™ for some state
s C Atm. Such introspective states being always infinite,
it is not clear how to define model checking, which requires
finite states. Here we work with finite models and interpret
formulas in such a way that introspection is simulated.
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The truth conditions for EL-O formulas are in Table 1.
The condition for atoms is the only non-standard one: « is
true in state s if «v is introspective or 8 = « for some 3 € s.
Our formulation in the table uses a generalisation of atomic

consequence to sets of atoms s C Atm: s7 = (J,c, @~

Example 2. In the initial gossiping state (in which secrets
may or may not be true) every agent only knows her own
secret. Therefore sgl ={S;s : i€ Agt} U Ay where A;
is some subset of {s; : i € Agt}. Then s(?l E S s and
sgl = Njzi S sj for every i € Agt. Although sgl does
not contain S; S; s; we have SOGl =SS s

Given a set of states St C STATES, we say that a for-
mula ¢ is valid in St if s = ¢ for every s € St; when
s | o for some s € St then we say that ¢ is satisfiable
in St. Clearly, an atom « is valid in the set of all states
STATES if and only if it is introspective. Moreover, atomic
consequences are valid in STATES: if « = [ then « — 3
is valid in STATES.
Remark 1. When Agt is a singleton then S;p A =JSp is
satisfiable. While this anomaly could be taken care of by a
modification of the semantics, we do not do so for the sake
of readability and content ourselves with the observation that
the JS operator is superfluous when there is only one agent.

Proposition 3. For every ¢ € Fmlg o there is a ¢’ €
R-Fmlg .o such that ¢ < ¢’ is valid in STATES. More-
over, for every s € STATES, there is a s' € R-STATES
such that s = @ iff s’ |E ¢ for every ¢ € Fmlg 0.

Classical semantics for Fmlg| g is recovered by changing
the truth condition for atoms: s =°FC aif a € s.
Proposition 4. For ¢ € R-Fmlg .o and s € R-STATES,
s @ iff s7 N Atm(p) | @ iff s7 N Atm(p) EFC ¢.

4 Action Descriptions and Simple Epistemic
Planning tasks

We assume that actions are deterministic and have condi-
tional effects that are described by add- and delete-lists.
Such effects are crucial in epistemic planning: when an
agent performs an action then the effects on another agent’s
epistemic state typically depend on whether that agent sees
the variables that are modified by the action.

4.1 Action Descriptions

An action description is a pair a = (pre(a), eff (a)) where
pre(a) is a relevant formula from R-Fmlg .o (the precondi-
tion of a) and

eﬁ(a) C R'leEL-O % 2R—Atm % 2R—Atm

is the set of conditional effects of a, describing which atoms
the action may add or remove from the current state under
additional conditions. For a triple

ce = (cnd(ce), ceff (ce), ceff (ce))

in eff (a), cnd(ce) is the condition of ce, ceff (ce) are the
added atoms, and ceff ~(ce) are the deleted atoms. We re-
quire effects to be consistent: we suppose that for every
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ceq, cea € eff (a), if ceff T(ce1) N (ceff (cea))= # 0 then
pre(a) Acnd(ceq) A cnd(ces) is unsatisfiable in EL-O. That
is, we exclude actions with conditional effects cey, ces €
eff(a) and a; € ceff (ce;) and ap € ceff (ceq) such
that &y = «o. In other words, when pre(a) and their trig-
gering conditions cnd(ceq) and cnd(ces) are jointly satisfi-
able then two conditional effects of a cannot conflict. This
in particular forbids conditional effects ce € eff(a) with
ceff T(ce) N ceff (ce) # O and pre(a) A cnd(ce) satisfiable.

We disregard introspective atoms in the definition of ac-
tions because they are true at every state: adding or deleting
them from a state does not change what is true in that state.

Example 3. In the original gossip problem Gy where the
goal is to obtain shared knowledge of depth 1, Call;

<pre(Ca|I§), eﬁ(CaIIé)) with pre(CaIIj-) =T and
eﬁ(CaIIE) = {<Sl 51, {S] 51}? @>7 <SJ 51, {SL 51}7®>7

<Sz Sny {SJ Sn}, @>’ <Sj Sn {SZ sn}a @>}
That is, a call has two conditional effects per secret: if i sees
a secret then that secret becomes visible to j, and vice versa.
Example 4. In the generalised gossip problem Gy, the pre-
condition is pre(Call}) = T as before, and for every 0 <
m < k, o,, € Obs'gm and r € Agt there is a conditional
effect ce € eff (Call}) of the form:

end(ce) = 505, V S 0wy,
ceﬁ+(ce) ={oS;oms : o€ {Si,Sj}Sk*mfl} U
{0Sjoms, : o €{S,S}F—m1}
={ooms 1 o€ {&75},}§k—m}’
ceff ~(ce) =0,

where {S;, S;}<k=™ denotes the set all sequences of observ-
ability operators S; and S; of length at most k—m. Hence
a call achieves common knowledge of i and j up to level k
of all secrets one of them knows. The set of all actions is
ActCr = {Call; = i,j € Agt,i # j}. All Call} satisfy our
consistency condition because they have no negative effects,
which makes conflicts impossible.

The length of an action description is
£(cnd(ce))
= {l(pre(a)) + Z +{ Laccestce) £(@)
ce€eff (2) + EaEceﬁ*(ce) Z(Oé)

£(a)

4.2 Simple Epistemic Planning Tasks
A simple epistemic planning task is a triple

P = (Act, sg, Goal)
where Act is a finite set of consistent actions, sg €
R-STATES = 274%™ ig a finite state (the initial state) and
Goal € R-Fmlg .o is an EL-O formula without introspec-

tive atoms. (We again disregard introspective atoms as they
have no effect on the truth of a formula.)
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Example 5. The planning task that corresponds to the orig-
inal gossip problem is Gy = (Act®, s§*, Goal ) with

o Act® = {CaII;- 1,7 € Agt and i # j} (cf. Example 3),
. 50 ={Sisi : 1€ Agt} U Ay for A; C{s; : i € Agt},
o Goal™ = Nicage Njeag i si-

The set of atoms of a simple epistemic planning task is

Atm(P) = ( U Atm(a)
acAct

and its length is £(P) = £(so) + £(Goal) + D, c acs £(a).

Solutions to simple epistemic planning tasks can be either
sequential plans or parallel plans. We focus on the latter in
the rest of the paper.

) U so U Atm(Goal)

S Parallel Epistemic Planning with EL-O

A parallel plan is a sequence of steps each of which is a set of
actions that are executed simultaneously. Actions in a step
should not conflict: we start by determining the conditions
of parallel executability of a set of actions in a state, follow-
ing the V-step semantics and the notion of interference in a
state of (Rintanen, Heljanko, and Niemeld 2006).

5.1 Semantics of a Single Action

We define the semantics of an action a in terms of a partial
function 7, on relevant states. The function 7, is defined at
s if s = pre(a). In that case we say that a is executable at s
and stipulate:

Ta(s) ce[f

S\U

ceceff(a),

sl=cnd(ce)

U U (ceﬁ”+(ce))¢.
ceceff(a),

sl=cnd(ce)

That is, if the precondition of a is satisfied then a re-
moves negative effects of all those conditional effects ce
that ‘fire’, i.e., whose triggering conditions are satisfied, plus
their causes; and it adds the positive effects of ce plus their
consequences. As a’s description is consistent it does not
matter in which order we apply negative and positive effects.

5.2 Consistency of a Set of Actions at a State

Intuitively, in any parallel plan, no effect of an action should
be destroyed by an effect of another action executed in par-
allel, and no precondition of an action should be destroyed
by an effect of another action executed in parallel. Let us
define these two consistency criteria formally.

Actions a; and as have no contradictory effects at s if:

1. aj and a, are executable at s;

2. for every ce; € eff(ay) and ces € eff(aqg), if s |E
end(cer) A end(cez) then ceff T(cey) N ceff (ces) = 0.

It follows that the description of the individual action a is
consistent (see Section 4.1) iff a has non-contradictory ef-
fects with itself in every s such that s = pre(a).

In the sequel, “s and s’ agree on ¢” means that either
sEpand s’ | o, ors = @pand s’ £ . Then we say that
two different actions a; and as have no cross-interaction at
s if the following hold:
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1. s and 7,,(s) agree on pre(az) and on the condition
cnd(ces) of every conditional effect ces € eff (az);

2. s and 7,,(s) agree on pre(a;) and on the condition
cnd(ceq) of every conditional effect ceq € eff (a1).

Here are two examples from parallel classical planning:
when there are no contradictory effects then one cannot pick
up and drop the same object in parallel; when there is no
cross interaction then two agents cannot pick up the same
object in parallel. Gossiping calls have neither contradic-
tory effects nor cross interaction at any state. The former is
the case because there are no negative effects and the latter
because the precondition of all calls is T.

Putting things together, we say that a set of actions A =
{a1,...,am} is consistent in state s if for every a;,a; € A
such that a; # aj,

1. a; and a; have no contradictory effects in s;

2. a; and a; have no cross interaction in s.

Example 6. Any set of gossiping calls Callé- is consistent in
any state. Therefore conference calls {Call;, Call’ } where
i calls j and r at the same time are consistent, making the
parallel gossiping task solvable in one step. _
One way to exclude conference calls is to replace Call; by

Startcallé plus a single Endcalls action as follows:

pre(Startcall’) = free; A free;,

)
J
eff (Startcall}) = eff (Call’) U {(T,0, {free,, free,;})},
pre(Endcalls) = T,

eff (Endcalls) = {(T, {free; : i € Agt},D)},

and to add all free; to the initial state. Then there is no state
where a set of actions with conference calls is consistent:
Startcall’; and Startcall;. have cross interaction at any state
satisfying free; N\ free; N free,.

While this solution is natural (agents cannot call two
agents at a time because they are no longer available once
they have begun a call), splitting calls into two separate ac-
tions artificially doubles the number of steps in an optimal
solution. Another possibility that avoids the Endcalls action

is to replace all Call; by Tcall’, with:

pre(TcaII;) =T,
eff (Teall’) = eff (Call}) U
{(tg;,0,{tg;})} U{(~tg;, {tg;},0)} U
{(tg;, 0, {tg; 1} U {(~tg;, {tg,}.0)}.
Here any two calls involving i each toggles the value of tg;,

which makes that these calls have cross interaction at any
state satisfying their preconditions.

5.3 Semantics of a Consistent Set of Actions

A set of actions A = {ay,...,a,,} determines a partial
function 7o from R-STATES™ to R-STATES™, where
R-STATES™ = {s™ : s € R-STATES}. The function
7a is defined at s if every a; € A is executable at s and A is
consistent in s. When 74 is defined at s then:
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TA(S) =

(s\ ( U (ceﬁ(ce))¢)>
acA,ceceff(a),s=cnd(ce)

U (ceﬁ+(ce)):>> .

U
acA,ceceff(a),sl=cnd(ce)

When a; and a; are consistent in s then they can be in-
terleaved arbitrarily: we have 7(,, 4,3(5) = Tay (72, (8)) =
Ta, (T2, (8)). More generally:

Proposition 5. If a € A is consistent in s with any other
action in A then Ta(s) = Ta(Ta\a(8)) = Tava(7a(8))-

5.4 Solvability by Parallel Plans

A state s is reachable by a parallel plan from a state sy €
R-STATES™ via a set of actions Act if there is a sequence
(A1,...,A,,) of steps and a sequence of states (sg, ..., Sm)
with m > 0 such that s = s,,, and 7a, (sk—1) = i for every
ksuchthat 1 <k <m.

A simple epistemic planning task (Act, so, Goal) is solv-
able by a parallel plan if there is at least one state s that
is reachable by a parallel plan from s;” via Act such that
s | Goal; otherwise it is unsolvable by a parallel plan.
Solvability by a sequential plan is the special case where the
parallel plan is a sequence of singletons.

Example 7. Let Gi be modification of Gy that is obtained
by replacing the actions Call’; by Tcall’ of Example 6. Then
G can be solved in [log, n| steps of parallel calls if the
number of agents n is even, and in [logyn] + 1 steps
if n is odd (Bavelas 1950; Landau 1954; Knodel 1975;
Cooper et al. 2019). For instance, for n = 4 the parallel
plan ({Tcally, Tcall}}, {Tcall3, Tcall3}) is a solution of G
with 2 steps.

6 Translation into Classical Planning and
Complexity

We now translate simple epistemic planning into classical
planning. There, solvability by a parallel plan and by a
sequential plan are equivalent under V-Step semantics, and
both are PSPACE-complete (Bylander 1994). Our transla-
tion is polynomial, so the solvability of simple epistemic
planning tasks is in PSPACE. It also gives us an encoding
into PDDL, which allows us to use classical planners in sec-
tions 7 and 8. For a bounded horizon planning task we can
translate into DL-PPA model checking and use the PSPACE
membership result of (Herzig, Maris, and Vianey 2019).

6.1 Two Versions of Classical Planning

There are two possibilities to define classical planning in our
context. Version 1 amounts to epistemic planning restricted
to the fragment of the language of EL-O without S; and
JS: none of them can occur in classical action descriptions
and planning tasks. It immediately follows that EL-O-based
planning is PSPACE hard because classical planning is so.
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Version 2 of classical planning keeps the language of
EL-O but changes the semantics by weakening the consis-
tency condition for action descriptions: a version 2 classical
planning task is a triple P = (Act, so, Goal) such that for
every cei, cea € eff(a), if ceff T(cer) N ceff (cez) #
then pre(a) A end(ce1) A cnd(ces) is unsatisfiable in Clas-
sical Propositional Calculus CPC. We then define the par-

tial functions 7CPC as follows. First, 7CPC is defined if

s =CPC pre(a); second, the resulting state is obtained with-
out closing under atomic causes and consequences:

T70s) = [ s\ U ceff ~(ce)
ceEeﬁ(a),s':CPCcnd(ce)

U U ceff (ce)
ceceff(a),s=FCend(ce)

From there we modify the definitions of consistency of a set
of actions and of TACPC in a similar manner, removing all
atomic causes and consequences of sets and requiring con-
ditions to be satisfied classically. A classical planning task
is classically solvable if a goal state is reachable from the
initial state via a set of actions Act, with the difference that

reachability is now defined in terms of the function 7FC.

6.2 Expansion of Planning Tasks

Let P = (Act, s, Goal) be a simple epistemic planning
task. Its expansion is obtained by closing the initial state and
the action descriptions under the atomic causes and conse-
quences that are relevant for P:

Exp(P) = ({(pre(a), Expp(eff (a))) : (pre(a), eff (a)) € Act},
sg. N Atm(P),
Goal),
where the expansion of a conditional effect is defined as:
Expp(eff (2)) = { (cnd(ce),
(cejjﬁ'(ce))j N Atm(P),
(ceﬁf(ce))<= N Atm(P)) : ce € eff (a)}.
Proposition 6. Let P = (Act, sg, Goal) be a simple epis-
temic planning task. Then P is solvable if and only if its
expansion Exp(P) is classically solvable.

Proof. For the sake of brevity we only sketch the proof. Let
R-STATES|p = {sN Atm(P) : s € R-STATES™ }.
We define a semantics of actions relative to P in the follow-
ing manner: if s € R-STATES|p and A = {a1,...,am} C
Act is a consistent set of actions then 7 (s) is defined iff for

all a € A we have s |= pre(a), and in that case

U

acA, ceceff(a),
s=cend(ce)

((ceﬁf(ce)) “n Atm(P))

U U ((ceﬂJr(ce)): N Atm(P))
aels‘:ceede(ﬁ'(;),
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It is easily shown thatif s € R-STATES|p and A is consis-
tentin s then 7 (s) € R-STATES|p.

By Proposition 4, for any state s € R-STATES™ and set
of actions A C Act, 7a(s) is defined iff 75’ (sNAtm(P))
is defined, and in that case 7{ (sNAtm(P)) = 7a(s) N
Atm(P). We can then extend this result to any sequence
of steps, i.e., to every parallel plan: for any state s €
R-STATES™ , there exists a state s’ reachable from s via
(A1, ..., Ay, iff there exists a state s” that is P-reachable
from s N Atm(P) via this same sequence of sets of actions,
where P-reachability is defined in the natural way follow-
ing the semantics of actions relative to P, and in that case
" = s’ N Atm(P). In particular s’ and s” agree on Goal,
and therefore P is solvable iff the planning task (Act, sg” N
Atm(P), Goal) is P-solvable on R-STATES|p, where P-
solvability is once again defined in the natural manner fol-
lowing the semantics of actions relative to P.

The expansion of P then ‘spells out’ the definition of the
functions T/f for A C Act. Moreover, Proposition 4 tells us
that for any ¢ € Atm(P), if s € R-STATES|p then s |=

@ iff s =CPC . This gives us equivalence with classical
planning. O

6.3 Complexity

By Proposition 2, the length of the expansion of epis-
temic planning tasks P is polynomial in the length of P:
¢(Exp(P)) < (£(P))%. Then PSPACE membership fol-
lows from Proposition 6. Hardness is the case because ver-
sion 1 classical planning is a particular case of simple epis-
temic planning, as we have observed in Section 6.1. As for
the lower bound, it follows because classical planning tasks
(version 1) are a special case of epistemic planning tasks.

Proposition 7. The problem of deciding solvability of a sim-
ple epistemic planning task and its bounded horizon version
are both PSPACE complete.

7 Encoding into PDDL

In order to be able to use classical planners we encode sim-
ple epistemic planning tasks into the Planning Domain Def-
inition Language PDDL (McDermott et al. 1998). Fortu-
nately, almost all planners from the 2018 International Plan-
ning Competition (IPC 2018)' handle conditional effects
and negative preconditions, and most of them handle dis-
junctive preconditions.

7.1 Encoding of Formulas

When encoding a planning task into PDDL, some PDDL
requirement flags have to be set depending on the form of
conditions cnd(ce) of conditional effects ce of actions as
well as on the form of the formula Goal:

o the default flag : st rips for conjunctions;
e the flag :negative—-preconditions for negations;

o the flag :disjunctive-preconditions for dis-
junctions (if used to simplify writing) and negations of
conjunctions.

"https://ipc2018-classical.bitbucket.io/
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action preconditions conditional effects
DoTask; . | free; AS; skilly, A needs {{T,{dones},{free;})}
Teach; j 1 S; skilly, A (free; V teaching, i) {(T, {8 skilly, teaching, 1.}, {free;, free; })}
EndStep T {(T,{free; : i € Agt},
{teaching, ,, : i € Agt, skilly, € Skills})}
DoTask; ¢ | free; A mdoney A S; mdone, N —mdoneor1 | {{T,{tdone,}, {free;})}
DoMeeting, | A;c 4, free; {(T,{mdoneg, JS mdones},{free;, : i € Agt}})}
EndStep T {(T,{free; : i € Agt},0)}
Table 2: Action descriptions for the management task (top) and the meeting task (bottom)
For a formula ¢ without introspective atoms, we define teffect (and (forall (?s)
a recursive function f(i) which returns the encoding of ¢ (and
into PDDL.: (when (or (S-1 2i ?s) (S-1 23 2s))
ifm=0 (and (S-1 ?i ?s) (S-1 2?3 ?s)))))))
F(Siy - S p -m i1l im p) otherwise ]
8 Experimental Results
F(JS S, ... S, p) { (IS p) , itm - 0 To experiment with simple epistemic planning tasks we con-
JS-m il ... im p) otherwise sidered some benchmark tasks using planners from the inter-
= (not f(p national planning competition IPC 2018. The experiments

f(sol/\soz) = (and f(<P1) fp2))

with p € Prop, m > 0, and i4,...,4, € Agt. In words,
a visibility atom o = S, ... 5;,, p is encoded by a special
fluent with m+1 parameters. If m = 0, then the proposi-
tional variable p is encoded as a fluent without parameters.
A visibility atom o = JS S, ... S, p is encoded by a spe-
cial fluent with m+1 parameters. If m = 0 then a special
fluent is encoded with the propositional variable p as unique
parameter.

The formula Goal and the preconditions of every action
are EL-O formulas and are encoded as f(Goal) etc. The
initial state sg is encoded as a set of fluents, encoding each
a € spas f(a).

7.2 Encoding of Actions

For every action a and every conditional effect ce €
eff (a) with (cejj”'(ce))i N Atm(P) = {aa,...,qn} and
(ceﬁ_(ce))<: N Atm(P) = {B1,..., B¢} we add the con-
ditional effect:

(when f(cnd(ce))

(and f(a1) ... f(am)
(not f(B1)) (not f(Be))))
Example 8 (Example 3, ctd.). The action Call} is encoded
as:
(raction call-1-2
ceffect (and
(when (or (S=1 1 sl1) (S-1 2 sl))
(and (S-1 1 sl1) (S-1 2 sl)))
(when (or (S=1 1 sn) (S=1 2 sn))
(and (S=1 1 sn) (S=1 2 sn)))))

This is the direct encoding of a call into PDDL. It can be
generalised to any © and j by:
(raction call

:parameters (?1 ?7)
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were done using three classical planners of the optimal track
of IPC 2018: Planning-PDBs, Complementaryl and Com-
plementary?2.

We are in a multi-agent setting where agents execute ac-
tions simultaneously in steps. We designed our problems so
that it is beneficial (in terms of minimising the number of
steps) that agents cooperate and perform tasks in parallel.
We want to find the shortest plan in which the agents coop-
erate in this way. For this, we used cost-optimal planners
from the classical tracks of the competition. Given a cost
function defined for all actions of the planning task, these
planners return sequential plans minimizing total cost. To
simulate parallel steps and ensure independence of actions
in one step, we use in each experiment an EndStep action.
That is, we adapt the action descriptions such as to ensure
that all actions executed between two EndStep actions are
applicable in parallel, and an EndStep action must occur in
order to simulate the following parallel step. Moreover, we
give zero cost to all actions but EndStep, therefore effec-
tively counting the number of steps and guaranteeing that
our experiments return optimal parallel plans.

The experiments all gave similar results for the prob-
lems described below, so we choose to show the results for
Planning-PDBs. The results were obtained on a GNU/Linux
machine running on a 3.6 to 4.4 GHz CPU with 32 GB of
RAM and a 30 minutes time limit (wall clock time). All the
execution times given below are CPU times.

8.1 Parallel Gossip Task

We use the gossip modelling of Example 6 with the actions
StartcaII;- and Endcalls, which here becomes our EndStep.
Figure 1 shows the difference between parallel and se-
quential gossiping. We can see that with only two agents
(blue and longest curve) the execution times are very similar
but when, for a fixed depth, the number of agents increases
then the execution time increases, too. Thus, we have less

results for parallel gossiping than for sequential gossiping.
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Figure 1: Parallel gossip: time to find an optimal parallel plan vs.
epistemic depth (top) and time to find an optimal sequential plan
vs. epistemic depth (bottom)

The largest parallel gossiping task solved under 1800s
was for 5 agents and an epistemic depth of 2. This task has
125 atoms, 26 actions and 1920 conditional effects. For se-
quential gossiping the largest solved planning task was for 8
agents and an epistemic depth of 1. This task has 56 atoms,
64 actions and 1512 conditional effects.

8.2 Management Task

For the next benchmark planning task, we consider that a set
of tasks has to be performed by the set of agents and that the
execution of any task by an agent requires the agent to have
a corresponding skill. In the beginning, the skills are split
between the agents so that a particular agent may lack some
of the skills required to perform particular tasks. This can
limit the ability of the agents to perform tasks in parallel.
However, there are also actions which allow agents to teach
some of their skills to other agents.

Initially all agents are free and the state is so = {free; :
1 € Agt}US for some subset S of {S; skilly, : i € Agt, k €
Skills} U {needs, ) : t € Tasks,k € Skills}. The goal is
to perform all tasks: Goal = A\, 1,4, dONE:.

The action descriptions are listed in the upper half of Ta-
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Figure 2: Management: time to find an optimal parallel plan vs.
number of tasks, agents or skills (for different fixed values of the
two other parameters)

ble 2. For each pair of agents 4,5 and skill skill, the action
Teach; ;1 can be executed when ¢ knows the skill she is
teaching and is either free or is teaching the same skill to an-
other agent. Its effects are that 5 knows the skill, that ¢ and
J are both no longer free, and that i is still available to teach
skillj, to other agents. The action DoTask; ; j, requires that
1 is free and knows skill skill;, and that skill is a necessary
and sufficient condition to accomplish ¢. Its effect is that
the agent is not free and that the task is done. Finally, the
EndStep action frees all agents (regardless of whether they
were teaching, learning or performing a task).

Suppose there are n agents, n tasks and one skill skillj
that is only known by agent i. Then an optimal parallel plan
has two steps: first ¢ teaches skilly to the other agents and
then each agent j executes task ¢; in parallel. In contrast,
the optimal sequential plan is that ¢ executes all the tasks
herself, which is an n-step plan that cannot be parallelized.

Figure 2 shows the time needed by Planning-PDBs to find
a plan, in seconds. It compares the effect of the number of
tasks, the number of agents and the number of skills. The
first plot shows the effect of the number of tasks with differ-
ent fixed values of the number of agents and skills. We can
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see that this variable has almost no effect on the difficulty to
find a plan. The second plot does the same with the number
of agents with different fixed values for the number of tasks
and skills, while in the third plot the number of skills is the
only variable which varies. These latter two plots show that
the number of agents and the number of skills have an effect
on the complexity. However, we do not have enough values
to say more about this relationship.

The number of results were limited by the increasing com-

plexity of the planning task. The most complex planning
task for which we found an optimal parallel plan involved
7 tasks, 7 agents and 6 skills: this instance has 92 atoms
and 638 actions. The most complex planning task tested and
which timed out, had 7 tasks, 7 agents and 7 skills: this in-
stance has 105 atoms and 736 actions.
Remark 2. One may replace Teach; ;; by the action
ReqSkill; ; ;, of j asking 7 to teach her skill skilly. Then
we have to add to the precondition that 5 does not have the
skill but knows that ¢ does:

pre(ReqSkill; ; ) = pre(Teach; j k) A=S; skillg AS; S; skill.

We note that such a precondition cannot be expressed with
epistemic literals of the approach of (Muise et al. 2015).

8.3 Meetings Task

As an example of the use of common knowledge, consider a
planning task which involves cooperation between different
agents and which can be divided into m different stages with
tasks to be performed at each step by each agent. Agents are
only authorized to start stage /41 if all tasks of stage £ have
been completed and all agents have common knowledge of
this. The only way this can be achieved is by having a ple-
nary meeting at the end of each stage during which each
agent announces that their stage-¢ task has been completed
(action DoMeeting,).

Initially all agents are free and no meeting or task has been
completed: sy = {free; : ¢ € Agt}. The goal is for all tasks
and meetings to be completed: Goal = A, 1y, tdones A

/\ZEMeetings me?’Leg.

The action descriptions are listed in the lower half of Ta-
ble 2. Each stage-¢ task requires that the agent executing
it knows that meeting ¢ has taken place. To avoid having
stage-¢ tasks done at stage-¢’ for ¢/ > /¢, the task also re-
quires the meeting {+1 not to have taken place yet. The
action DoMeeting, of holding a meeting is executable if all
the agents are free. Its effect is that all agents jointly see that
the meeting has been held and that the agents are no longer
free. Finally, the action EndStep frees the agents and ends
the step.

For example, with 2 agents and 3 meetings (2 stages), the
following is a solution plan:

({DoMeeting; }, {EndStep},
{DoTaski 1,1, DoTasks 2 1}, {EndStep},
{DoMeeting,}, {EndStep},
{DoTasky 3,2, DoTasks 4 2}, {EndStep},
{DoMeeting,}).
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Figure 3: Meetings: time to find an optimal parallel plan vs. num-
ber of meetings (for different fixed numbers of tasks and agents)

Figure 3 shows the time needed by Planning-PDBs to find a
plan, in seconds, relative to the number of meetings, where
each plotted curve is for a fixed number of tasks and agents.
We can see that the other two parameters (number of tasks
and number of agents) have little to no effect on the diffi-
culty of finding an optimal plan. In contrast, the number
of meetings seems to have an exponential effect when it is
greater than 10.

The largest planning task which was solved within the
time limit of 1800s involved 18 tasks, 17 meetings and two
agents: this instance has 46 atoms and 16400 actions. The
most complex planning tasks that we tested and that timed
out had 18 tasks, 18 meetings and one agent: the planners
were not able to translate this problem.

9 Conclusion

We have defined simple epistemic planning tasks and their
solvability by a parallel plan and characterised its complex-
ity via a polynomial translation into classical planning. This
allows us to solve epistemic bounded horizon planning tasks
by translating them to classical bounded horizon planning,
which is known to be PSPACE-complete.

Our ‘knowing whether’-based language can express more
than the ‘knowing-that’-based language of (Muise et al.
2015) (see Remark 2). Contrarily to (Kominis and Geffner
2015), we are not restricted to common knowledge of the
initial state and public or semi-public actions, as illustrated
by the gossiping task where actions are private. Moreover,
none of the latter two approaches deals with common knowl-
edge or concurrent actions. Experiments demonstrated the
possibility of solving some interesting practical problems.

In future work we plan to use SAT-based planners such as
Rintanen et al’s (Rintanen, Heljanko, and Niemeld 2006),
which output parallel plans and therefore do not require the
EndStep action.
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