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Abstract

Well-behaved preferences (e.g., total pre-orders) are a corner-
stone of several areas in artificial intelligence, from knowl-
edge representation, where preferences typically encode like-
lihood comparisons, to both game and decision theories,
where preferences typically encode utility comparisons. Yet
weaker (e.g., cyclical) structures of comparison have proven
important in a number of areas, from argumentation theory
to tournaments and social choice theory. In this paper we
provide logical foundations for reasoning about this type of
preference structures where no obvious best elements may
exist. Concretely, we compare and axiomatize a number of
ways in which the concepts of maximality and optimality can
be lifted to this general class of preferences. In doing so we
expand the scope of the long-standing tradition of the logical
analysis of preference.

1 Introduction
Among the most fundamental mathematical notions in the
formal representation of knowledge, inference and decision-
making are arguably the notions of maximality and optimal-
ity. A maximal element is one to which nothing is strictly
preferred; an optimal element is one that is weakly preferred
to everything else. Given how a set of alternatives (options,
states, strategies) compare with one another, one selects the
maximal or optimal ones as the ones that are ‘best’.

Since at least the 60s (Von Wright 1963), formal logic
has been used as a foundational tool to study reasoning
about structures of pairwise comparisons, or preferences.
Such a programme has been carried out with different fo-
cuses and tools, in many different disciplines: within artifi-
cial intelligence (AI), for the systematization of many dif-
ferent forms of ‘common sense’ reasoning as non-standard
(in particular, non-monotonic) inference relations (Kraus,
Lehmann, and Magidor 1990; Boutilier 1990; Boutilier
1994); within epistemology, for the representation and anal-
ysis of processes of information acquisition by rational
agents, in the AGM tradition (Alchourrón, Gärdenfors, and
Makinson 1985), the conditionals tradition (Stalnaker 1968;
Lewis 1973; Kratzer 1981; Burgess 1981; Halpern 2010),
and more recently the dynamic-epistemic logic tradition
(van Benthem 2004; Baltag and Smets 2008; Demey 2011;
van Benthem 2011); within deontic logic, for the representa-
tion and analysis of conditional obligations (Hansson 1969;

Lewis 1974; Spohn 1975; Parent 2008; Parent 2013). And
the above list is surely non-exhaustive. Conceptual and
technical similarities among some of these fields have been
object of extensive scrutiny, in particular in the early 90s
(van Benthem 1989; Nejdl 1991; Katsuno and Satoh 1991;
Katsuno and Mendelzon 1991; Makinson 1993).

Aim & Focus All the above approaches to the charac-
terization of a logic of preference make a fundamental as-
sumption: the way in which alternatives (worlds, situa-
tions, options) compare with one another forms a struc-
ture where the set of maximal, or of optimal, elements is
never empty. Often, this assumption builds on top of an-
other classical one: preferences are transitive. Here we lift
such assumptions and study logical foundations for possi-
bily non-transitive pairwise comparison structures lacking
maximals or optimals. Such structures underpin several ar-
eas within AI, eminent examples being abstract argumen-
tation theory (Bench-Capon and Dunne 2007; Rahwan and
Simari 2009) and the theory of tournaments (Laslier 1997;
Brandt, Brill, and Harrenstein 2015). The aim of the paper is
to extend the foundational tradition in the logic of preference
mentioned above to bear on these areas.

We focus on the most general possible structures arising
from pairwise comparisons of alternatives: unconstrained
binary relations. In particular, such structures are not as-
sumed to be transitive, anti-symmetric or total and may lack
maximal and optimal elements. Besides the notions of max-
imality and optimality, we therefore consider two further
definitions of ‘best’ applicable to this general setting: the
notions of unmatchedness (inexistence of weakly preferred
alternatives) and, in particular, of acceptability (member-
ship to so-called minimal retentive sets, rooted in economic
theory). We then develop sound and strongly complete ax-
iom systems for these different notions of ‘best’, on general
pairwise comparisons structures, based on a dyadic operator
B(ϕ | ψ), which can be read as “of all ψ states, the best
ones are ϕ”.

Related Work Conditional logics of preference structures
based on dyadic B(ϕ | ψ) operators have been investigated
since (Hansson 1969), leading to a well-established litera-
ture especially, but not exclusively, in so-called deontic logic
(e.g.:(Lewis 1974; Spohn 1975; Åqvist 1984; Parent 2008;
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Parent 2013)). The logics we present here are rooted into
this tradition but, crucially, they lift the assumptions on the
existence of maximal or optimal elements. Such assump-
tions have taken two forms in the literature: imposing the
set of ‘best’ elements (maximal or optimal) be non-empty
(the so-called limitedness (Åqvist 1984));1 or requiring that
for any non-empty set X , a given element is either a ‘best’
element in X , or there is a ‘better’ element that is ‘best’
in X (so-called smoothness (Kraus, Lehmann, and Magi-
dor 1990), or stopperedness (Makinson 2005)). Two sound
and strongly complete axiom systems are known for dyadic
operators B(ϕ | ψ) (cf. (Parent 2013)) for reflexive and, re-
spectively, reflexive and transitive relations in the presence
of smoothness assumptions on maximality and optimality.

Contribution & Outline Our paper further extends these
axiomatization results by providing a sound and strongly
complete axiom system for: general binary relations un-
der various notions of ‘best’ (maximality, optimality, un-
matchedness) but without any smoothness assumptions; and
general binary relations under the novel acceptability-based
notion of ‘best’. The first system can be regarded as an ax-
iomatizaiton of the weakest possible dyadic modal logic of
preference. The second system is, to the best of our knowl-
edge, the first axiomatization of the dyadic modal logic of
retentive sets. We believe such axiomatization to be also
of technical interest as it requires a novel type of canonical
model construction.

Section 2 introduces and compares the four concepts of
maximality, optimality, unmatchedness and acceptability.
Section 3 defines the semantics induced by them. We present
then the two axiomatizations forB(ϕ | ψ), one that is sound
and strongly complete for the maximality, optimality and un-
matchedness semantics (Section 5.1), and one for the accept-
ability semantics (Section 5.2).

2 Preliminaries
Let P be a countable set of propositional atoms.

Definition 1 (Models). A model is a triple M = (S,�, V )
where

• S is a set of states,
• �⊆ S × S is a relation and
• V : P → 2S assigns to each atom a set of states.

We interpret s1 � s2 as “s2 is (weakly) better than s1”
and define ≺,� and � from � in the usual way. Further-
more, we use s1 ⊥ s2 to denote s1 6� s2 and s2 6� s1, Fi-
nally, we use s1 ≈ s2 to denote s1 � s2 and s2 � s1. Note
that we do not place any conditions on �. In particular, it is
not required to be a partial order.2

1Alternatively one can require the asymmetric part of the pref-
erence relation to be conversely well-founded (cf. (van Benthem,
Grossi, and Liu 2013)).

2We also do not require � to be reflexive. Requiring reflexivity
would not influence the results in any way, however, as all notions
of ‘best’ we consider are invariant under taking the reflexive clo-
sure of �.

The meaning of S and � depends on context. When
representing belief, S is a set of possible worlds and � an
agent’s plausibility ordering, with s1 � s2 meaning that s2

is at least as plausible as s1. In that case, the agents believes
the actual world to be among the “best” ones. When repre-
senting individual or societal preferences, S is again a set of
possible worlds, but � is a preference relation with s1 � s2

meaning that s2 is weakly preferred over s1. In that case,
there is an obligation to make one of the “best” worlds be-
come true. In game theory S might be a set of strategies
and � a dominance order, with s1 � s2 meaning that s2

weakly dominates s1. The “best” strategies are the ones that
are rational. Finally, in argumentation theory S is a set of ar-
guments and � represents the attack relation, with s1 � s2

meaning that either s2 attacks s1 or that a symmetric attack
exists between s2 and s1. The “best” arguments must be
able to attack the “sub-best” ones.

It is important to note that for each interpretation there
are situations where � cannot be assumed to be transitive.
If � represents plausibility, non-transitivity can occur when
an agent is irrational, or when a rational agent bases its plau-
sibility on a majority judgment among multiple experts (cf.
the well-known Condorcet paradox), or when an agent nois-
ily estimates an underlying transitive order (cf. (Truchnon
2008)). If � represents preference, non-transitivity can also
occur due to individual irrationality or through aggregation
from multiple rational agents. If � represents dominance,
or an argumentative attack relation, it is clearly possible to
have a cycle, such as paper ≺ scissor ≺ rock≺ paper. Like-
wise, there are scenarios where � cannot be assumed to be
total or anti-symmetric.

Before defining the four different ways in which a state
can be among the “best” states, we first need one auxiliary
definition.

Definition 2 (Retentive set). Let a model M = (S,�, V )
and a set X ⊆ S be given. A set Y ⊆ X is retentive in X if
there are no y ∈ Y, x ∈ X \ Y such that y ≺ x.

A set Y ⊆ X is minimal retentive in X if it is retentive in
X and there is no Y ′ ⊂ Y that is retentive in X .

Where X is understood we often write “minimal reten-
tive” for “minimal retentive in X .”

Definition 3. Let a model M = (S,�, V ) and a set X ⊆ S
be given. An element s1 ∈ X is

• maximal in X if there is no s2 ∈ X such that s1 ≺ s2.
• optimal in X if for every s2 ∈ X \ {s1}, s2 � s1.
• unmatched in X if for every s2 ∈ X \ {s1}, s1 6� s2.
• acceptable in X if there is a minimal retentive set Y ⊆ X

such that s1 ∈ Y .

We denote the set of maximal elements in X w.r.t. M
by maxM (X), the set of optimal elements in X w.r.t. M
by optM (X), the set of unmatched elements in X w.r.t.
M by unmM (X) and the set of acceptable elements in
X w.r.t. M by accM (X). Where this should not cause
confusion we will omit reference to M and speak of
max(X), unm(X), opt(X) and acc(X).
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Figure 1: Four example models.

We use “best” as a generic term that can mean any of the
four notions, i.e., the best states are the maximal, optimal,
unmatched or acceptable states.

Maximality and optimality are well studied, see almost
any of the sources cited in the introduction. Unmatchedness
in preference structures has not, to the best of our knowl-
edge, been studied previously, but it is a straightforward dual
of optimality.

Acceptability has not previously been studied in the con-
text of conditional logics, but minimal retentive sets have
been studied in various other contexts, under various names.
The term minimal retentive set is from tournament theory
see, e.g., (Laslier 1997). In the related field of voting theory,
minimal retentive sets are also known as (generalized) Con-
dorcet sets or sometimes Smith sets, after (Smith 1973). In
game theory, minimal retentive sets are known as sink equi-
libria (Goemans, Mirrokni, and Vetta 2005).

The intuition behind a minimal retentive set is that it is
collectively maximal. Thus, while there might not be a com-
pelling argument to consider any individual member of the
set to be “best”, the set as a whole should arguably be con-
sidered “best”.

Example 1. Consider the graphs M1–M4 drawn in Fig-
ure 1, where an arrow from s1 to s2 indicates that s1 � s2.
The maximal, optimal, unmatched and acceptable states of
M1, M2, M3 and M4 are as follows.

M1 M2 M3 M4

max {s2, s3} {s2, s3} ∅ ∅
opt ∅ {s2, s3} ∅ ∅
unm {s2, s3} ∅ ∅ ∅
acc {s2, s3} {s2, s3} {s2, s3, s4} ∅

We use the models M1−−M4 only to illustrate the tech-
nical aspects of the various notions of being the “best”. See
Section 4 for a number of examples that focus more on how
models, and the language defined in Section 3, can be inter-
preted.

Note that this example shows that the four notions are all
different. They are not, however, unrelated.

Proposition 4. For everyM = (S,�, V ) and everyX ⊆ S,

1. opt(X) ⊆ max(X),

2. unm(X) ⊆ max(X) and

3. max(X) ⊆ acc(X).

Furthermore, apart from opt(X) ⊆ acc(X) and unm(X) ⊆
acc(X) (which follow by transtivity of ⊆) no other inclu-
sions hold in general.

Proof. Inclusions 1., 2. and 3. follow immediately from Def-
inition 3. To see that no other inclusions hold, note that ev-
ery other inclusion has a counterexample among the models
M1,M2,M3 and M4 from Example 1.

Under certain conditions there are more inclusions that
hold, however.
Proposition 5. Let M = (S,�, V ) be a model and X ⊆ S.
• If M is transitive then max(X) = acc(X),
• if M is anti-symmetric then max(X) = unm(X) and
• if M is total then max(X) = opt(X).

Before proving Proposition 5, let us consider an auxiliary
lemma.
Lemma 6. LetM = (S,�, V ) be transitive, letX ⊆ S and
let Y ⊆ X be minimal retentive. Then Y is a singleton.

Proof. By contradiction. Suppose that s1, s2 ∈ Y such that
s1 6= s2. Consider the sets Y1 = {s1} ∪ {t ∈ Y | s1 ≺ t}
and Y2 = {s2} ∪ {t ∈ Y | s2 ≺ t}. Take any t ∈ Y1 and
x ∈ X \ Y1. We distinguish two cases:

• if x ∈ Y then s1 6≺ x, since otherwise we would have
x ∈ Y1. Because t ∈ Y1 we have s1 ≺ t, so by transitivity
of M we obtain t 6≺ x,

• if x 6∈ Y then t 6≺ x, since t ∈ Y and Y is retentive.

In either case, t 6≺ x. This holds for every t ∈ Y1 and
x ∈ X \ Y1, so Y1 is retentive in X .

We have shown that Y1 is retentive. Similar reasoning
shows that Y2 is also retentive. By minimality of Y this
implies that Y1 = Y2 = Y . But that would imply s1 ∈ Y2

and s2 ∈ Y1 and therefore s1 ≺ s2 and s2 ≺ s1. We have
arrived at a contradiction and therefore conclude that there
are no two distinct elements in Y , so Y is a singleton.

We now continue to prove Proposition 5.

Proof of Proposition 5. Suppose that M is transitive and
that s ∈ acc(X). Then there is a minimal retentive Y ⊆ X
such that s ∈ Y . By Lemma 6, Y = {s}. As Y is retentive,
we then have s 6≺ x for all x ∈ X \ {s}. So s ∈ max(X).

Suppose that M is anti-symmetric and that s ∈ max(X).
Then for every x ∈ X , s 6≺ x. Due to anti-symmetry this
implies that s 6� x for all x ∈ X \ {s}, so s ∈ unm(X).

Suppose that M is total and that s ∈ max(X). Then for
every x ∈ X , s 6≺ x. Due to totality this implies that x � s
for all x ∈ X \ {s} and therefore that s ∈ opt(X).

The main lesson of Propositions 4 and 5 is that for a well-
behaved relation� it does not matter which concept of best-
ness we use, but that for less well-behaved relations the dif-
ferent bestness notions give different outcomes, making it
important to choose the correct notion for a given context.

Before continuing with the language and semantics, let us
consider two more lemmas that will be useful later. The first
lemma states that max depends only on the strict relation≺,
and follows immediately from the definition of max.
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Lemma 7. Let M1 = (S,�1, V ) and M2 = (S,�2, V )
be models with the property that for all s, t ∈ S, s ≺1 t if
and only if s ≺2 t. Then for every X ⊆ S, maxM1(X) =
maxM1(X).

The second lemma shows that max, opt and unm satisfy
a “pointwise monotonicity” property.
Lemma 8. Let M = (S,�, V ) be any model and β ∈
{max, opt, unm}. Take any Y ⊆ X ⊆ S and let s ∈
β(X) ∩ Y . Then s ∈ β(Y ).

Proof. We give the proof for β = max, the proofs for
β = opt and β = unm are analogous. Suppose that
s ∈ max(X) ∩ Y . Then for every t ∈ X , s 6≺ t. Be-
cause Y ⊆ X , it follows that for every t ∈ Y , s 6≺ t, so
s ∈ max(Y ).

Note that this pointwise monotonicity property does not
hold for acc. If Z is minimal retentive in X then Z ∩ Y will
be retentive in Y , but it need not be minimal retentive.

3 Language and Semantics
The models developed in the preceding section allow us to
represent belief, preference or dominance. Here we intro-
duce a logical language that allows us to reason about prop-
erties of such models, and thereby about the situations rep-
resented by those models.

The main operators in this language is B(ϕ | ψ). The
formula B(ϕ | ψ) holds if and only if, among the states that
satisfy ψ, all best states satisfy ϕ. The way to read B(ϕ | ψ)
depends on the meaning of �. For example:
• If � is an agent’s plausibility ordering, then B(ϕ | ψ)

represents that agent’s conditional belief : under the con-
dition that ψ is true, it believes that ϕ is true.

• If � is the preference relation of an agent or society, then
B(ϕ | ψ) represents conditional obligation for that agent
or society: given that ψ is true, ϕ should be true.

• If� is a dominance relation among strategies, then B(ϕ |
ψ) represents conditional rationality: B(ϕ | ψ) holds if,
in the strategy space restricted to ψ, playing a strategy
satisfying ϕ is necessary to be rational.

In addition to B(ϕ | ψ) we also use its dual P (ϕ | ψ),
which represents conditional plausibility, conditional per-
mission and conditional rational permissibility. We also use
the standard Boolean operators and a universal modality �ϕ
which holds if ϕ is true in every state.
Definition 9. The language L is given by the following nor-
mal form:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | B(ϕ | ϕ) | �ϕ,
where p ∈ P .

The operators ∧,→,↔,>,⊥,
∧

and
∨

are defined as ab-
breviations in the usual way. Furthermore, P (ϕ | ψ) abbre-
viates ¬B(¬ϕ | ψ) and ♦ abbreviates ¬�¬.

The formula P (ϕ | ψ) can be read as ϕ being condi-
tionally plausible, permissible or playable, depending on the
meaning of �.

Based on the four notions of “bestness”, we get four vari-
ants or our semantics.

s1r

s2r, w s3 w

s4

Figure 2: The model MA for Example 2.

Definition 10. Let β ∈ {max, unm, opt, acc}, let M =
(S,�, V ) be a model and let s ∈ S. The satisfaction re-
lation |=β is given recursively by

M, s |=β p ⇔ s ∈ V (p)
M, s |=β ¬ϕ ⇔ M, s 6|=β ϕ
M, s |=β ϕ ∨ ψ ⇔ M, s |=β ϕ or M, s |=β ψ
M, s |=β B(ϕ | ψ) ⇔ ∀s′ ∈ β(JψKβ) : M, s′ |=β ϕ
M, s |=β �ϕ ⇔ ∀s′ ∈ S : M, s′ |=β ϕ

where JψKβ := {t ∈ S |M, t |=β ψ}.
If M, s |=β ϕ for every state s of M we write M |=β ϕ.

If M |=β ϕ for every model M , we say that ϕ is valid with
respect to β and write |=β ϕ. If Γ ⊆ L and for every M, s
such that ∀γ ∈ Γ : M, s |=β γ we haveM, s |=β ϕwe write
Γ |=β ϕ. When β is clear from context we write |= for |=β

and JψK for JψKβ .

4 Examples
Now that we have defined both models and language, we can
consider a few examples. We begin with a simple example
of conditional belief.

Example 2. Alice is currently inside, in a position where she
cannot directly observe the outside. She is reasoning about
whether it is raining (r) and whether the street is wet (w),
and considers four possible states. These states, and Alice’s
plausibility order among them, are shown as the model MA

in Figure 2. Note that Alice considers s2 and s3 to be equally
plausible.

In any of the four semantics, Alice considers ¬r ∧ ¬w
plausible. Furthermore, she considers nothing else plau-
sible, so she also believes ¬r ∧ ¬w, so we have MA |=
P (¬r ∧¬w | >)∧B(¬r ∧¬w). Her conditional beliefs do
depend on the exact semantics that we use, however.

Consider JwK = {s2, s3}. Both s2 and s3 are accept-
able, maximal and optimal in {s2, s3}. As such, for β ∈
{max, opt, acc} we have MA |=β P (r | w) ∧ P (¬r | w).
So in any of those three semantics, Alice considers both r
and ¬r plausible given w.

Neither s2 nor s3 is unmatched in {s2, s3}, however. So
under these semantics Alice considers nothing plausible. In
particular, MA |=unm ¬P (r | w) ∧ ¬P (¬r | w).

The different semantics correspond to different standards
of evidence for when something is to be considered plausi-
ble. The appropriate choice of semantics therefore depends
on the standard used by Alice.

Next, let’s consider an obligation example, with a social
choice flavour.
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Example 3. Among a group of friends a majority prefers
pizza (p) over curry (c), curry over fries (f ), and fries over
pizza. The majority prefers all these alternatives to burgers
(b). Bob is supposed to order food for the group, and has a
(pretty weak) obligation to order the best food.

In max, opt and unm semantics, the cycle between p, c
and f means that there is no best option. We then have
¬P (> | >), which is best read as “there are no coherent
obligations”. In particular, with those semantics there is no
obligation for Bob to choose p, c or f over b, despite the
latter being reviled by everyone.

In acc semantics p, c and f are collectively the best op-
tion, so we have P (p | >), P (c | >) and P (f | >). So Bob
can order any of those three foods. But he is not allowed to
order burgers.

If it turns out that the pizza place is closed, an unequiv-
ocal best option appears under any of the four semantics:
among c, f and b the clear best option is c, so Bob should
order curry: P (c | ¬p) ∧B(c | ¬p).

Finally, let us look at a strategy example. This example
is based on the game Hearthstone, as it was in the spring of
2019.
Example 4. Heartstone is a digital card game. Here we look
at the pre-match strategy in Hearthstone, which consists of
choosing 30 virtual cards to form a deck.3 Since players se-
lect 30 out of hundreds of possible cards, there are, in theory,
over 1060 different decks. In practice, however, decks can be
described by a combination of a playstyle (e.g., “combo”,
“zoo”) and a class (e.g., “warrior”, “rogue”).

Here we consider five such decks: “Control Warrior”
(CtW ), “Combo Warrior” (CbW ), “Control Rogue”
(CtR), “Tempo Rogue” (TR) and “Zoo Warlock” (ZL).
In a match between different decks one is usually favoured
over the other. For example, CtW usually beats, and there-
fore dominates, TR. There are also some cases where no
side is favoured, however. For example, ZW is neither
favoured nor disfavoured against CbW . See Figure 3 for
the model MC that shows the dominance relations between
all five decks. Note that TR, CtW and CbW form a “rock-
paper-scissor”-like cycle, where each strategy is dominated
by the next one.

We treat the names of the strategies as atoms that hold
only for that strategy. Furthermore, we use an atom el for
“Elysiana”, one of the cards used in the CtW deck.

No strategy is maximal, optimal or unmatched. The
strategies TR, CtW and CbW are acceptable, however.
So under ACC semantics these tree strategies, and only
these, are playable: MC , |=acc P (TR | >) ∧ P (CtW |
>) ∧ P (CbW | >) and MC |=acc B(TR ∨ CtW ∨ CbW |
>). The strategy ZW is not playable because it loses to
CtW and ties against CbW and CtR. The strategy CtR is
not playable because it is awful and loses against all other
strategies.

A complicating factor is that some tournaments decided
to forbid the use of Elysiana, since it made matches last
too long. Consider therefore the restriction of MC to

3There is also strategy involved in the moment to moment play
during a match, but here we focus on the pre-match part.

CtW

el

CbW

CtR

TR

ZW

Figure 3: The model MC for Example 4.

CbW

CtR

TR

ZW

Figure 4: The restriction of MC to J¬elK.

J¬elK, shown in Figure 4. The reason CbW was previously
playable was that it beats CtW . In the restricted strategy
space there is no longer any reason to play CbW , so it is
not longer playable. The strategy TR, on the other hand,
was playable and remains playable: removal of CtW only
benefits TR. The strategy ZW was only not playable be-
cause it loses to CtW , so in the restricted strategy space it
becomes playable. Finally, CtR was unplayable and remain
so, because it loses to every other strategy.

In other words, we have MC |=acc ¬P (CbW | ¬el) ∧
¬P (CtR | ¬el) ∧ P (TR | ¬el) ∧ P (ZW | ¬el). Note
that we have at least one instance of each possible combina-
tion of unrestricted and restricted playability: TR remains
playable, CtR remains unplayable, ZW becomes playable
and CbW becomes unplayable.

5 Axiomatizations
We now move to the main technical results of the paper. Due
to space constraints we cannot present all proofs here, an
extended version with the additional proofs is available on-
line.4

5.1 An Axiomatization for max, opt and unm

We will introduce axiomatizations for max, opt, unm and
acc. The most interesting axiomatization, in our opinion,
is the one for acc. The canonical model construction for
that axiomatization is rather complex however, so we begin
by considering an axiomatization MOU that is sound and
complete for max, opt and unm. We start by showing that it
is sound and complete for opt.
Definition 11. The axiomatization MOU contains the fol-
lowing rules and axioms:

PL Substitution instances of propositional validities
4At https://sites.google.com/site/lbkuijer/maximality KR.pdf.
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�S5 the S5 axioms and necessitation for �
R-Ext �(ϕ↔ ψ)→ (B(χ | ϕ)→ B(χ | ψ))
L-Ext �(ϕ↔ ψ)→ (B(ϕ | χ)→ B(ψ | χ))
MP from ϕ and ϕ→ ψ infer ψ

Abs B(ϕ | ψ)↔ �B(ϕ | ψ)
K B(ϕ→ ψ | χ)→ (B(ϕ | χ)→ B(ψ | χ))
Id B(ϕ | ϕ)

Sh B(ϕ | ψ ∧ χ)→ B(ψ → ϕ | χ)

If a formula ϕ is derivable in MOU from a set Γ of premises,
we write Γ `MOU ϕ. When the proof system is clear from
context we write ` for `MOU.

The axioms are self-explanatory except perhaps for Sh
which is named after (Shoham 1988) and expresses a form of
conditionalization (cf. also (Kraus, Lehmann, and Magidor
1990)). MOU is closely related to the system known as F
(Åqvist 1984) but without the axiom enforcing JB(> | ψ)K
to be non-empty whenever JψK is non-empty.

Lemma 12 (Soundness). If Γ `MOU ϕ then Γ |=opt ϕ.

Proof. Soundness of all rules and axioms other than Sh is
immediately obvious from the semantics for opt. We there-
fore prove only the soundness of Sh in detail.

Take any model M = (S,�, V ) and any s ∈ S. Sup-
pose that M, s 6|= B(ψ → ϕ | χ). Then there is some t ∈
opt(JχK) such that M, t 6|= ψ → ϕ and therefore M, t |= ψ
and M, t 6|= ϕ. This implies that t ∈ Jψ ∧ χK. By pointwise
monotonicity (Lemma 8) it follows that t ∈ opt(Jψ ∧ χK).
Because M, t 6|= ϕ this implies that M, s 6|= B(ϕ | ψ ∧ χ).

We have shown that M, s |= ¬B(ψ → ϕ | χ)→ ¬B(ϕ |
ψ ∧ χ) and therefore, by contraposition, M, s |= B(ϕ |
ψ ∧ χ)→ B(ψ → ϕ | χ).

Completeness of MOU for opt is shown through a reason-
ably standard canonical model construction, although there
are a few small complications.
Definition 13. A set Γ ⊆ L is MOU-consistent if Γ 6`MOU

⊥. It is maximal MOU-consistent if it is MOU-consistent
and, furthermore, for every ϕ ∈ L either ϕ ∈ Γ or ¬ϕ ∈
Γ. The set of maximal MOU-consistent sets is denoted
MCSMOU.

When this should not cause confusion we will omit ref-
erence to the proof system with respect to which a set is
(maximal) consistent.
Definition 14. Let Γ ⊆ L. The B-inverse of Γ with respect
to ψ is given by B−1

ψ (Γ) := {ϕ | B(ϕ | ψ) ∈ Γ}. The
�-inverse of Γ is given by �−1Γ := {ϕ | �ϕ ∈ Γ}.

We can now begin to construct the canonical model. As
usual, the states of the canonical model will be based on
maximal consistent sets. However, it is not quite as sim-
ple as saying that the set of states equals the set of maximal
consistent sets. Firstly, because we have a universal modal-
ity � we need to keep the �-inverse constant throughout the
model. This means that the canonical model will be rela-
tive to some set Ξ, and we will only consider those maximal
consistent sets Γ where �−1Γ = Ξ. Secondly, we will need

multiple copies of each maximal consistent set. Specifically,
for every ψ ∈ L we will have a copy (Γ, ψ). The formula ψ
in this case is the “intended relativization”. Generally, it is
the ψ-copy of an MCS that will be optimal in JψK.5

Definition 15. A set Ξ ⊆ L is �-maximal if there is a max-
imal consistent set Γ such that Ξ = �−1Γ.

For a �-maximal set Ξ, take MCSMOU
Ξ := {Γ ∈

MCSMOU | �−1Γ = Ξ}.
Before defining the canonical model we need a few more

lemmas. For most of these lemmas the proof is either stan-
dard and well known or very straightforward. We therefore
omit those proofs.
Lemma 16 (Lindenbaum lemma). If Γ is consistent then
there is a maximal consistent set ∆ ⊇ Γ.
Lemma 17. Let Γ be a maximal consistent set and suppose
that �ξ ∈ Γ. Then for every ψ, we have B(> | ψ) ∈ Γ,
B(ξ | ψ) ∈ Γ) and B(�ξ | ψ) ∈ Γ.
Lemma 18. If ϕ ∈ x for all x ∈ MCSΞ, then ϕ ∈ Ξ.
Lemma 19. For every ϕ,ψ ∈ L, every �-maximal Ξ ⊆ L
and every x ∈ MCSMOU

Ξ , we have B(ϕ | ψ) ∈ x if and
only if B(ϕ | ψ) ∈ Ξ.

The next lemma is significantly less straightforward. The
proof is rather tedious and not very insightful however, so
we include it only in the online version.
Lemma 20. If x ∈ MCSΞ and ϕ 6∈ B−1

ψ (x), then {¬ϕ} ∪
B−1
ψ (x) ∪�Ξ ∪ {¬�ζ | ζ ∈ L \ Ξ} is consistent.

Now, we can define the canonical model.
Definition 21. Let Ξ be �-maximal. Then the canonical
model MMOU

Ξ = (S,�, V ) is given by

• S = {(x, ϕ) | x ∈ MCSMOU
Ξ , ϕ ∈ L},

• V (p) = {(x, ϕ) ∈ S | p ∈ x},
• �⊆ S × S is the largest relation such that

– if B−1
ϕ (Ξ) 6⊆ x, then (y, ψ) 6� (x, ϕ) and

– if ψ ∈ x and ϕ 6∈ y then (y, ψ) 6� (x, ϕ).
For δ ∈ L we define [δ] := {(x, ϕ) | δ ∈ x}.
Lemma 22 (Truth lemma for MOU and opt). For every
�-maximal Ξ and every ϕ ∈ L, we have [ϕ] = JϕK.

See the online version for a proof of the truth lemma.
Lemma 23 (Completeness). If Γ |=opt ϕ then Γ `MOU ϕ.

We have now proved soundness (Lemma 12) and com-
pleteness (Lemma 23) of MOU for opt.
Theorem 1. For every Γ ⊆ L and every ϕ ∈ L, we have
Γ |=opt ϕ if and only if Γ `MOU ϕ.

We now have a sound and complete axiomatization for
|=opt. Left to do is prove that MOU is sound and complete
for |=max and |=unm as well.
Theorem 2. Let β1, β2 ∈ {max, opt, unm}. For every
model M1 = (S1,�1, V1) and s1 ∈ S1 there are a model
M2 = (S2,�2, V2) and s2 ∈ S2 such that for every ϕ ∈ L

M1, s1 |=β1 ϕ⇔M2, s2 |=β2 ϕ.
5This approach is also taken, e.g., in (Parent 2013).
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Proof. We consider only two cases here. The remaining
cases can be shown similarly, and are proven in the online
version.

• Suppose β1 = max and β2 = opt. Let M2 = (S1,�2

, V1), where s �2 t if and only if (i) s �1 t or (ii) s ⊥1 t.
We have ≺1=≺2, so by Lemma 7 we have maxM1(X) =
maxM2(X) for all X ⊆ S. Furthermore, �2 is total so
by Proposition 5, maxM2(X) = optM2(X). Together,
these two equalities imply that maxM1(X) = optM2(X),
from which it follows easily that M1, s1 |=max ϕ iff
M2, s1 |=opt ϕ.
• Suppose β1 = opt and β2 = max. Let M2 = (S2,�2

, V2) be given by S2 = S1 × {0, 1, 2}, V2(p) = V1(p) ×
{0, 1, 2} and
– (s, i) ≈2 (s, j) for all i and j,
– if s ≺1 t then (s, i) ≺2 (t, j) for all i and j,
– if s ≈1 t then (s, i) ≈2 (t, j) for all i and j and
– if s ⊥1 t then (s, 0) ≺2 (t, 1), (s, 1) ≺2 (t, 2) and

(s, 2) ≺2 (t, 0).
Take any X ⊆ S1 and any s ∈ opt(X). Then for ev-
ery t ∈ X \ {s}, t �1 s. For every (s, i) and ev-
ery (t, j) we then have (t, j) �2 (s, i) and therefore,
in particular, (s, i) 6≺2 (t, j). It follows that (s, i) ∈
max(X × {0, 1, 2}).
Now, take any X ⊆ S1 and any s 6∈ opt(X). Then there
is a t ∈ X \ {s} such that s ≺1 t or s ⊥1 t. In the
first case, (s, i) ≺2 (t, j) for all i and j. In the second
case, (s, i) ≺2 (t, i + 1 mod 3) for all i. In either case,
(s, i) 6∈ max(X × {0, 1, 2}).
Together, this shows that maxM2(X × {0, 1, 2}) =
optM1(X) × {0, 1, 2}, from which it follows easily that
M1, s1 |=opt ϕ iff M2, s2 |=max ϕ.

Corollary 24. For every Γ ⊆ L and every ϕ ∈ L, we have
Γ |=max ϕ if and only if Γ `MOU ϕ, and Γ |=unm ϕ if and
only if Γ `MOU ϕ.

The corollary does not hold for acc however. We will
therefore introduce a different axiomatiazion for acc.

5.2 An Axiomatization for acc

In this subsection we will introduce an axiomatization ACC
that is sound and complete for acc semantics. This axiom-
atization does not contain the Sh axiom, as that axiom is
unsound for acc. Simply removing the axiom would result
in an incomplete axiomatization, however. Instead, we must
replace Sh by a weaker axiom. The axiom that we will use
is Cut:

Cut (B(ϕ | ψ) ∧B(χ | ϕ ∧ ψ))→ B(χ | ψ)

As the name suggests, Cut is related to the cut-rule which is
often used in sequent calculi. This is most clearly visible if
we remember that B(ϕ | ψ) is a type of conditional, so we
could write alternative write it as ψ ⇒ ϕ. The Cut axiom
then states that if ψ ⇒ ϕ and ϕ ∧ ψ ⇒ χ then ψ ⇒ χ. The
axiom is also known as cumulative transitivity (cf. (Makin-
son 2005)).

Definition 25. The axiomatization ACC contains the fol-
lowing rules and axioms:

PL Substitution instances of propositional validities
�S5 the S5 axioms and necessitation for �
R-Ext �(ϕ↔ ψ)→ (B(χ | ϕ)→ B(χ | ψ))
L-Ext �(ϕ↔ ψ)→ (B(ϕ | χ)→ B(ψ | χ))
MP from ϕ and ϕ→ ψ infer ψ

Abs B(ϕ | ψ)↔ �B(ϕ | ψ)
K B(ϕ→ ψ | χ)→ (B(ϕ | χ)→ B(ψ | χ))
Id B(ϕ | ϕ)

Cut (B(ϕ | ψ) ∧B(χ | ϕ ∧ ψ))→ B(χ | ψ)

Derivability, consistency and maximal consistent sets are
defined as for MOU, mutatis mutandis.

Lemma 26 (Soundness). If Γ `ACC ϕ then Γ |=acc ϕ.

Proof. Soundness of all rules and axioms other than Cut is,
again, obvious from the semantics. We therefore prove only
the soundness of Cut in detail.

Suppose that M, s |= B(ϕ | ψ) ∧ B(χ | ϕ ∧ ψ). Let
X ⊆ JψK be minimal retentive in JψK. We will show that X
is minimal retentive in Jϕ ∧ ψK.

First, note that B(ϕ | ψ) implies that X ⊆ JϕK. By as-
sumption X ⊆ JψK, so X ⊆ Jϕ ∧ ψK. Furthermore, since
X is retentive in JψK it is also retentive in all subsets of JψK,
in particular, in Jϕ ∧ ψK. Finally, suppose towards a con-
tradiction that some X ′ ⊂ X is retentive in Jϕ ∧ ψK. Be-
cause X is retentive in JψK, there can be no x ∈ X ′ and
y ∈ JψK \ X such that x ≺ y. Furthermore, since X ′ is
retentive in Jϕ ∧ ψK and X ⊆ Jϕ ∧ ψK there can be no
x ∈ X ′, y ∈ X \X ′ such that x ≺ y. Together, this shows
that X ′ is retentive in JψK. But that contradicts the mini-
mality of X . This completes the proof that X is minimal
retentive in Jϕ ∧ ψK.

BecauseM, s |= B(χ | ϕ∧ψ) andX is minimal retentive
in Jϕ ∧ ψK, we have X ⊆ JχK. This holds for any minimal
retentive set in JψK, soM, s |= B(χ | ψ). We therefore have
|= (B(ϕ | ψ) ∧ B(χ | ϕ ∧ ψ)) → B(χ | ψ), i.e., Cut is
sound.

We continue by constructing a canonical model for ACC.
Unfortunately, this canonical model is significantly more
complex than the one for MOU. The states of MACC

Ξ are
five-tuples (x, y, ψ, b, i) where x and y are maximal con-
sistent sets, ψ is a formula, b ∈ {0, 1} and i ∈ N. We
denote Γψ(Ξ) := {x ∈ MCSACC

Ξ | B−1
ψ (Ξ) ⊆ x} and

∆ψ(Ξ) := {(x, y, ψ, b, i) | x, y ∈ Γψ(Ξ)}.
Definition 27. Let Ξ be �-maximal. The model MACC

Ξ =
(S,�, V ) is given by

• S = {(x, y, ϕ, b, i) | x, y ∈ MCSACC
Ξ , ϕ ∈ L, b ∈

{0, 1}, i ∈ N},
• V (p) = {(x, y, ϕ, b, i) ∈ S | p ∈ x},
• � is the smallest relation such that

1. for all (x, y, ψ, b, i) ∈ S: (x, y, ψ, b, i) �
(x, y, ψ, b, i+ 1),
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2. for all (x, y, ψ, b, i) ∈ ∆ψ(Ξ):
(a) if x 6= y then for all i > 0: (x, y, ψ, b, i) �

(y, y, ψ, 0, 0),
(b) for all i > 0: (x, x, ψ, 0, i) � (x, x, ψ, 1, 0),
(c) for all i > 0 and all (x′, y′, ψ, b, i) ∈ ∆ψ(Ξ): if b = 0

or x′ 6= y′ then (x, x, ψ, 1, 1) ≺ (x′, y′, ψ, b, 0) and
(d) for all x′ ∈ MCSACC

Ξ such that ψ 6∈ x′:
(x, y, ψ, b, i) � (x′, x′,⊥, 0, 0).

The set {(x, y, ψ, b, i) ∈ S | ϕ ∈ x} is denoted [ϕ].

In a five-tuple (x, y, ψ, b, i), x takes the usual role of de-
noting which formulas are supposed to be true at a state,
i.e., we will have MACC

Ξ , (x, y, ψ, b, i) |= ϕ if and only if
ϕ ∈ x. The formula ψ, as before, denotes the intended rela-
tivization. The index i is used to create infinitely ascending
chains, which will be used to manipulate which states are
acceptable and which are not. The bit b is used to create two
copies of each ascending chain. Finally, the set y is used to
create certain connections between different chains. Specif-
ically, (x, y, ψ, b, i) will connect to (y, y, ψ, b, i).

This canonical model is rather complex, so let us use a fig-
ures to explain it. There are five kinds of arrows in MACC

Ξ :
the ones that follows from conditions 1, 2a, 2b, 2c and 2d,
respectively. Only arrows of type 2d are between states with
different relativizing formulas ψ and ϕ, so Figure 5 shows a
“slice” of the model where ψ is held constant.

For fixed x, y, ψ and b, the set {(x, y, ψ, b, i) | i ∈ N}
forms an infinitely ascending chain, using type 1 arrows. If
(x, y, ψ, b, i) 6∈ ∆ψ(Ξ) then none of the type 2 arrows are
applicable, so {(x, y, ψ, b, i) | i ∈ N} is isolated, as shown
in the leftmost chain of states in Figure 5.

If (x, y, ψ, b, i) ∈ ∆ψ(Ξ), then it becomes important
whether x = y. If x 6= y, then every state (x, y, ψ, b, i)
with i > 0 is beaten by (y, y, ψ, 0, 0), due to a type 2a ar-
row. This is represented by the second chain from the left
in Figure 5. States of the form (x, x, ψ, 0, i) with i > 0 are
beaten by (x, x, ψ, 1, 0), due to type 2b arrows. This is rep-
resented by the third chain from the left in Figure 5. Finally,
states of the form (x, x, ψ, 1, i) with i > 0 are beaten by
all (x′, y′, ψ, b, 0) ∈ ∆ψ(Ξ), where b = 0 or x 6= y due to
type 2c arrows. This is represented by the fourth chain in
Figure 5.

It is important to note that any two states
(x, y, ψ, b, i), (x′, y′, ψ, b′, i′) ∈ ∆ψ(Ξ) are reachable
from each other by some number of ≺ steps.

We now consider a few lemmas that will be useful in the
truth lemma.

Lemma 28. If ϕ 6= ψ and (x, y, ϕ, b, i) � (x′, y′, ψ, b′, j)
then ψ = ⊥, (x, y, ϕ, b, i) ≺ (x′, y′, ϕ, b′, j) and
(x′, y′, ψ, b′, j) 6�∗ (x, y, ϕ, b, i), where �∗ is the transitive
closure of �.

See the online version for a proof.

Lemma 29. If (x, y, ψ, i, b) 6∈ ∆ψ(Ξ), then for every ϕ ∈
L, (x, y, ψ, i, b) 6∈ acc([ϕ]).

Proof sketch. This follows from the fact that an infinitely as-
cending chain without outgoing arrows is never acceptable.
See the online version for details.

(x1, y1, ψ, b1, i)

i = 0

i = 1

i = 2

...

(x2, y2, ψ, b2, i)

i = 0

i = 1

i = 2

...

(x2, x2, ψ, 0, i)

i = 0

i = 1

i = 2

...

(x2, x2, ψ, 1, i)

i = 0

i = 1

i = 2

...

∆ψ(Ξ)

Figure 5: A schematic representation of a singleψ-slice ofMACC
Ξ .

The dashed line indicates which chains are part of ∆ψ(Ξ). Note
that because only a single slice is drawn, no type 2d arrows are
included, as those connect different slices.

Lemma 30. ∆ψ(Ξ) is minimal retentive in [ψ].

Proof. First, let us note that ∆ψ(Ξ) ⊆ [ψ], because by Id
every �-maximal Ξ must contain B(ψ | ψ).

Next, let us show that ∆ψ(Ξ) is retentive. Suppose to-
wards a contradiction that there are (x, y, ψ, b, i) ∈ ∆ψ(Ξ)
and (x′, y′, χ, b′, j) ∈ [ψ]\∆ψ(Ξ) such that (x, y, ψ, b, i) ≺
(x′, y′, χ, b′, j). Then, in particular, (x, y, ψ, b, i) �
(x′, y′, χ, b′, j). Because� is the smallest relation satisfying
conditions 1 and 2, it follows that one of the conditions 1, 2a,
2b, 2c or 2d must apply to (x, y, ψ, b, i) and (x′, y′, χ, b′, j).

It cannot be condition 1, since that would require
x = x′, y = y′ and ψ = χ, which would contradict
(x′, y′, χ, b′, j) 6∈ ∆ψ(Ξ). Similarly, it cannot be conditions
2a, 2b or 2c, since those also contradict (x′, y′, χ, b′, j) 6∈
∆ψ(Ξ). Finally, it cannot be condition 2d since that would
require ψ 6∈ x′, which contradicts (x′, y′, χ, b′, j) ∈ [ψ]. We
have arrived at a contradiction, and thereby conclude that
∆ψ(Ξ) is retentive.

Minimality of ∆ψ(Ξ) follows from the fact that, as ob-
served earlier, any two states in ∆ψ(Ξ) are reachable from
one another.

Lemma 31. If [χ] 6⊆ [ψ] or ∆ψ(Ξ) 6⊆ [χ] then ∆ψ(Ξ) ∩
acc([χ]) = ∅.

Proof. Suppose that [χ] 6⊆ [ψ]. Then there is an
(x′, y′, δ, b, i) ∈ [χ] \ [ψ]. This implies that we also have
(x′, x′,⊥, 0, 0) ∈ [χ]\ [ψ]. Suppose towards a contradiction
that (x, y, ψ, b, i) ∈ ∆ψ(Ξ)∩acc([χ]). Then (x, y, ψ, b, i) ∈
X for some X that is minimal retentive in [χ].

Because (x′, x′,⊥, 0, 0) 6∈ [ψ] we have ψ 6∈ x′. So, by
clause 2d in the definition of �, we have (x, y, ψ, b, i) �
(x′, x′,⊥, 0, 0). By Lemma 28 we then have (x, y, ψ, b, i) ≺
(x′, x′,⊥, 0, 0) and (x′, x′,⊥, 0, 0) 6�∗ (x, y, ψ, b, i).

We already showed that (x′, x′,⊥, 0, 0) ∈ [χ], so
if (x, y, ψ, b, i) ∈ X and X is retentive in [χ] then
(x′, x′,⊥, 0, 0) ∈ X . Minimality of X would then re-
quire (x′, x′,⊥, 0, 0) ≺∗ (x, y, ψ, b, i), but that contradicts
(x′, x′,⊥, 0, 0) 6�∗ (x, y, ψ, b, i). We have arrived at a con-
tradiction and thereby conclude that ∆ψ(Ξ)∩ acc([χ]) = ∅.
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Suppose then that [χ] ⊆ [ψ] and that ∆ψ(Ξ) 6⊆ [χ].
First, note that ∆ψ(ξ) does not have any outgoing arrows
in [χ]. Such arrows would need to be of type 2d, but such
arrows can only be to states (x′, x′,⊥, 0, 0) where ψ 6∈ x, so
(x′, x′,⊥, 0, 0) 6∈ [ψ]. From [χ] ⊆ [ψ] it then follows that
(x′, x′,⊥, 0, 0) 6∈ [χ], so there are no type 2d arrows from
∆ψ(Ξ) to states in [χ]. It follows that if there is a minimal
retentive setX such thatX∩∆ψ(Ξ) 6= ∅ thenX ⊆ ∆ψ(Ξ).

Now, suppose towards a contradiction that (x, y, ψ, b, i) ∈
∆ψ(Ξ)∩acc([χ]), so there is a minimal retentive setX such
that (x, y, ψ, b, i) ∈ X . We distinguish two cases. Firstly,
suppose that χ 6∈ y, so (y, y, ψ, 0, 0) 6∈ [χ]. The infinitely
ascending chain {(x, y, ψ, b, j) | j ∈ N} is beaten only by
(y, y, ψ, 0, 0), so {(x, y, ψ, b, j) | j ∈ N} is an infinitely
ascending chain in [χ] without any outgoing arrows. This
implies that it cannot be part of any minimal retentive set.

The second case is χ ∈ y. Because ∆ψ(Ξ) 6⊆ [χ] there
must be a y′ such that (y′, z′, ψ, b′, j) ∈ ∆ψ(Ξ) \ [χ]. But,
because [χ]-membership depends only on the first coordi-
nate, (x, y′, ψ, b, 0) ∈ [χ]. Furthermore, (x, y′, ψ, b, 0) is
reachable from (x, y, ψ, b, i) by a �-chain that only con-
tains [χ] states. It follows that any retentive set containing
(x, y, ψ, b, i) must also contain (x, y′, ψ, b, 0). We have now
reduced the second case to the first case.

We have now shown that if ∆ψ(Ξ) 6⊆ [χ] then ∆ψ(Ξ) ∩
acc([χ]) = ∅. Together with the previous conclusion that
if [χ] 6⊆ [ψ] then ∆ψ(Ξ) ∩ acc([χ]) = ∅, this proves the
lemma.

Using the preceding three lemmas, the proof of the truth
lemma is relatively easy.

Lemma 32 (Truth lemma for ACC). For every �-maximal
Ξ, every ϕ,ψ ∈ L, every x, y ∈ MCSACC

Ξ , every b ∈ {0, 1}
and every i ∈ B we have MACC

Ξ , (x, y, ψ, b, i) |=acc ϕ if
and only if ϕ ∈ x.

Proof. By induction on the complexity of ϕ and then by a
case distinction on the main connective. The only interesting
case is ϕ = B(γ | δ).

If B(γ | δ) ∈ x then �B(γ | δ) ∈ x and therefore
γ ∈ B−1

δ (Ξ). Take any s ∈ acc(JδK). By the induction
hypothesis, JδK = [δ], so s ∈ acc([δ]). By Lemmas 29–31
we must have one of the following: (i) s ∈ ∆δ(Ξ) or (ii)
s ∈ ∆ξ(Ξ) where [δ] ⊆ [ξ] and ∆ξ(Ξ) ⊆ [δ]. In the first
case we have s ∈ [γ], due to γ ∈ B−1

δ (Ξ).
Consider then the second case. Because [δ] ⊆ [ξ] we have

that δ ∈ z implies ξ ∈ z for all z ∈ MCSΞ. This implies
that δ ↔ (δ ∧ ξ) ∈ z, for every z. By Lemma 18 this
implies δ ↔ (δ ∧ ξ) ∈ Ξ. Because x ∈ MCSΞ, we obtain
�(ξ ↔ (ξ ∧ δ)) ∈ x. By assumption we have B(γ | δ) ∈ x,
so by R-Ext we have B(γ | ξ ∧ δ) ∈ x.

Furthermore, from ∆ξ(Ξ) ⊆ [δ] it follows that for every
z ∈ MCSΞ we have that if ∆ξ(Ξ) ⊆ z then δ ∈ z. So
there is no maximal consistent set z such that �−1z = Ξ,
B−1
ξ (Ξ) ⊆ z and ¬δ ∈ z. By the Lindenbaum lemma

(Lemma 16) every consistent set can be extended to a maxi-
mal consistent set, so {¬δ} ∪ B−1

ξ (Ξ) ∪�Ξ ∪ {¬�ζ | ζ ∈
L \ Ξ} is inconsistent.

We have B−1
ξ (Ξ) = B−1

ξ (x), so {¬δ} ∪B−1
ξ (x)∪�Ξ∪

{¬�ζ | ζ ∈ L \ Ξ} is inconsistent. By Lemma 20 this
implies that δ ∈ B−1

ξ (x). So we have B(δ | ξ) ∈ x.
We have now shown that B(δ | ξ) ∈ x and B(γ | δ ∧

ξ) ∈ x. Using Cut this implies that B(γ | ξ) ∈ x, and
therefore B(γ | ξ) ∈ Ξ, which means that γ ∈ B−1

ξ (Ξ).
From s ∈ ∆ξ(Ξ) we therefore obtain s ∈ [γ].

In either case, we have shown s ∈ [γ]. By the induction
hypothesis, this implies that MACC

Ξ , s |= χ. This holds for
every s ∈ acc(JδK), so we have MACC

Ξ , x |= B(γ | δ),
which was to be shown.

If B(γ | δ) 6∈ x, then γ 6∈ B−1
δ (x). By Lemma 20, the set

{¬γ}∪B−1
δ (x)∪�Ξ∪{¬�ζ | ζ ∈ L\Ξ} is then consistent.

It can therefor be extended to a maximal consistent set x′.
By construction, �−1x′ = Ξ, so x′ ∈ MCSΞ. Furthermore,
B−1(Ξ) ⊆ y so (x′, x′, δ, 0, 0) ∈ ∆δ(Ξ).

By Lemma 30 we have (x′, x′, δ, 0, 0) ∈ acc([δ]). By the
induction hypothesis this implies (x′, x′, δ, 0, 0) ∈ acc(JδK).
Finally, ¬γ ∈ x′ so (x′, x′, δ, 0, 0) 6∈ [γ]. By the induction
hypothesis this implies (x′, x′, δ, 0, 0) 6∈ JγK. We therefore
have acc(JδK) 6⊆ JγK, so MACC

Ξ , x 6|= B(γ | δ), which was
to be shown.

Completeness now follows immediately.

Lemma 33 (Completeness). If Γ |=acc ϕ then Γ `ACC ϕ.

We have now proven soundness (Lemma 26) and com-
pleteness (Lemma 33) of ACC.

Theorem 3. For every Γ ⊆ L and every ϕ ∈ L, we have
Γ |=acc ϕ if and only if Γ `ACC ϕ.

6 Conclusions
We have studied the logic of preference when preferences
arise from structures of pairwise comparisons which may
fail to contain ‘best’ elements according to maximality and
optimality. The logical language of choice for our study
has been that of dyadic operators of the type B(ϕ | ψ).
These operators have been investigated mostly in the de-
ontic logic tradition and are object-level representations of
propositional logic consequence relations based on prefer-
ential models. We showed that on general binary relations—
and in the absence of axioms stipulating the existence of
‘best’ elements—maximality, optimality, and the related no-
tion of unmatchedness all give rise to the same logic. We
provided a sound and strongly complete axiom system for
such logic. We then proposed the use of minimal retentive
sets as a less-demanding notion of ‘best’ to support the se-
mantics of B(ϕ | ψ) operators, giving rise to a novel logic
of preference for which we provided a sound and strongly
complete axiom system.

In this paper we focused on axiomatizations, but sev-
eral technical avenues for future work present themselves.
Much remains to be understood about B(ϕ | ψ) logics over
general structures of comparison from—in particular—the
model-theoretic perspective (but see (Demey 2011) for rele-
vant ideas applied to the case of plausibility models) and the
complexity theoretic perspective.
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