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Abstract

To reason with existential rules (a.k.a. tuple-generating de-
pendencies), one often computes universal models. Among
the many such models of different structure and cardinality,
the core is arguably the “best”. Especially for finitely satis-
fiable theories, where the core is the unique smallest universal
model, it has advantages in query answering, non-monotonic
reasoning, and data exchange. Unfortunately, computing cores
is difficult and not supported by most reasoners. We therefore
propose ways of computing cores using practically implemen-
tedmethods from rule reasoning and answer set programming.
Our focus is on cases where the standard chase algorithm pro-
duces a core. We characterise this desirable situation in gen-
eral terms that apply to a large class of cores, derive concrete
approaches for decidable special cases, and generalise these
approaches to non-monotonic extensions of existential rules.

1 Introduction
Existential rules are widely studied both in knowledge rep-
resentation and in databases, where they are also known as
tuple-generating dependencies. They are used as ontology
language (Calì, Gottlob, and Pieris 2010; Baget et al. 2011;
Calì, Gottlob, and Lukasiewicz 2012; Calì, Gottlob, and
Pieris 2012; Cuenca Grau et al. 2013), declarative comput-
ing paradigm (Carral et al. 2019b; Bellomarini, Sallinger, and
Gottlob 2018), or formalism for data exchange and integra-
tion (Fagin et al. 2005; Deutsch, Nash, and Remmel 2008;
Calì, Gottlob, and Kifer 2008).

Reasoning with such rules is often based on universal
models, the most general among all models, which are use-
ful for solving diverse problems including query answer-
ing, data exchange, and rule entailment (Deutsch, Nash, and
Remmel 2008). Universal models can be constructed by ap-
plying rules bottom-up – a process known as the chase and
studied in many variations. Practical chase implementations
were shown capable of solving a variety of reasoning prob-
lems at large scales (Geerts et al. 2014; Benedikt et al. 2017;
Bellomarini, Sallinger, andGottlob 2018;Urbani et al. 2018).

Nevertheless, universal models are neither unique nor lo-
gically equivalent, and differentways of performing the chase
may lead to very different structures. For example, some
might be finite when others are infinite, and chase termina-
tion is an important concern (see overviews by Cuenca Grau
et al. (2013) and Krötzsch, Marx, and Rudolph (2019)). For

positive queries, distinct universalmodels still entail the same
results, but this is not true when allowing negation. As no-
ticed by Baget et al. (2014), this leads to problems for adding
(non-monotonic) negation to existential rules. The next ex-
ample is adapted from Alviano, Morak, and Pieris (2017).
Example 1. We consider existential rules with negation:

human(x) → ∃v.hasFather(x, v) (1)
hasFather(x, y) → equals(y, y) (2)

hasFather(x, y1) ∧hasFather(x, y2) ∧not equals(y1, y2)

→ twoFathers(x)
(3)

Traditionally, non-monotonic semantics are based on in-
terpretations over a fixed domain (the Herbrand universe).
We can achieve this by replacing existential variables with
skolem terms, so that rule (1) becomes

human(x) → hasFather(x, f (x)). (4)

The result is a stratified normal logic program, which has a
unique stable model. Now given an input database (fact set)
{human(alice), hasFather(alice, bob)}, this model contains
further facts hasFather(alice, f (alice)), equals(bob, bob),
equals( f (alice), f (alice)), and twoFathers(alice). This is un-
intuitive, since the statement that every human has some
father (1) should not entail that Alice has two fathers.
If we avoid skolemisation and use the standard chase on the

original rules instead, then rule (1) is not applicable (since
Alice already has a father), and we derive equals(bob, bob)
as the only other fact.

While the standard chase seems preferable here, it has
the major drawback of producing different universal models
depending on the order of rule applications. Negation can
show these differences. The outputs of systems that combine
(stratified) negation with this chase, such as VLog (Carral et
al. 2019a), can therefore depend on implementation details.

As a possible solution, it has been suggested to focus
on the special kind of universal models that are cores.
Roughly, a core is a structure that cannot be embed-
ded into a (simpler) substructure of itself. The skolem-
ised model of Example 1 is not a core (if we admit that
f (Alice) is mapped to bob), whereas the standard chase
model is. Among the most general models, core models
can be viewed as the least redundant and most compact.
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They have been characterised as the “best among all uni-
versal solutions” in data exchange (Fagin, Kolaitis, and
Popa 2005), and suggested as preferable solutions in non-
monotonic extensions to existential rules (Hernich 2011;
Baget et al. 2014). Infinite interpretations can have several
non-isomorphic cores, or none at all (Carral et al. 2018), but
finitely satisfiable rule sets have a unique core, which can
always be computed using the core chase (Deutsch, Nash,
and Remmel 2008).

And yet, core models are hardly used in existential rule
reasoning, and no major system seems to support the core
chase. Indeed, the core chase is not a practical algorithm,
since it involves the computation of homomorphisms from
the whole chase into itself in an effort of finding strictly
smaller cores. As a decision problem, this was shown to be
complete for DP, i.e., the intersection of anNP-complete and
a coNP-complete problem (Fagin, Kolaitis, and Popa 2005).
Applying a rule in the standard chase is of – supposedly –
higher complexity (namely ΣP

2 (Grahne and Onet 2018)), but
the difference is that this is with respect to the size of a single
rule, while the core computation depends on the size of the
model that is computed. With models commonly containing
millions of elements, this is not feasible in practice.

We therefore ask if core models can also be computed
in simpler ways, using algorithms that are already shown to
work in practice. To this end, we look for cases where the
standard chase happens to produce a core. We derive a useful
though undecidable semantic condition that is based on the
absence of certain local homomorphisms, called alternative
matches. Based on this abstract notion, we develop simplified
conditions that can be decided in practice. Central to this
approach is the analysis of interactions between rules, and
the derivation of a rule application order based on the new
concept of core stratification. Standard chases that abide by
this order can be guaranteed to produce a core.

As an alternative approach, we consider the use of answer
set programming (ASP) to compute core models. ASP is
based on skolemisation, but we can use non-monotonic neg-
ation to express the condition on alternative matches. This
leads to a correspondence of stable models and core models,
and suggests that existential rule reasoning and data exchange
might be interesting new application areas for ASP solvers.

We then return to the problem of non-monotonic negation
and show that the core-chase-stable models of Baget et al.
(2014) are not unique, even when restricting to stratified
negation. By extending our previous notion of stratification
for negation, we can identify cases where we can compute a
perfect core model as a generalisation of stable models that is
a core. We then discuss relations to other works in this area.

Finally, we study the complexity and expressivity of our lo-
gical fragments. We show that core-stratified rules on which
the chase is guaranteed to terminate can express computa-
tions of non-elementary time complexity, and are therefore
strictly more expressive than chase-terminating skolemised
rules. Conversely, we also establish some general limits of
our approach by showing that the (finite) core models of
some rule sets cannot be computed by any standard chase.

We conclude by discussing open questions and potential
further research that this work could enable.

2 Preliminaries
We briefly introduce key concepts and notations. The literat-
ure offers more thorough introductions (Abiteboul, Hull, and
Vianu 1994; Ceri, Gottlob, and Tanca 1990). We construct
expressions from countably infinite, mutually disjoint sets
V of variables, C of constants, N of labelled nulls, and P
of predicate names. Each predicate name p ∈ P has an arity
ar(p) ≥ 0. Terms are elements ofV∪N∪C. We generally use
t to denote a list t1, . . . , t |t | of terms, and similar for special
types of terms. An atom is an expression p(t) with p ∈ P,
t a list of terms, and ar(p) = | t |. Ground terms or atoms
contain neither variables nor nulls. An interpretation I is a
set of atoms without variables. A database D is a finite set
of ground atoms (i.e., a finite interpretation without nulls).

Rules An existential rule (or just rule) ρ is a formula

ρ = ∀x, y. ϕ[x, y] → ∃z. ψ[y, z], (5)

where ϕ and ψ are conjunctions of atoms using only terms
from C or from the mutually disjoint lists of variables
x, y, z ⊆ V. We call ϕ the body (denoted body(ρ)) and ψ
the head (denoted head(ρ)). We may treat conjunctions of
atoms as sets, and we omit universal quantifiers in rules. We
require that all variables in y do really occur in ϕ (safety).1
A rule is Datalog if it has no existential quantifiers.

Morphisms and cores Given a set of atoms A and an
interpretation I, a homomorphism h : A → I is a function
that maps the terms occurring in A to (the variable-free)
terms occurring in I, such that: (i) for all c ∈ C: h(c) = c;
(ii) for all p ∈ P: if p(t) ∈ A, then p(h(t)) ∈ I, where h(t) is
the list of h-images of the terms t .We apply homomorphisms
to a formula by applying them individually to all of its terms.

A homomorphism h is strong if p(t) ∈ A iff p(h(t)) ∈ I
for all p ∈ P, and an embedding if it is strong and inject-
ive. An isomorphism is a bijective strong homomorphism (a
surjective embedding). A homomorphism from a structure
to itself is called endomorphism; an isomorphism that is an
endomorphism is called automorphism.
I is a core if every endomorphism h : I → I is an

embedding.Onfinite structures, it is equivalent to require that
every endomorphism is an isomorphism or, alternatively, that
it is merely surjective (Hell and Nešetřil 1992). On infinite
structures these notions differ (Bauslaugh 1995).

Semantics of rules Amatch of a rule ρ in an interpretation
I is a homomorphism body(ρ) → I. A match h of ρ in I
is satisfied if there is a homomorphism h′ : head(ρ) → I
that agrees with h on all variables that occur in body and
head (i.e., variables y in (5)). Rule ρ is satisfied by I, written
I |= ρ, if every match of ρ in I is satisfied. A set of rules Σ
is satisfied by I, written I |= Σ, if I |= ρ for all ρ ∈ Σ. We
may treat a database D as sets of rules with empty bodies
(also called facts), and write, e.g., I |= D, Σ to express that
I |= Σ and D ⊆ I. In this case, I is a model of Σ and D.

1This requirement can be relaxed, but it simplifies presentation.
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Universal models and the chase A model I of a rule set
Σ and database D is universal if it admits a homomorphism
h : I → J to every model J of Σ and D. A core model is
a universal model that is a core. Many algorithms for com-
puting universal models exist. Their basic approach, known
as the chase, is to construct models bottom-up by applying
rules to facts. The version we consider here is the standard
chase (also known as restricted chase).
Definition 1. A (standard) chase sequence for a database
D and a set of rules Σ is a potentially infinite sequence of
interpretations D0,D1, . . . such that
(1) D0 = D;
(2) for every Di+1 with i ≥ 0, there is a match h for some

rule ρ = ϕ[x, y] → ∃z.ψ[y, z] ∈ Σ in Di such that
(a) h is an unsatisfied match in Di (i.e., h cannot be

extended to a homomorphism ψ → Di), and
(b) Di+1 = Di ∪ ψ[h′(y), h′(z)], where h′ : ψ → Di+1 is

such that h′(y) = h(y) for all y ∈ y, and for all z ∈ z,
h′(z) ∈ N is a distinct null not occurring in Di .

(3) if h is a match for a rule ρ ∈ Σ andDi (i ≥ 0), then there
is j > i such that h is satisfied in D j (fairness).

The (standard) chase for such a chase sequence is
⋃

i≥0 Di .
Under the conditions of (2), we say that rule ρ is applicable

to Di for match h, and that Di+1 was obtained by applying ρ
for (extended)match h′.We use abbreviations rule[i+1] B ρ,
hom[i+1] B h′, head[i+1] B hom[i+1](head(rule[i+1])),
and body[i + 1] B hom[i + 1](body(rule[i + 1])).

3 Cores from the Standard Chase
We now give a semantic characterisation of a broad class of
standard chase sequences that are guaranteed to produce core
models. In the standard chase, a rule can only be applied for
a match that is not already satisfied in some alternative way,
without using any of the fresh nulls that would be introduced
when applying the rule. We generalise this by considering
alternative matches that may also use some of those nulls.
Definition 2. Let Ia ⊆ Ib be interpretations such that Ia
was obtained by applying rule ρ for match h. A homomorph-
ism h′ : h(head(ρ)) → Ib is an alternative match of h if
(1) h′(t) = t for all terms t in h(body(ρ)), and
(2) there is a null n in h(head(ρ)) that does not occur in

h′(h(head(ρ))).
An alternative match for step k of a chase D∞ =

⋃
i≥0 Di ,

is an alternative match for Ia = Dk , Ib = D∞, ρ = rule[k],
and h = hom[k].
Example 2. Consider the rules

→ ∃v,w.r(v,w) ∧ r(w, v) (6)
r(x, y) → s(y, x) (7)
r(x, y) → ∃u.s(y, u) (8)

Applying rule (6) on an empty database leads to D1 =
{r(n1, n2), r(n2, n1)}. Further rule applications yield s(n2, n1)
(rule (7)), s(n1, n3) (rule (8)), and s(n1, n2) (rule (7)). Note
that we prioritised (7) for r(n1, n2), but (8) for r(n2, n1). Then
h′ = {n1 7→ n1, n3 7→ n2} is an alternative match for step 3.

We could equivalently define alternative matches in a
chase as homomorphisms that restrict to the identity map-
ping on body[i] but do not restrict to an automorphism on
head[i]. An alternative match for k can easily be extended
to a homomorphism Dk → D∞ that is the identity on Dk−1

(rather than only on body[k] ⊆ Dk−1). We can further extend
it to a homomorphism on D∞ using the following result.
Lemma 1. For a chase D∞ =

⋃
i≥0 Di , every homomorph-

ism hk : Dk → D∞ for some k ≥ 0 can be extended to a
homomorphism h : D∞ → D∞ that agrees with hk on Dk .

Proof. Since hk is defined on body[k + 1] ⊆ Dk , the map-
ping hk ◦ hom[k + 1] is a match for rule[k + 1].2 This match
is satisfied in D∞, so it can be extended to a homomorph-
ism g : head(rule[k + 1]) → D∞. We extend hk to hk+1
by defining hk+1(nv) B g(v) for every fresh null nv intro-
duced in head[k + 1] for an existential variable v. Since
hk+1(Dk+1 \ Dk) = g(head(rule[k + 1])), hk+1 is a homo-
morphism Dk+1 → D∞; it also agrees with hk on Dk . Now
h is obtained as the limit

⋃
i≥k hi , which is a homomorphism

since the relevant conditions are finitary (i.e., local). �

When the chase is clear from the context, we write
homchase(hk) for an arbitrarily chosen h as in Lemma 1.
While Lemma 1 may seem intuitive, we remark that it would
not hold when replacing homomorphism by isomorphism.
Example 3. For the chase sequence in Example 2, h1 :
{n1 7→ n2, n2 7→ n1} is an isomorphism on D1. Lemma 1
yields a homomorphism homchase(h1) = {n1 7→ n2, n2 7→
n1, n3 7→ n1}, but we cannot extend h1 to any isomorphism.
Theorem 2. If a chase D∞ =

⋃
i≥0 Di has no alternative

matches, then D∞ is a core model.

Proof. For a contradiction, suppose some homomorphism
h0 : D∞ → D∞ is not an embedding. Note that h0 is the
identitymapping onD0, which contains no nulls or variables.
For every chase step i+1 > 0, we construct a homomorphism
hi+1 : D∞ → D∞ that is the identity mapping on Di+1.
Assume hi was defined for i ≥ 0. Let h̃i be the restriction

of hi to Di+1. Then h̃i is identity on body[i + 1] ⊆ Di

by the hypothesis. Since h̃i is no alternative match, h̃i is a
bijection (and possibly identity) on the nulls in head[i + 1],
and therefore restricts to an automorphism h̃i : head[i+1] →
head[i + 1]. Since h̃i is the identity on Di , it is therefore an
automorphism on Di+1 with inverse h̃−i : Di+1 → Di+1. We
set hi+1 B homchase(h̃−i ) ◦ hi . Since h̃−i and homchase(h̃−i )
agree on Di+1, hi+1 is indeed the identity on Di+1.

Now since h0 is not an embedding it is (a) not strong or (b)
not injective. Hence there is a tuple t such that either (a) there
is a fact of the form p(h0(t)) ∈ D∞ with p(t) < D∞ or (b)
t = 〈t1, t2〉 with h0(t1) = h0(t2). Either property is preserved
for all hi , which we can show by induction. For case (a),
p(hi(t)) ∈ D∞ implies p(hi+1(t)) ∈ D∞ since homchase(h̃−i )
is a homomorphism by Lemma 1. For case (b), hi(t1) = hi(t2)
immediately yields hi+1(t1) = hi+1(t2).

Hence, all hi satisfy either (a) or (b) for a fixed t. However,
for some k ≥ 0, all terms of t are contained in Dk . Since

2By ◦ we denote function composition: ( f ◦ g)(x) = f (g(x)).
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hk is the identity on Dk , it satisfies neither (a) nor (b) – a
contradiction. Hence, a non-embedding h0 cannot exist. �

The converse of Theorem 2 is not true: even a chase that
is a core can have alternative matches.
Example 4. Applying the rules

→ ∃v.p(v) (9)
p(x) → ∃w.r(x,w) (10)

r(x, y) → p(y) ∧ r(y, x) (11)

toD0 = ∅ in any order yields a chaseD∞ = {p(n1), r(n1, n2),
p(n2), r(n2, n1)}, which is a core. However, there is an altern-
ative match {n1 7→ n2} for the first chase step (where we map
the head of the first rule application p(n1)).
Theorem 3. If D∞ =

⋃
i≥0 Di has an alternative match,

then D∞ admits an endomorphism that is not identity. In
particular, if a chase with alternative matches yields a core,
then it has a non-identity embedding.

Proof. Let h : head[k] → D∞ be an alternative match. We
can extend h to a homomorphism ĥ : Dk → D∞ by setting
h(t) = t for all terms inDk that do not occur in head[k]. The
required endomorphism is homchase(ĥ) of Lemma 1. �

This result suggests that core-producing chases with al-
ternative matches are rare in practice, since non-trivial em-
beddings require a large amount of (non-redundant) sym-
metry that seems unlikely to occur in applications. We might
therefore say that “most” cores that can be produced by a
standard chase at all can be produced by a chase without
alternative matches. However, as we will see later, there are
core models (possibly without non-trivial embeddings) that
cannot be obtained from any standard chase.

4 Core Stratification
We now turn the results of the previous section into a prac-
tically viable procedure for computing core models in the
chase. Unfortunately, the general precondition of Theorem 2
does not lead to a decidable criterion.
Theorem 4. It is undecidable if some chase (or all chases)
of some rule set Σ and databaseD have an alternative match.

This can be shown by reduction from the undecidable
query answering problem over existential rules, using a rule
that enforces an alternative match if its body (the query) is
satisfied. To address this issue, we introduce a local criterion
that can be used to detect situations when alternative matches
could possibly occur. The next definition describes cases
where the application of one rule might enable an alternative
match for another rule that was applied earlier.
Definition 3. A rule ρ1 restrains a rule ρ2, written ρ1 ≺

� ρ2,
if there are interpretations Ia ⊆ Ib such that
(a) Ib is obtained by applying ρ1 for match h1,
(b) Ia is obtained by applying ρ2 for match h2,
(c) h2 has an alternative match h2(head(ρ2)) → Ib , and
(d) h2 has no alternative match h2(head(ρ2)) → Ib \

h1(head(ρ1)).

Since Datalog rules cannot have alternative matches, they
cannot be restrained. Also note that Definition 3 allows that
ρ1 = ρ2 and Ia = Ib . Indeed, a rule may restrain itself:
Example 5. Consider the rule

ρ = b(x) → ∃v,w.r(x, v,w) ∧ r(x, x,w) ∧ a(v).

We obtain ρ ≺� ρ by setting Ia = Ib =
{a(c), b(c), r(c, n1, n2), r(c, c, n2), a(n1)} and h1 = h2 =
{x 7→ c, v 7→ n1,w 7→ n2}. The required alternative match
is {c 7→ c, n1 7→ c, n2 7→ n2}. Note how the third para-
meter of r ensures that ρ is applicable to {x 7→ c}, and also
that ρ cannot be decomposed into two rules that produce the
necessary and the redundant part of the head independently.

The interpretation Ia and Ib in Definition 3 can be restric-
ted to contain at most as many facts as there are atoms in ρ1
and ρ2. Since the names of constants and nulls are irrelevant,
we can therefore represent the interpretations polynomially.
As observed by Grahne and Onet (2018), checking applicab-
ility of a rule is complete for ΣP

2 . We therefore obtain:
Proposition 5. Deciding ρ1 ≺

� ρ2 is ΣP
2 -complete.

Computing ≺� is therefore not harder than applying rules
in the chase, but using only very small databases. Together
with the next result, this suggests that ≺� can serve as a
practically computable approximation of the existence of al-
ternative homomorphisms in the chase.
Lemma 6. If a chase D∞ =

⋃
i≥0 Di has an alternative

match for step k, then there is ` ≥ k with rule[`] ≺� rule[k].

Proof. Let ` ≥ k be the smallest number such that there is
an alternative match head[k] → D`+1. We set ρ1 = rule[`],
ρ2 = rule[k], Ia = Dk+1, and Ib = D`+1. Conditions (a)
and (b) of Definition 3 are immediate from the chase. Condi-
tion (c) holds by our choice of `. For (d), note that there is no
alternativematch head[k] → Di for any k < i ≤ ` byminim-
ality of `. There is also no alternative match head[k] → Dk

since this would imply that rule[k] is not applicable. �

By Theorem 2we can therefore obtain a core from a stand-
ard chase if we ensure that, whenever ρ1 ≺

� ρ2, we only
apply rule ρ1 strictly before ρ2. It is not enough to prioritise
ρ1 over ρ2; before applying ρ2, we also must ensure that ρ1
will not become applicable ever again. To estimate if this is
the case, we adapt a notion of positive dependency between
rules due to Deutsch, Nash, and Remmel (2008).
Definition 4. A rule ρ2 positively relies on a rule ρ1, written
ρ1 ≺

+ ρ2, if there are interpretations Ia ⊆ Ib and a function
h2 such that
(a) Ib is obtained from Ia by applying ρ1 for the match h1,
(b) h2 is an unsatisfied match for ρ2 on Ib , and
(c) h2 is not a match for ρ2 on Ia.
Intuitively, ρ1 ≺

+ ρ2 means that applying ρ1 might some-
times enable new applications of ρ2.
Definition 5. Consider a rule set Σ and a rule ρ ∈ Σ.
The set ρ↓� consists of all rules ρ′ ∈ Σ that stand in
the relation ρ′ (≺+)∗ · ≺� ρ, where (≺+)∗ is the reflexive-
transitive closure of ≺+, and · is relation composition:
R · S = {〈x, y〉 | x R z and z S y for some z}.
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A rule set Σ is core-stratified if ρ < ρ↓� for all ρ ∈ Σ. A
chase sequence is core-stratified if, for all chase steps i, j,
rule[i] ≺� rule[ j] implies i < j.

Traditional stratification (with respect to negation) is often
used to group rules in linearly ordered strata, obtained as a
topological ordering of the strongly connected components
in the relation ≺� ∪ ≺+. The rules are then applied bottom-
up stratum by stratum. Our notion of core-stratified chase is
more permissive, since we allow rules from higher strata to
be applied if they are not restrained by any rule that might
still be applied. In particular, Datalog rules can always be
applied. Nevertheless, core-stratified rule sets do not always
admit a core-stratified chase.
Theorem 7. Deciding if Σ is core-stratified is ΣP

2 -complete.
Whether Σ admits a core-stratified chase is undecidable.

While ΣP
2 -completeness is immediate from Proposition 5

(and analogous observations for ≺+), the undecidability
might surprise. Given a core-stratified rule set, one can en-
force a rule application strategy that prioritises rules in ρ↓�
over ρ, and this will ensure that rule[i] ≺� rule[ j] implies
i < j, but it does not necessarily result in a chase sequence.
Indeed, fairness will be violated if the chase does not termin-
ate on some stratum that is not maximal. Chase termination
has been studied extensively, and many decidable criteria ex-
ist for detecting it (Baget et al. 2011; CuencaGrau et al. 2013;
Carral, Dragoste, and Krötzsch 2017). Any of these works
can be applied to detect the preconditions of the next result.
Theorem 8. Consider a rule set Σ and a databaseD. If Σ is
core-stratified and if the chase on Σ andD terminates for all
strategies (or for all strategies that prioritise Datalog rules),
then there is a core-stratified chase over Σ and D, which
produces the finite core model of Σ and D.

Proof. We can use any rule application order that exhaust-
ively applies rules in ρ↓� before a rule ρ. A Datalog rule ρ
may be applied at any time as long as no rule was applied
that is restrained by ρ – after this point, ρ will no longer be
applicable due to the assumed stratification. Therefore, ap-
plicable Datalog rules can always be prioritised. The chase
is guaranteed to be finite by the preconditions.

Suppose for a contradiction that the resulting chase has
alternative matches. By Lemma 6, we find ` ≥ k with
rule[`] ≺� rule[k]. With the chosen chase strategy, this im-
plies that body[`] * Dk−1, although body[`] ⊆ D`−1. By
the definition of ≺+, all rules that contributed to deriving
atoms of body[`] are in rule[`]↓�. Using the assumption that
matches of these rules were prioritised over rule[k], we can
show that rule[`] would be applicable with hom[`] at step k,
contradicting our assumptions.

Hence, the chase has no alternative matches, so it yields a
core by Theorem 2. �

One could further generalise this by admitting non-
termination in maximal strata, which would allow for infinite
chase sequences that yield cores. Though of limited practical
utility, this is interesting since infinite core models are diffi-
cult or impossible to obtain in general (Carral et al. 2018).
Finally, we point out a trade-off between core stratification
and termination.

Definition 6. Given a rule ρ as in (5), its decomposition
consists of the two rules ρbody = ϕ[x, y] → ∃z.rρ(y, z) and
ρhead = rρ(y, z) → ψ[y, z], where rρ is a new predicate.
Since rρ is new, every match of ρbody is unsatisfied unless

the rule was applied to some match that agrees on y – the
rule behaves as if skolemised and cannot be “blocked” by
other rules. Indeed, ρbody is not restrained by any rule. As
a consequence, sets of decomposed rules are always core-
stratified, but might lead to larger (possibly infinite) cores.
Interestingly, decomposition can also be used selectively to
remove individual ≺� relations, which may preserve termin-
ation while ensuring core stratification. We use this idea to
demonstrate the expressive power of core-stratified rule sets
in Theorem 18 below.

5 Core Models from ASP
We now show how to obtain answer sets that encode core
models. Answer set programming (ASP) is a successful
paradigm for declarative rule-based computation with ap-
plications in non-monotonic inference, constraint satisfac-
tion, and optimisation (Lifschitz 2019). Its main reasoning
task is the computation of stable models, known as answer
sets, and of query results over (all) such models.

Existential quantifiers and named nulls are not allowed in
ASP, but we can use function symbols instead: a signature
of ASP consists of variable names V, constants C, predicate
names P, and function symbols F. We define ASP atoms
and ASP interpretations as for existential rules, but using
terms that may contain functions rather than named nulls. A
(normal) logic program P is a set of rules of the form

B1 ∧ · · · ∧ Bn ∧ not N1 ∧ · · · ∧not Nm → H1 ∧ · · · ∧H`

where Bi , Ni , and Hi are atoms that may contain variables
and function symbols (including constants), and where each
variable of the rule occurs in some atom Bi .
Definition 7. Let D be a database and P a logic program.
The (possibly infinite) program ground(P∪D) is the union of
D with the set of all rules that can be obtained from some rule
in P by uniform replacement of each variable with a ground
term over symbols in P ∪ D. For an ASP interpretation I,
the reduct redI(P ∪ D) is obtained from ground(P ∪ D) by
(1) deleting every negated atom not N with N < I and (2)
deleting every rule with a negated atom not N with N ∈ I. I
is a stablemodel of P∪D if it is the leastmodel of redI(P∪D).
Functions can simulate existential quantifiers by skolem-

isation: given a rule ϕ[x, y] → ∃z. ψ[y, z], we replace each
existential variable z ∈ z by a term fz(y), where fz is a fresh
(“skolem”) function symbol of arity |y |. Skolemised exist-
ential rules are therefore a special case of the logic programs
that ASP solvers support, and indeed many ASP systems es-
sentially perform the so-called skolem chase (Marnette 2009)
during the grounding phase of solving.

The skolem chase leads to universal models, just like the
standard chase, but the latter produces a finite model for
strictly more inputs. This is an important concern, since ASP
solvers require answer sets to be finite. Unfortunately, when
restricting to rules for which the chase is guaranteed to be
finite, using the skolem chase imposes far greater expressive
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limitations than using the standard chase (Krötzsch, Marx,
and Rudolph 2019). Moreover, even when the skolem chase
is finite, the result is rarely a core model of the original rules,
and this is not influenced by the order of rule applications.

Rather than relying on the skolem chase alone, we there-
fore incorporate the non-monotonic reasoning capabilities of
ASP to guarantee the general conditions of Theorem 2.
Definition 8. Let Σ be a set of existential rules. The normal
logic program ASP(Σ) consists of the following rules for
every rule ρ = ϕ[x, y] → ∃z. ψ[y, z] in Σ:
(a) a rule

ϕ[x, y] ∧ not blockρ(y)
→ ψ[y, fz(y)] ∧

∧
z∈z

nullzρ( fz(y), y)

where ψ[y, fz(y)] is the skolemisation of ψ[y, z];
(b) for every v ∈ z, a rule

ϕ[x, y] ∧ ψ[y, z] ∧
∧
z∈z

not nullvρ(z, y) → blockρ(y),

using fresh predicate names blockρ and nullvρ.
Given an interpretation I, we define I− B {p(t) ∈ I |

p not of the form blockρ or nullvρ} to be the set of atoms that
do not use these auxiliary predicates.

Rules of the form (b) are applicable to matches of y that
extend to an alternative match of rule ρ, since they require
that at least one “null” (skolem term) is not used in the match
for the variables z. Note that Datalog rules do not lead to
any rules of form (b), since they contain no v ∈ z, and are
therefore never blocked.
Theorem 9. Consider a rule set Σ and a database D.
(1) For every stable model I of ASP(Σ) ∪ D, I− is a core

model of Σ and D.
(2) Every core model J of Σ and D that is the result of a

chase without alternative matches is isomorphic to I−
for some stable model I of ASP(Σ) ∪D.

Proof. Consider a stable model I as in (1). Let R B
redI(ASP(Σ) ∪ D). The reduced ground rules in R are of
two types, depending on whether they originate from rules
of the form (a) or (b) in Definition 8, and atoms in I− are only
entailed by type (a) rules. Being the least model, I can be
computed by a sequence of chase-like applications of rules in
R. We construct a corresponding chase sequence D0,D1, . . .
and an isomorphism ι : D∞ → I−.
Initially, D = D0 ⊆ I, and ι is the identity mapping

on constants in D. Assume that the chase and ι was con-
structed until Di , and that ρi = ϕ[t, s] → ψ[s, fz(s)] ∧∧

z∈z nullzρ( fz(s), s) is the ith type (a) rule applied when com-
puting I. By the induction hypothesis, ϕ[ι−(t), ι−(s)] ∈ Di ,
so the chase has a match h for the original rule ρ =
ϕ[x, y] → ∃z. ψ[y, z]. Match h is not satisfied in Di: other-
wise, there would be terms r in Di for which a type (b) rule
ϕ[t, s] ∧ ψ[s, ι(r)] → blockρ(s) applies, which would entail
blockρ(s) ∈ I and contradict the assumption ρi ∈ R. Hence,
ρ is applicable in the chase, introducing a fresh null nz for
each z ∈ z. We set ι(nz) B fz(s).

This yields a (possibly infinite) chase. To see that it is
fair, consider a match h for some ρ ∈ Σ and Di . Case (i):
there is a corresponding type (a) rule ρj ∈ R where body
variables are instantiated by h ◦ ι; then ρj will eventually be
applied in the computation of I and the corresponding chase
step. Case (ii): there is no corresponding type (a) rule in R,
since it was deleted during the reduction; then there is a fact
blockρ(ι(h(y))) ∈ I that must be entailed by a suitable type
(b) rule, witnessing that rule match h is satisfied in I.

Moreover, the constructed chase has no alternative
matches. Every mapping h that satisfies (2) of Definition 2
corresponds to a type (b) rule in R. When applicable, the rule
derives a block-atom that ensures that R contains no type (a)
rule for a corresponding match. Therefore, by Theorem 2,
the chase yields a core, finishing the proof of (1).

Now consider a core J as in (2). Using similar arguments
as above, we obtain a sequence of applications of type (a)
rules inASP(Σ) that corresponds to the chase. Let I be the set
of atoms that contains (i) all atoms inferred by this sequence
of type (a) rules, including nullzρ-atoms, and (ii) all block-
atoms that can be inferred using a match of a type (b) rule
whose negated body atoms of form not nullvρ(t, s) are never
derived under (i). Then redI(ASP(Σ) ∪ D) contains rules
corresponding to each type (a) rule used in the construction
since there are no alternative matches for the chase, so that
none of their negated block-atoms is derived. Hence I is the
required stable model, and I− is isomorphic to J . �

Note that Theorem 9 still allows cores to exist when
ASP(Σ) ∪ D has no stable model, but these cores either
cannot be obtained by any standard chase sequence, or admit
non-trivial embeddings (Theorem 3).

Theorem 9 also applies to infinite stable models, but we
can use known chase-termination criteria to focus on finite
cases. Together with (the proof of) Theorem 8, we get:
Corollary 10. If Σ is core-stratified and if the chase on Σ
and D terminates for all strategies (or for all strategies that
prioritise Datalog rules), then ASP(Σ) ∪ D has a unique
stable model I, such that I− is isomorphic to the unique
core model of Σ and D.

6 Non-monotonic Negation
As discussed in the introduction, cores are also appealing
as minimal structures for defining the semantics of non-
monotonic negation. We now develop a semantics based on
a notion of perfect core model that relies on this intuition.
An existential rule with negation is a formula

ρ = ∀x, y. ϕ[x, y] ∧ χ̄[x, y] → ∃z. ψ[y, z], (12)

where χ̄[x, y] denotes a conjunction of negated atoms of the
form not p(t) that may use variables from x and y, and all
other details are as in (5). To define an ASP-like semantics
for such rules, Baget et al. (2014) suggest a characterisation
based on generating rules, which was first proposed for ASP
by Konczak, Linke, and Schaub (2006).
Definition 9. Let I be an interpretation and let ρ be a rule
as in (12). A match h for ρ is generating with respect to I if,
p(h(t)) < I for all not p(t) ∈ χ̄.
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Let Σ be a set of rules with negation and let D be a
database. A generating (standard) chase sequence for Σ and
D is a chase sequence D0,D1, . . . as in Definition 1 that
• is based on the set of rules Σ+ obtained from Σ by omitting
the negative body χ̄ in each rule, and

• in each step Di , considers only matches for a rule ρ+ on
Di if ρ is generating with respect to D∞.

An interpretation I is a generated model of Σ and D if it is
of the form I = D∞ for some generating chase sequence.
In other words, a rule can only be applied in a generating

chase if its negative body will never be satisfied in this chase,
and fairness is only required for such rule applications.When
adopted to rules with (skolem) function symbols, generated
models coincide with the stable models of Definition 7 (Kon-
czak, Linke, and Schaub 2006). Baget et al. (2014) observe
that the generating chase leads to non-equivalent results for
different chase variants and rule application orders, but ar-
gue that “[t]his problem does not arise with core chase.” This
might be too optimistic, as illustrated by the next example.
Example 6. Consider D = {H(a), F(a, b)} and the rules:

H(x) → ∃v.F(x, v) ∧ M(v) (13)
F(x, y) → M(y) (14)
F(x, y) → E(y, y) (15)

F(x, y1) ∧F(x, y2) ∧not E(y1, y2) → D(y1, y2) (16)

We can obtain a generated model I1 consisting of D and
atoms M(b) (from (14)) and E(b, b) (from (15)). No match
for rule (16) is generating for this model.
However, there is another generated model I2 where we

extend D by deriving facts in the order F(a, n), M(n) (13),
E(b, b), E(n, n) (15), D(b, n),D(n, b) (16), and M(b) (14).
Match {x 7→ a, y1 7→ b, y2 7→ n} of (16) is generating now.
Interestingly, both I1 and I2 are cores. In fact, all inter-

mediate structures Di in either chase sequence are cores as
well, so even an interleaved core construction (used in the
core chase) does not change the result. I2 is isomorphic to
the answer set we obtain when skolemising existential quan-
tifiers, but I1 arguably is the intended model (where Alice
has just one father, cf. Example 1).
The previous example highlights a conflict between cores

and non-monotonicity. The applicability of rules with neg-
ation is not preserved under homomorphisms, hence cores
may have fewer generating matches (as in I1, where (16) has
no generating match). Conversely, applying non-monotonic
rules may prevent core constructions (as in I2, where facts
D(b, n),D(n, b) prevent endomorphisms with n 7→ b).
Since generating matches are not closed under homo-

morphisms, Lemma 1 fails for rules with negation, and the
proof of Theorem 2 is not applicable. We re-establish the rel-
evance of alternative matches by focussing on finite models.
Theorem 11. If a generating chase D∞ =

⋃
i≥0 Di is finite

and has no alternative matches, then D∞ is a core model.

Proof. Suppose for a contradiction that D∞ is not a core.
Then it has an endomorphism that is not an embedding.
For finite structures, this is equivalent to the existence of

an endomorphism h : D∞ → D∞ such that h(D∞) is the
(unique) core of D∞ and h(x) = x for all x in h(D∞). Since
h is not the identity onD∞, there is a smallest i such that h is
the identity on Di but not on Di+1. But then h restricts to an
alternative match for chase step i + 1, since our assumptions
on h do not allow it to be an automorphism on head[i+1]. �

Example 7. The generating chase for I1 in Example 6 does
not have alternative matches and indeed is a core. On the
other hand, the chase for I2 has an alternative match that
maps the rule head F(a, n), M(n) to F(a, b), M(b), and yet it
is also a core. In contrast to the positive case, where such al-
ternative matches were associated with non-identity embed-
dings (Theorem 3), this alternative match cannot be extended
to any endomorphism of I2.

It remains open how “good” answer sets for existential
rules with negation can be defined in general, but we present
an approach that covers certainwell-behaved cases, including
Example 6, and that leads to practical algorithms. To this
end, we adapt the notion of core-stratification to rules with
negation, and combine it with a suitable form of stratification
of negation. We slightly restrict the relationships ≺� and ≺+
to consider only cases that also satisfy the negative body of
the involved rules, and we further introduce a relation ≺−
to detect if a rule could produce a conclusion that makes (a
match for) another rule non-generating.
Definition 10. Let ρ1 and ρ2 be rules with negation, and let
ρ+1 and ρ+2 be obtained by removing any negated body atoms.
Then ρ1 ≺

� ρ2 (resp. ρ1 ≺
+ ρ2) is true if the conditions of

Definition 3 (resp. Definition 4) hold for ρ+1 and ρ+2 , and the
match hi is generating for ρi with respect to Ib (i ∈ {1, 2}).
Rule ρ2 negatively relies on ρ1, written ρ1 ≺

− ρ2, if there
are interpretations Ia ⊆ Ib such that
(a) Ib is obtained by applying ρ+1 for match h1,
(b) Ia is obtained by applying ρ+2 for match h2,
(c) h2 is not generating for ρ2 with respect to Ib , and
(d) h2 is generating for ρ2 with respect to Ib \ h1(head(ρ1)).
Using ≺−, it is possible to define a notion of stratification

along the lines of Definition 5, and this is a refinement of the
classical stratification in logic programming. Normal logic
programs that are stratified in this sense have a unique stable
model, also called the perfect model. Example 6 shows that
this is not true for generatingmodels on existential rules: both
chase sequences follow the stratification by exhaustively ap-
plying rule (15) before rule (16). To obtain “perfect models”
for existential rules, we incorporate core stratification.
Definition 11. Consider a set Σ of rules with negation and
a rule ρ ∈ Σ. Let ρ↓� be defined as in Definition 5, and let
ρ↓− be the set of all rules ρ′ ∈ Σ with ρ′ (≺+)∗ · ≺− ρ.
A rule set Σ is fully stratified if ρ < ρ↓�∪ ρ↓− for all ρ ∈ Σ.

A fully stratified chase sequence is a standard chase that is
based on the set of rules Σ+ obtained from Σ by omitting the
negative body χ̄ in each rule, and such that for all steps i

(a) match hom[i] for rule[i] is generating w.r.t. Di−1,
(b) no rule in (rule[i])↓� ∪ (rule[i])↓− is applicable (i.e.,

having a generating and unsatisfied match in Di−1),
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where rule[i] denotes the rule with negation that corresponds
to the positive rule used in step i.

As before, the relations ≺�, ≺+, and ≺− can be decided in
ΣP

2 , leading to the following generalisation of Theorem 7.

Theorem 12. Deciding if Σ is fully stratified is ΣP
2 -complete.

There is a subtle difference between the notions of strat-
ified chase in Definition 5 and Definition 11: the former
merely imposes a condition on rules that were actually ap-
plied, while the latter requires certain rules to be applied
exhaustively. The latter is therefore more restrictive, and we
use this to show the uniqueness of fully stratified chase results
below (Theorem 16). For positive rules, uniqueness follows
from the uniqueness of cores, which is no longer given here.
Lemma 13. In every fully stratified chase, if rule[i] is gen-
erating with respect to Di−1 then rule[i] is generating with
respect to D∞. Hence the chase is generating.

Proof. Otherwise, if there would be some smallest j ≥ i
such that rule[i] is not generating with respect toD j , then we
would find rule[ j] ≺− rule[i] using Ia = Di and Ib = D j in
Definition 10. Using the definition of ≺+, this can be shown
to contradict Definition 11 (b). �

Lemma 14. A fully stratified chase has no alternative
matches.

Proof. The proof is similar to that of Lemma 6. The added
requirements that rules are generating for ≺� follow from
Lemma 13. Assuming the existence of alternative matches
therefore implies rule[i] ≺� rule[ j] for some j ≤ i. Using ≺+,
one can again show a contradiction to Definition 11 (b). �

The next result shows that the models produced by a fully
stratified chase are in some sense most general among all
generated models without alternative matches.
Lemma 15. Let D∞1 be a fully stratified chase for Σ and
D, and let D∞2 be a generating chase for Σ and D without
alternative matches. Then there is an embeddingD∞1 → D∞2 .

Proof. We assume w.l.o.g. that the choice of fresh nulls in
both chases is determined in the same way from the values
of the head-variables in the match that first introduces them.
With this assumption, we can showD∞1 ⊆ D∞2 , which yields
the required embedding. Clearly, D0

1 = Di
2 = D ⊆ D∞2 .

Now suppose for a contradiction that Di
1 * D∞2 for some

i ≥ 1. Let k be the smallest such i. Then the match hom1[k]
of ρ = rule1[k] is never applied with ρ in the second chase.
Since Dk−1

1 ⊆ D∞2 , hom1[k] is a match for ρ in the second
chase. Therefore, ρ either (i) is not generating with respect
to D∞2 or (ii) is satisfied in D∞2 without being applied. Since
Dk−1

1 ⊆ D∞2 , there is a smallest j > k such that either
rule2[ j] ≺− ρ for (i) or rule2[ j] ≺� ρ for (ii). In particular,
rule2[ j] ∈ (rule[k])↓� ∪ (rule[k])↓−.
We recursively define a set J of chase steps that were rel-

evant for applying rule2[ j] as follows: j ∈ J and, if i ∈ J and
there is an atom α ∈ body2[i] that was first introduced inDi′

2 ,
then i′ ∈ J. Then, for all i ∈ J, we find: (1) rule2[i] ≺+

∗

rule2[ j], hence (2) rule2[i] ∈ (rule[k])↓� ∪ (rule[k])↓−;

moreover (3) match hom2[i] for rule2[i] is generating with
respect to D∞2 by Definition 9; (4) since Dk−1

1 ⊆ D∞2 , match
hom2[i] is also generating in Dk

1 .
By Definition 11 (b), no rule in (rule[k])↓� ∪ (rule[k])↓−

is applicable at step k (‡), which includes all rules rule2[i],
i ∈ J by (2) above. We can now show that head2[i] ⊆ Dk−1

1
for all i ∈ J. This is achieved by induction along the chase
sequence restricted to rule applications J, which starts from
D0

2 = D. All relevant matches are generating by (4) above.
By induction hypothesis, we have body2[i] ⊆ Dk−1

1 , i.e., that
hom2[i] is a match on Dk−1

1 . By (‡), hom2[i] must be satis-
fied. Since Dk−1

1 ⊆ D∞2 and D∞2 has no alternative matches,
hom2[i] is satisfied by head2[i] ⊆ Dk−1

1 .
Therefore, we find that head2[ j] ⊆ Dk−1

1 , contradicting
the assumption that the application of rule2[ j] produces an
atom that makes rule1[k] (i) non-generating or (ii) satisfied
in D∞2 but not in D∞1 . �

Theorem 16. All fully stratified chase sequences produce
isomorphic results, which are generated models without al-
ternative matches that can be embedded into any other chase
with these properties. When finite, the result is a core.

Proof. Whereas mutual embeddings do not guarantee iso-
morphism on infinite structures, the ⊆ relation shown in the
proof of Lemma 15 shows the claimed isomorphism. The
other properties further follow from Lemmas 13 and 14, and
Theorem 11. �

We may therefore call the unique, finite result of a fully
stratified terminating chase sequence a perfect core model.
To ensure the termination of the chase in the presence of
negation, one can use any criterion for skolem-chase termin-
ation on the rules obtained by deleting negated atoms. Other
criteria are applicable if they ensure standard chase termina-
tion on all subsets of a set of rules. Some criteria of this type
can also take negation into account (Magka, Krötzsch, and
Horrocks 2013; Baget et al. 2014).
Corollary 17. Consider a set Σ of rules with negation and a
database D. If Σ is fully stratified and if the chase on D and
any subset of Σ+ terminates for all strategies, then Σ has a
fully stratified chase overD, producing a perfect core model.

Proof. A fully stratified chase can be constructed bottom up
by applying only rules that satisfy the conditions in Defini-
tion 11. The rest of the claim follows from Theorem 16. �

Related Work Existential rules with negation are also
called normal tuple-generating dependencies in the literat-
ure. Several prior works on non-monotonic negation for ex-
istential rules have used skolemisation to adopt an existing lo-
gic programming semantics. Calì, Gottlob, and Lukasiewicz
(2012) use a notion of indefinite grounding, which leads to
results that are isomorphic to skolemisation. Magka, Krötz-
sch, and Horrocks (2013) define relations similar to our ≺+
and ≺− to identify decidable cases where stable models are
finite or unique. Gottlob et al. (2014) study decidability for
guarded rules, where stable models might be infinite. These
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works face the general issues with skolemisation, as dis-
cussed in Example 1. Another approach of this type are
FDNC rules, which impose a fixed syntactic form to ensure
decidability (Eiter and Simkus 2010).

Several other works investigate approaches that avoid the
interpretation of existential rules by skolem terms that are
inherently distinct. Baget et al. (2014) introduce C-stable
models that correspond to generated models based on a
chaseC. Bothmodels in Example 6 are core-chase-stable and
standard-chase-stable, but only I1 is a perfect core model.

Alviano, Morak, and Pieris (2017) use circumscription
to generalise stable models to existential rules. The res-
ults are different from the entailments with perfect core
models. For example, the authors argue that the rules
in Example 6 with the only input fact H(a) should still
have I1 as a stable model (cf. Example 4 in their paper),
whereas the unique perfect core model in this case would be
{H(a), F(a, n), E(n, n), M(n)}. The latter entails not F(a, b)
while the former does not. Alviano et al. argue that this is
desirable – we cannot know for sure that Bob is not the father
of Alice –, yet it seems to be at odds with the usual approach
to non-monotonic logic, where a statement is false “by de-
fault” unless there is some evidence in its favour. In this
sense, their approach re-introduces some of the open-world
reasoning typical for classical logics.

For the case of well-founded semantics, Gottlob et al.
(2012) considered the option of allowing distinct constants
and nulls to be equal. The result differs from our work in
many aspects, and in particular does not seem to suggest any
obvious correspondence even on fully stratified rule sets.

7 Expressivity and Complexity
We now discuss the expressive scope of the classes of rules
that our approach encompasses, and the complexity of com-
puting cores in these frameworks.

Many of our methods inherit complexity bounds from the
standard chase. Deciding whether a rule has an applicable
match is ΣP

2 -complete in this case (Grahne and Onet 2018),
and remains the same if we check that rule matches are
generating as in Definition 11. Nevertheless, there are rule
sets for which the chase is finite on all databases, but of non-
elementary size (Krötzsch, Marx, and Rudolph 2019). This
result can be extended to the case of core-stratified rules.
Theorem 18. There is a core-stratified rule set Σ that admits
a finite, core-stratified chase on every database D, but for
which the size of the core model is not bounded by any
elementary function in the size of D.

Proof. We adopt the rule set presented by Krötzsch, Marx,
and Rudolph (2019, Theorem 14). Their solution consists
of two parts: (1) a set of eight rules (labelled (27)–(34))
that generate a chase of non-elementary size, and (2) a set of
Datalog rules that entails all possible atoms if a cycle is found
in the database (a technique called “flooding”). Rules (2) are
prioritised to ensure that existential rules from (1) can never
be applied on cyclic inputs, since their matches will already
be satisfied. On cycle-free inputs, rules (1) always lead to
a finite chase, where every match is unsatisfied until it is
applied. In other words: rules from (2) can block rules from

(1), but rules from (1) never need to block other rules from
(1).We can therefore apply the decomposition of Definition 6
to all rules in (1) and augment rules (2) to include the fresh
predicates in the flooding step to obtain a core-stratified rule
set that produces a chase of non-elementary size. �

In this sense, core-stratified rule sets are highly expressive,
and the same applies to rules with negation under the perfect
core model semantics, which generalise this case. Neverthe-
less, there are negation-free rule sets with finite cores that
cannot be computed by a standard chase on any set of rules.
Theorem 19. There is a rule set Σ that has a finite core
model on every database, such that there is no rule set Σ′
for which the same core models can be computed using a
standard chase. This remains true even if Σ′ can use auxiliary
predicates that are ignored in the result.

Proof. The rules used in Theorem 18 generate a linear order
of non-elementary length, which we can use to simulate a
non-elementary time-bounded Turing machine (TM) com-
putation (Krötzsch, Marx, and Rudolph 2019). If the TM
accepts, we use Datalog rules to derive all possible atoms for
all terms and predicates, and an additional fact Accept(t) for
all terms t. If it rejects, we do the same but for facts Reject(t).
In either case, the core of the model contains only the ele-
ments in the given database (no nulls), marked by Accept or
Reject. A standard chase that derives this result could only
use Datalog rules, which can be done exhaustively in polyno-
mial time with respect to the size of the database (Dantsin et
al. 2001). This would decide non-elementary TM acceptance
in PTime, which is not possible. �

Theorem 18 also shows the expressive power of the ASP
encoding of Corollary 10. However, many ASP solvers use
an exhaustive, skolemisation-based grounding phase, and it
is known that skolemised rules that terminate on arbitrary
inputs terminate after polynomially many steps (Marnette
2009). Therefore, ASP solvers that rely on full grounding can
only compute core models that are polynomial with respect
to the input, or must accept that non-termination may occur
for some databases. ASP engines that apply partial grounding
or other methods might be able to surpass this boundary.

8 Conclusions
We have shed new light on some of the properties of core
models and their intricate relationship to the chase and non-
monotonic negation. Surprisingly, the “local” computation
process of the standard chase can often achieve the global
optimality of a core. Exact characterisations and further prac-
tical criteria for this desirable situation are promising goals
for future research. Similarly, while our results show a way
of using these ideas in non-monotonic reasoning, they also
raise many questions on how our perfect core models can be
further characterised, generalised, or computed in ASP.

From a practical perspective, the main results are The-
orem 8 and Corollaries 10 and 17, since they lead to concrete
approaches that can be put into practice in modern reasoners.
This opens the door to empirical studies of the practicality
of these approaches in various systems, which might further
inspire refined syntactic criteria and algorithms.
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