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Abstract

We introduce a novel approach for the computation of stable
and supported models of normal logic programs in continu-
ous vector spaces by a gradient-based search method. Specif-
ically, the application of the immediate consequence operator
of a program reduct can be computed in a vector space. To do
this, Herbrand interpretations of a propositional program are
embedded as 0-1 vectors in RN and program reducts are rep-
resented as matrices in RN×N . Using these representations
we prove that the underlying semantics of a normal logic pro-
gram is captured through matrix multiplication and a differ-
entiable operation. As supported and stable models of a nor-
mal logic program can now be seen as fixed points in a con-
tinuous space, non-monotonic deduction can be performed
using an optimisation process such as Newton’s method. We
report the results of several experiments using synthetically
generated programs that demonstrate the feasibility of the ap-
proach and highlight how different parameter values can af-
fect the behaviour of the system.

1 Introduction
Stable and supported models are two widely used ap-
proaches to defining the semantics of a logic program in
the presence of default negation (Marek and Subrahmanian
1992). Stable semantics is at the heart of Answer Set Pro-
gramming, a declarative paradigm for knowledge represen-
tation, reasoning and learning geared towards computation-
ally hard problems (Lifschitz 2008). Typically, one en-
codes a problem as a set of clauses representing background
knowledge, constraints or choices. The clauses form a logic
program whose models under stable semantics correspond to
solutions of the original problem. To discover these stable
models, an answer set solver would perform a search over a
discrete space of program interpretations, typically involv-
ing trial-and-error, conflict analysis and backtracking. Sup-
ported models are a superset of stable models that are char-
acterized through the Clark completion of a program (Clark
1978).

The recent popularity of deep learning approaches has
sparked interest in performing symbolic reasoning in con-
tinuous vector spaces rather than discrete. Approaches in-
clude defining a learning task for a neural network for learn-
ing models (Minervini et al. 2019), programs (Evans and
Grefenstette 2017) or the reasoning process itself (Selsam

et al. 2018). These approaches are appealing as they al-
low for symbolic reasoning and learning to be carried out
over fuzzy and noisy data in a natural manner. But they are
limited to performing approximate inference in the context
of classical semantics. Approximating the reasoning pro-
cess risks to make the learned semantics strongly dependent
on the training data rather than on the given symbolic pro-
gram. Reasoning only in the context of classical semantics
makes the approaches less suited to capture common-sense
reasoning which often requires a non-monotonic semantics.
To date, stable and supported reasoning have not been tack-
led in neural-symbolic literature.

Yet, working in vector spaces offers unique advantages.
Recent advancements in GPU hardware allows for very ef-
ficient computation of linear algebraic operations, such as
matrix and vector multiplication. Linear algebra offers a
variety of algorithms such as matrix decomposition and nu-
merical optimisation that logical inference may benefit from.
In addition, it may facilitate neural-symbolic learning by al-
lowing a systematic method for translating symbolic logic
programs to vector spaces and back. One wonders, then, if
it is possible to extend exact logical inference to continuous
space while maintaining stable and supported semantics.

Work supporting such an approach has recently been
taken by Sakama et al. (2017; 2018). The authors proposed
a matrix representation of definite and normal programs that
preserves their semantics with respect to matrix multiplica-
tion and application of a non-continuous operation. The re-
sulting algorithm allows for the computation of stable mod-
els in a vector space, but the representation is still discrete.
In this work, we lay the foundations for a novel method
to compute supported and stable models in continuous vec-
tor spaces using differentiable operations. We extend the
above approach to continuous vector space while preserv-
ing two-valued semantics, allowing gradient-based methods
for computation of supported and stable models. Our main
contributions are:

• Presenting a discrete matrix representation of proposi-
tional normal program reducts.

• Demonstrating how to extend this discrete representation
to continuous space and proving under what conditions
two-valued semantics is preserved.

• Presenting a novel algorithm for gradient-based computa-
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tion of supported and stable models based on the above
representation.

• Systematic evaluation of this algorithm to show the feasi-
bility over a class of programs containing negative loops,
positive loops and choice.

The novel method we present here can naturally be extended
in the future to support neural-symbolic architectures of rea-
soning and learning in the presence of default negation, and
this is our main motivation.

The structure of this paper is as follows: Section 2 cov-
ers the necessary background and definitions for logic pro-
gramming under supported and stable semantics. Section 3
presents and justifies our method, including a matrix-based
characterization of program reducts, its generalization into
continuous vector space and a gradient-based search algo-
rithm for the computation of a normal program’s supported
models. Section 4 details the results of experiments testing
the ability of the algorithm to compute supported and stable
models for synthetic programs containing both positive and
negative loops. Section 5 covers related work and section 6
concludes the paper.

2 Background
We consider propositional programs over a finite alphabet
Σ = {p1, p2, p3, ...}. The elements of Σ are called proposi-
tional variables or atoms. A normal rule, or clause, r is of
the form:

hr ← br1, b
r
2, ..., b

r
nr , not cr1, not cr2, ..., not crmr (1)

where hr, bri , c
r
j , for 1 ≤ i ≤ nr, 1 ≤ j ≤ mr, are atoms

in Σ. hr is referred to as the head, br1, b
r
2, ..., b

r
nr (resp.

cr1, c
r
2, ..., c

r
mr ) as (collectively) the positive body, Br, (resp.

the negative body, Cr) of the rule. We denote |Br| = nr

and |Cr| = mr. A definite clause r is a normal clause where
mr = 0. A fact is a definite rule where nr = 0. A normal
program P is a finite set of normal rules. If all rules of a
program are definite, it is referred to as a definite program.

The Herbrand Base, BP , of a program P is the set of all
propositional variables that appear in P . We denote |BP | =
N . A Herbrand interpretation I of a program P is a subset
of BP . A model M of a program P is an interpretation of P
where for every clause r ∈ P , if {br1, br2, ..., brnr} ⊆ M and
{cr1, cr2, ..., crmr} ∩M = ∅ then hr ∈ M . A minimal model
M of P is a model of P such that no proper subset of M is
a model of P . A definite program P has exactly one mini-
mal model (van Emden and Kowalski 1976), called the Least
Herbrand Model and is denoted LHM(P ). For example,
the program in equation (2) has the minimal model {p, q}.
Non-minimal models include {p, q, t} and {p, q, r, s}.

p←
q ← p (2)
r ← q, s

t← t

Different (alternative) semantics have been proposed for
normal logic programming and relationships between them
have been investigated (Marek and Subrahmanian 1992).

Supported model and Stable model semantics are among
these.

A supported model M of a program P is a model of P
where for every p ∈M there exists a clause r ∈ P such that
p = hr, {br1, ..., brnr} ⊆M and {cr1, ..., crmr}∩M = ∅. This
definition is equivalent to the characterization of supported
models as classical models of the Clark Completion of a pro-
gram (Clark 1978; Marek and Subrahmanian 1992). In the
program above both {p, q} and {p, q, t} are supported mod-
els. So, the LHM(P ) of a definite program P is a minimal
supported model of P . Consider now this other program:

p← q (3)
q ← p

The empty set is a supported and minimal model, but {p, q}
is also a supported model. This is due to the “positive loop”
arising from the set of clauses {p ← q, q ← p}, so that
{p, q} are deduced to be true only if {p, q} is assumed. One
can formalise the concept of positive loops using the concept
of the atom dependency graph G(P ), defined as a pair of
atoms and arcs:

G(P ) = (BP , {(p, q)|∃r ∈ P, hr = q, p ∈ Br ∪ Cr}) (4)

For an edge (p, q), if p ∈ Br then the edge is referred to as
positive, while if p ∈ Cr then it is negative. A positive loop
is a cycle in G(P ) made of only positive edges. We call a
cycle with a negative edge a negative loop. If we consider
now the following program:

p← not p
p← q (5)
q ← p

the empty set is no longer a model, as it does not satisfy
the first clause, but {p, q} is still a supported model, and
also happens to be minimal, still due to the positive loop, to
which somebody might object. To capture more closely the
notion of a non-monotonic, default semantics, the notion of
stable model semantics is often used instead.

A stable model of a normal program P is defined us-
ing the notion of program reduct (Gelfond and Lifschitz
1988). Given a program P and an Herbrand interpretation
M ⊆ BP , the program reduct PM is constructed from P
by firstly removing any rule whose negative body contains
an atom cri ∈ M , and (2) removing the negative body from
the remaining rules. PM is a definite program and therefore
has a Least Herbrand Model. If LHM(PM ) = M then M
is a stable model. A definite program has exactly one sta-
ble model, its Least Herbrand Model. So for the program
in equation (2), {p, q} is a stable model, and for the pro-
gram in equation (3) the empty set is stable model. In fact,
stable models are both supported and minimal (Marek and
Subrahmanian 1992). The opposite however, does not hold
in general. For example, the program in equation (5) has no
stable model, but {p, q} is a minimal supported model. Pro-
grams may also have multiple stable models. For example,
the program in equation (6) has two stable models: {p}, {q}.

p← not q (6)
q ← not p
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For programs without positive loops, the notion of sup-
ported and stable models coincide (Kaminski and Kaufmann
2012). The problem of deciding whether a propositional
normal program has a stable model is NP-complete (Dantsin
et al. 2001). This is also the case for supported models
(Truszczynski 2011).

Given a program P , the Immediate Consequence operator
is a transformation function TP on Herbrand interpretations
defined as follows:

TP : 2BP → 2BP (7)
TP (I) = {hr | r ∈ P,Br ⊆ I, Cr ∩ I = ∅}

Note that TP I (I) = TP (I) (Marek and Subrahmanian
1992). Supported models of a program P are fixed points
of TP , i.e. TP (M) = M . In this work, we use this fact
to search for supported models by translating the equality
TPM (M) = M into a dynamical system in a vector space.
As all stable models are also supported models, a search for
fixed points of TP is a useful step towards finding stable
models of a given program.

In this paper, similarly to Sakama et al. (2017), we as-
sume our programs satisfy the following Multiple Defini-
tions (MD) condition: for every atom p ∈ BP , there ex-
ists at most one clause r such that nr > 1 or mr > 1.
We refer to such as rule as long, otherwise it is a short
rule. Every normal program P can be transformed in lin-
ear time into a program satisfying the MD condition in
the following way. Suppose h is the head of at least two
rules h ← br11 , b

r1
2 , ..., b

r1
nr1 , not cr11 , not cr12 , ..., not cr1mr1 and

h ← br21 , b
r2
2 , ..., b

r2
nr2 , not cr21 , not cr22 , ..., not cr2mr2 . Intro-

duce a new atom h2 and replace the second rule by two new
rules h2 ← br21 , b

r2
2 , ..., b

r2
nr2 , not cr21 , not cr22 , ..., not cr2mr2

and h ← h2. Repeat this process for all rules and atoms
until the resulting program P ′ satisfies the MD condition.
The MD program P ′ is semantically equivalent to P in the
sense that for every model M of P there exists a model M ′
of P ′ such thatM = M ′∩BP . Conversely, for every model
M ′ of P ′ it holds that M = M ′ ∩BP is a model of P . This
equivalence also holds for supported and stable models.

In the rest of the paper, we will assume the Herbrand base
of a program to also include two special symbols: ⊥ and
>. ⊥ indicates “False” and > indicates “True”. Every in-
terpretation of a program is assumed to contain> and not to
contain ⊥, although when writing an interpretation explic-
itly we omit >. Therefore, the empty interpretation contains
just >. Also, to simplify some of the formulation in the pa-
per, we will not allow the positive body or the negative body
of any clause to be empty. Therefore, clauses with empty
positive body will have Br = {>} and clauses with empty
negative body will have Cr = {⊥}. For technical reasons
(see section 3), we also assume that every program contains
the clause > ← >, which will be omitted when writing the
program explicitly.

In subsequent sections we use the following notations:
Vectors are represented as lower-case letters in bold (v). v
is a column vector and vᵀ is its corresponding row vector.
The entries of a vector are lower-case non-bold letters with
the index appearing in the subscript. So the i-th entry of v is

vi. Many vectors in this paper also have a superscript to dis-
tinguish them from other vectors, such as vp. A superscript
never identifies an index, it is simply a name for the vector.
So vp is a vector and vpi is its i-th entry. Matrices are repre-
sented as capital non-bold letters such as D . As is the case
with vectors, many matrices have a superscript identifying
them, and a subscript represents entry indices such as DP

ij . I
is the identity matrix. The set of real values is R.

3 Method
Let P be a normal program satisfying the MD condition. We
embed P and interpretations in a vector space. To do so, we
first place an ordering over its Herbrand Base BP = {p1 =
⊥, p2 = >, p3, ..., pN}. We embed each element pi as a
vector vpi in RN using a one-hot encoding. In other words,
if {ei}Ni=1 is the standard basis of RN , then vpi = ei. A
set of atoms A is embedded as vA by summing over the
embedding of its elements:

vA =
∑
p∈A

vp (8)

vA can be thought of as a binary vector where an element is
set to 1 if the corresponding atom is in A, otherwise it is 0.
Specifically, for interpretations, we always have vI1 = 0 and
vI2 = 1.

Definite rules can be embedded as N ×N matrices, using
both the vector representation of the head and the body, as
follows:

Dr =
1

nr
vh

r

(vB
r

)ᵀ (9)

We can then embed the program by summing over the
embeddings of each rule:

DP =
∑
r∈P

Dr (10)

This definition coincides with the matrix embedding
given by Sakama et al. (2017). They prove that an appli-
cation of the Immediate Consequence operator for a definite
program can be computed using this matrix in the following
manner. Define:

H1(x) =

{
1 x ≥ 1
0 x < 1

(11)

Then vTP (I) = H1(DPvI), where H1 is applied element-
wise. To see the intuition behind this, consider the case
where there is a rule r such that I ⊆ Br. Then (vB

r

)ᵀvI =
nr. After dividing by nr and applying H1 the resulting vec-
tor has a value of 1 set for the entry of hr as expected.
Otherwise, if I 6⊆ Br then (vB

r

)ᵀvI < nr and in this
case H1 will set the value to 0. Note that the MD condi-
tion is necessary to ensure the correctness of this approach
as multiple long rules defining hr may result in their sum∑

1
nr (vB

r

)ᵀvI > 1 and the value of hr to be set to 1 incor-
rectly.

For a normal clause, we modify the matrix embedding
given in (9) using the concept of program reduct. Given an
interpretation I , the embedding of r with respect to I is:

Dr,I =
1

nr
vh

r

(vB
r

)ᵀ
(1− vI)ᵀvC

r

mr
(12)
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where 1 is a vector where all entries are set to 1. One can
understand the additional term in equation (12) as follows:
(1 − vI)ᵀvC

r

is a count of the number of elements in Cr
that are not in I . It is equal to mr if Cr ∩ I = ∅, else it is
less than mr. This means that the extra term is equal to 1
only if r is in P I . The matrix embedding of r in that case
would be the same as if the rule were definite after having
its negative body removed. If Cr ∩ I 6= ∅, the extra term is
less than one. Since we apply H1 when performing one step
deduction, the rule will have no effect on the result, which is
as if it has been removed from the program (see example 1).
Just as in the case of definite programs, the MD condition is
required to ensure the correctness of the result.

As is the case for definite programs, we can define the
matrix representation of P I as:

DP,I =
∑
r∈P

Dr,I (13)

Proposition 1. Suppose P is a normal program satisfying
the MD condition and let I, J,M be interpretations. Then
J = TPM (I) if and only if vJ = H1(DP,MvI).

Proof. Denote u = H1(DP,MvI). For any p ∈ BP we

have (vp)ᵀu = H1

( ∑
hr=p

(1−vM )ᵀvC
r
(vB

r
)ᵀvI

nrmr

)
. Suppose

J = TPM (I). If p ∈ J , then (vp)ᵀvJ = 1 and there ex-
ists a rule r ∈ PM such that Br ⊆ I and M ∩ Cr = ∅.
Therefore (vB

r

)ᵀvI = nr and (1−vM )ᵀvC
r

= mr which

impliesH1

( ∑
hr=p

(1−vM )ᵀvC
r
(vB

r
)ᵀvI

nrmr

)
= 1 and therefore

(vp)ᵀu = 1. If p 6∈ J then (vp)ᵀvJ = 0. Suppose r is a rule
with hr = p. There are two cases: (1) r is the long rule with
p as its head, then either Br 6⊆ I and hence (vB

r

)ᵀvI < nr

orCr∩M 6= ∅ and hence (1−vM )ᵀvC
r

< mr. Either way

we have (1−vM )ᵀvC
r
(vB

r
)ᵀvI

nrmr < 1. (2) r is a short rule with
p as its head. Then either Br 6⊆ I and hence (vB

r

)ᵀvI = 0
or Cr ∩M 6= ∅ and hence (1− vM )ᵀvC

r

= 0. Either way

we have (1−vM )ᵀvC
r
(vB

r
)ᵀvI

nrmr = 0. Hence for both (1) and

(2) we have H1

( ∑
hr=p

(1−vM )ᵀvC
r
(vB

r
)ᵀvI

nrmr

)
= 0 which

means (vp)ᵀu = 0. All of these together imply u = vJ .
Conversely, suppose vJ = H1(DP,MvI). We know that
vTPM (I) = H1(DP,MvI), which means vJ = vTPM (I).
From the definition of the vector representation of a set of
atoms, this implies J = TPM (I).

Example 1. Consider the following program:

p← not q
q ← not p (14)
r ← p, s, not q, not t
t← p, not s, not r

And let M = {p, r, t}. Then the matrix representation of
PM is given by:

DP,M =



⊥ > p q r s t

⊥ 0 0 0 0 0 0 0
> 0 1 0 0 0 0 0
p 0 1 0 0 0 0 0
q 0 0 0 0 0 0 0
r 0 0 1

4 0 0 1
4 0

s 0 0 0 0 0 0 0
t 0 0 1

2 0 0 0 0


(15)

The entry DP,M
22 = 1 represents the clause > ← > and

DP,M
32 = 1 the fact p← which is in the program reduct PM .

The entries DP,M
53 = DP,M

56 = 1
4 come from the clause r ←

p, s, not q, not t. Since they do not sum to 1, they cannot be
used to derive any atoms, so the clause has effectively been
“disabled” due to t ∈ M . Similarly, the entry DP,M

73 = 1
2

represents the clause t ← p, not s, not r. Again, the entries
do not sum to 1, this time due to r ∈ M . If we take an
interpretation such as I = {p, s} we can compute TPM (I)
by:

H1(DP,MvI) = H1(DP,M



0
1
1
0
0
1
0

) = H1(



0
1
1
0
1
2
0
1
2


) =



0
1
1
0
0
0
0

 (16)

Which is equal to v{p}, and indeed TPM ({p, s}) = {p}.
Note how the entry for > ← > ensures the > remains true
after this operation.

A corollary of proposition 1 shows that a supported model
M satisfies vM = H1(DP,MvM ). However, it is difficult to
solve this equation for vM since H1 is a non-continuous op-
eration. In this paper we explore replacing H1 with a differ-
ential approximation. H1, being a Heaviside Step function,
has several differentiable approximations (Bracewell 2000).
In this work, we choose to focus on one, specifically Sig-
moid, and leave the investigation of other approximations to
future work. We define:

σγ,τ (x) =
1

1 + e
γ−x
τ

(17)

γ is a ‘confidence threshold’ which represents a bound-
ary between values representing ‘True’ (x > γ) and ‘False’
(x < γ). τ is called ‘temperature’. To retain exact infer-
ence when replacing H1 with σγ,τ , we must pick the val-
ues of γ and τ carefully. Suppose p ∈ BP . We denote
rules(p) = {r ∈ P |hr = p} and Rp = |rules(p)|. Define:

np = max
rules(p)

nr mp = max
rules(p)

mr (18)

We must pick γ >
np−1
np

so that partially satisfied posi-

tive bodies do not make p true. Similarly, γ > mp−1
mp

to pre-
vent partially satisfied negative bodies from doing the same.
Now, for two interpretations M, I , consider:

x , (vp)ᵀDP,MvI (19)
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Substituting for DP,M from equation (13) we get:

x =
∑

r∈P :hr=p

(vB
r

)ᵀvI(1− vM )ᵀvC
r

nrmr
(20)

Suppose that the body of r ∈ rules(p) is satisfied (so
that p must be deduced). Then for each b ∈ Br we have
(vb)ᵀvI > γ and for each c ∈ Cr we have (vc)ᵀvM < γ.
Plugging these values in equation (20) we get a lower bound
on x:

x > γ(1− γ) (21)

Therefore, to ensure p is deduced, we would like the fol-
lowing condition to hold:

x > γ(1− γ)⇔ σγ,τ (x) > γ (22)

Unfortunately, this cannot be satisfied in general. Even
the case where x > γ > γ(1−γ) only guarantees σγ,τ (x) >
1
2 . To remedy this, we introduce two further parameters
γ⊥, γ> such that 0 < γ⊥ < γ < γ> < 1. γ⊥ is an up-
per bound on false values that variables can take. γ> is a
lower bound on true values. Plugging these new parameters
into equation (20) we get:

x > γ>(1− γ⊥) (23)

And our new condition is:

x > γ>(1− γ⊥)⇔ σγ,τ (x) > γ> (24)

This is achieved when:

τ <
γ − (1− γ⊥)γ>

ln( 1
γ>
− 1)

(25)

Note that in order for τ to be greater than 0 in equation (25)
we also require γ> > 1

2 and γ < (1− γ⊥)γ>.
We now turn our attention to the case where none of the

bodies of rules(p) is satisfied, so that p must be assigned a
value less than γ⊥. Consider the contribution of some rule
r ∈ rules(p) to x. In the worst case, all but one of the literals
in its body are true. If this literal is positive, then the contri-

bution of r to x is less than
n1
p−1+γ

⊥

n1
p

. If it is negative, this

contribution is upper bounded by
m1
p−γ

>

m1
p

. We can therefore
put an upper bound on the value of x as follows:

x <
∑

r∈rules(p)

max{
nrp − 1 + γ⊥

nrp
,
mr
p − γ>

mr
p

} (26)

Note that since at most one of the rules of rules(p) is long,
we have nrp = 1 and m1

p = 1 for all but (perhaps) one of
the summands. Denoting the right hand side of the above
inequality as x⊥, we now require:

x < x⊥ ⇔ σγ,τ (x) < γ⊥ (27)

This is satisfied when:

τ <
γ − x⊥

ln( 1
γ⊥
− 1)

(28)

To ensure τ > 0 in equation (28), we require both γ > x⊥

and γ⊥ < 1
2 . When all the above conditions are met, ex-

act inference in continuous vector space is achieved through
matrix multiplication and application of the Sigmoid oper-
ation. We formalise this idea using the following notion of
semantic equivalence between vectors.
Definition 1. Suppose v,u ∈ [0, 1]N and let 0 < γ⊥ <
γ> < 1. We say v and u are semantically equivalent if for
all 1 ≤ i ≤ N :

1. vi > γ> if and only if ui > γ>.
2. vi < γ⊥ if and only if ui < γ⊥.

In such a case we write v ∼γ
>

γ⊥
u.

A vector v in [0, 1]N can therefore be semantically equiv-
alent to vI for some interpretation I , essentially represent-
ing the same interpretation. Note that if for some entry of
v we have γ⊥ < vi < γ> then it does not represent any
interpretation.
Proposition 2. Let P be a normal program and I,M be
interpretations. Let 0 < γ⊥ < γ < γ> < 1 and τ > 0 such
that:

• γ > max
{
np−1
np

,
mp−1
mp

}
• γ> > 1

2

• γ⊥ < 1
2

• γ < (1− γ⊥)γ>

• γ > x⊥

• τ < min

{
γ−(1−γ⊥)γ>
ln( 1

γ>
−1) , γ−x⊥

ln( 1

γ⊥
−1)

}
(np, mp, x⊥ as defined above). Suppose that for a vector

u ∈ [0, 1]N we have u ∼γ
>

γ⊥
vI . Then H1

(
DP,MvI

)
∼γ
>

γ⊥

σγ,τ
(
DP,Mu

)
.

Proof. (Sketch) The analysis above demonstrated the con-
dition under which exact inference is maintained. If these
are satisfied, the result follows immediately from proposi-
tion 1.

We are now ready to propose a gradient-based method for
computing supported models of a normal program. First, we
extend the definition of a matrix representation of a program
reduct to a general vector v in RN as follows:

DP,v =
∑
r∈P

1

nr
vh

r

(vB
r

)ᵀ
(1− v)ᵀvC

r

mr
(29)

Next, given a normal program P satisfying the MD condi-
tion, we define the following mapping:

F (v) = σγ,τ (DP,vv)− v (30)

From Brouwer’s fixed-point theorem, one can show that for
a supported model M there exists a root of F that is se-
mantically equivalent to vM . Therefore, we can compute
supported models of P by searching for roots of F . To do
so, we employ Newton’s method. This is formalised in Al-
gorithm 1.
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Algorithm 1 Newton Deduction

Require: ε > 0, MaxK ≥ 1, 0 < γ < 1, τ > 0
Pick an initial vector:

v0 = [0 1 p3 . . . pN ]
ᵀ

repeat
Solve Jvk(vk+1 − vk) = vk − σγ,τ (DPvk · vk)

until ||vk+1 − vk||2 < ε or k ≥MaxK
if k < MaxK then

return vk

else
return ‘FAIL’

end if

Newton’s method for finding roots of a mapping such as
F (v) proceeds by first picking an initial vector v0. At each
iteration k the Jacobian of F at point vk, denoted Jvk , is
computed and used to find the next vector vk+1. The update
rule is given by:

Jvk(vk+1 − vk) = −F (vk) (31)
In our case, the Jacobian at a general point v is given by:

Jv =
1

τ
diag

(
σγ,τ (DP,vv)× (1− σγ,τ (DP,vv))

)
· (32)

·
(
DP,v −

∑
r∈P

vh
r

(vB
r

)ᵀv(vC
r

)ᵀ

nrmr

)
− I

where× indicates element-wise multiplication, 1 is a vector
where all entries are set to 1, and diag(v) is a matrix with
the entries of v along its main diagonal.

For different initial vectors v0, the algorithm will return
different results. We always set v1 = 0 and v2 = 1 repre-
senting that ⊥ is false and > is true, respectively. For the
initial values of v3, ..., vN , we consider here two methods:
• Uniform sampling - The values are picked uniformly

from [0, 1].
• Semantic sampling - The values are picked uniformly

from [0, γ⊥]∪ [γ>, 1]. In other words, the initial vector is
always semantically equivalent to an interpretation.
Newton’s method does not guarantee convergence, which

is why we limit the number of iterations to MaxK before
declaring non-convergence. When convergence occurs, the
discovered root vk is returned. However, this root is not nec-
essarily semantically equivalent to an interpretation. If it is
semantically equivalent to vM for some interpretation M ,
it is guaranteed from proposition 2 that M is a supported
model. When a root semantically equivalent to an interpre-
tation is returned, we consider it a successful case for the
algorithm. In addition, we can easily check if the discovered
supported model is stable by computing the Least Herbrand
Model of the program reduct.

4 Experiments
To test the proposed method, an initial implementation has
been made. At present, efficiency is not a goal of the imple-
mentation, and therefore we do not test its time performance.

Instead, we focus on the rate of success for computing sup-
ported and stable models under various conditions. We de-
fine the rate of success for a given program to be the num-
ber of times we applied Algorithm 1 for the program and
converged to a root semantically equivalent to a supported
model, divided by the total number of attempts. We begin
by considering a simple negative loop:

p← not q (33)
q ← not p

The program has four Herbrand interpretations: ∅, {p},
{q}, {p, q}. Two of these are both supported and stable mod-
els, namely {p} and {q}. Simply guessing an interpretation
and checking if it is stable has a 50% success rate. To test
the rate of success of finding a supported or stable model in
this case, we repeatedly applied Algorithm 1. We tested for
200 different values of τ from just above 0 to 0.179 (which is
slightly above the maximum allowed temperature value) in
equal intervals. For each τ , we applied the algorithm 10,000
times, with randomly selected values of v0, and calculated
the portion for which it converged to either {p} or {q}. We
repeated this experiment separately for both uniform and se-
mantic sampling.

From Figure 1a, one can see that the rate of success ap-
proaches 50% at the limit of τ reaching zero, for both meth-
ods of sampling. This behaviour can be understood in the
following way: When τ approaches zero, the Sigmoid be-
gins behaving like a Heaviside function such as H1. The
computation is therefore changing from a continuous nature
to discrete. In other words, in the limit where τ goes to zero,
the Sigmoid implements TP , and the algorithm behaves like
a purely symbolic guess and check. Hence, the success rate
approaches 50%.

As τ increases, the gradient information helps to direct
the search and the rate of success increases, peaking at 89%
for uniform sampling and near 100% for semantic sampling
around τ = 0.087. It is interesting that the increase is de-
layed for the semantic sampling case, not showing any im-
provement for τ < 0.07. This is due to the approximation of
TP being more pronounced for vectors semantically equiva-
lent to interpretations, and providing weaker gradient infor-
mation at low temperatures.

For τ = 0.087, it is interesting to ask what went wrong
in the 11% of the cases where a stable model was not found,
and why semantic sampling does not seem to have this prob-
lem. As it turns out, for cases where uniform sampling
failed, the algorithm always converged to the same root,
[0, 1, 0.5, 0.5]. This root is not semantically equivalent to
any interpretation, hence it is still considered a failure case
for the algorithm. We do not consider it in this work, but
it is possible this root still holds some semantic meaning
of the program. For instance, it may have a link to the
Well-Founded Model of the program (Van Gelder, Ross, and
Schlipf 1991). For now, however, we simply consider it an
undesired output of the algorithm. The set of initial vectors
that result in converging to [0, 1, 0.5, 0.5] is mostly clustered
around the root. Semantic sampling therefore avoids most
of these points, improving the chance of success.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

64



(a) One negative loop. (b) N negative loops. (c) N negative loops and within 1 second.

Figure 1: Success rate of converging to a supported model with negative loops. (a) A single negative loop for varying temperatures. (b) N
negative loops for τ = 0.087. (c) N negative loops for τ = 0.087 and when given as many attempts as possible within 1 second.

The maximum value of τ for which proposition 2 holds
is around 0.173. At that point we see a sudden drop in the
success rate to 0. In other words, the conditions imposed
on τ not only guarantee the correctness of proposition 2 but
are also important to converge to a meaningful fixed point.
The main takeaway from this experiment is that both the
temperature and the method of sampling have a significant
impact on the performance of Algorithm 1.

Next, we consider how the algorithm fares as negative
loops are added to the program. Consider a program with
N pairs of clauses of the form:

pi ← not qi (34)
qi ← not pi

For each pair, we have an 89% chance of success with uni-
form sampling and an optimal choice of τ . Since each pair
is independent of the rest, one can think of their embedded
semantics as existing in independent two-dimensional sub-
spaces. Consequently, the chance of finding a stable model
is equivalent to tossing N coins, each with 89% chance of
landing on heads, and observing N heads. We confirm this
intuition experimentally, as shown in Figure 1b. In contrast,
for semantic sampling, the high probability of success im-
plies a very slow drop asN increases. This is also confirmed
in Figure 1b.

So far, we have only considered the chance of success
when applying Algorithm 1 once. But we can also repeat-
edly apply the algorithm on the same program, for different
initial vectors, until a supported/stable model is found. Con-
sider, for instance, a scenario in which we are given 1 second
to find a supported/stable model, and within that second we
are allowed to apply Algorithm 1 as often as we can. We per-
form this experiment for uniform sampling on a computer
with the following specifications:

• CPU: Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz.
• Memory: 15.4 GB RAM.
• Implementation Language: Python 3.6.9.

Note that the implementation is single-threaded. As can
be seen from Figure 1c, even with an inefficient implementa-
tion we can achieve a perfect success rate for up to 32 pairs.

Past 32, we see a fast drop in performance. This can be
understood when considering the chance of a success as N
increases. For N pairs and K applications of the algorithm,
the chance of success is given by 1 − (1 − 0.89N )K . For
a large enough K, one can retrieve the graph in Figure 1c.
Therefore, as N increases one must also increase K by al-
lowing further time.

We now turn our attention to the case where programs
contain both positive and negative loops. As before, we first
addN negative loop pairs of the form in equation (34) to the
program. We then add M pairs of definite clauses using the
following process: We select two indices 1 ≤ i, j ≤ N such
that i 6= j and add to the program a pair of clauses chosen
randomly from one of the following forms:

pi ← pj pi ← qj qi ← pj qi ← qj (35)
qj ← qi pj ← qi qj ← pi pj ← pi

We repeat this selection process M times. Note that each
time we may select a different form for the pairs. As M
becomes larger, positive loops will begin to appear more of-
ten in the program. This process will therefore generate pro-
grams containing many positive loops without enforcing any
kind of structure over these loops.

We generated 100 different programs for several values
of N and M . When M < N , many atoms only appear in
negative loops. If the atoms in a negative loop do not appear
anywhere else in the program, we remove the loop. For each
program we applied Algorithm 1 100 times. We report the
average success rate for each case in Table 1. Results for
semantic sampling were very similar and are not reported
here.

From the table we see the clear effect of positive loops
on the success rate. Positive loops help the system discover
supported models. However, they have the opposite effect
on stable models. As the number of positive loops increases,
the number of supported models that are not stable also in-
creases, hence stable models become more difficult to find.

Finally, we consider the case where a choice between
multiple options is required. Suppose we have N options,
represented by the N variables p1, p2, ..., pN , and we are
required to select only one. This can be modelled by the
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N M Success rate Success rate
(supported) (stable)

10 5 70% 69%
10 84% 66%
20 99% 7%

40 20 46% 44%
40 68% 39%
60 88% 13%

Overall 76% 40%

Table 1: Success rate with uniform sampling for programs with
positive and negative loops.

Figure 2: Success rate for N choices under various settings. Short
stands for the representation of choice as a set of short clauses.

following set of N clauses:

p1 ← not p2, not p3, ..., not pN
p2 ← not p1, not p3, ..., not pN (36)

...
pN ← not p1, not p2, ..., not pN−1

Then {p1}, {p2}, ..., {pN} are the supported (and stable)
models of the program. When N = 2 we retrieve the case
of a single pair.

Results for the case N = 2 to 9 appear in Figure 2 with-
out the label “short”. As can be seen, the success rate falls
quickly as the number of choices increases. This is a re-
sult from the conditions for τ imposed by equations (25)
and (28). As the length of rules increases, τ must be made
smaller to guarantee exact inference holds. For a very small
τ , the gradient information is insufficient, hurting the chance
of success. Clearly, we must prefer representing our pro-
grams using shorter rules.

To accommodate this, we transform the problem of
N choices into a sequence of choices between two
atoms. We divide the variables p1, p2, ..., pN into pairs
(p1, p2), (p3, p4), ... and for each i pair we create a new
atom ci representing a choice between the two. We can

Figure 3: The binary tree corresponding to the encoding of N = 6
choices using short clauses only.

encode these choices using each pair and its corresponding
new atom as follows:

p1 ← c1, not p2
p2 ← c1, not p1
p3 ← c2, not p4 (37)
p4 ← c2, not p3

...

Note that the number of new atoms is bN2 c. We then take the
new atoms c1, c2, ... and possibly pN ifN is odd, and encode
a choice among them using the same process. By repeating
this process, we are eventually left with only two atoms, for
which we can encode a choice using a regular negative loop
as in equation (33).

This encoding is best visualised using a binary tree struc-
ture. For example, for N = 6, the encoding above results
in the binary tree depicted in figure 3, which corresponds to
the program:

p1 ← c1, not p2 p2 ← c1, not p1
p3 ← c2, not p4 p4 ← c2, not p3
p5 ← c3, not p6 p6 ← c3, not p5 (38)
c1 ← c4, not c2 c2 ← c4, not c1
c3 ← not c4 c4 ← not c3

In this way, we successfully encoded a choice among N
variables using only short rules, and by adding only O(N)
new variables and clauses. It is easy to verify that the stable
models of the new representation correspond to stable mod-
els of the original, once the auxiliary atoms are removed.
The drawback to this representation is that it does not guar-
antee an equal probability of finding each of the stable mod-
els. Figure 2 shows the results with this representation, un-
der the label “Short”. As can be seen, with a representation
that uses short rules, the success rate scales far better. With
both representations, there does not seem to be a significant
difference between uniform and semantic sampling.

5 Related Work
Answer set solvers, such as smodels (Simons 2000) and
clasp (Kaminski and Kaufmann 2012) search for stable
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models of a normal program using SAT-solving techniques.
For instance, clasp applies a variant of Conflict-Driven
Clause Learning (Marques-Silva, Lynce, and Malik 2009),
where conflicts during search are analyzed for their underly-
ing causes to facilitate more efficient backtracking.

Research into differentiable inference in logic programs is
usually done within the context of neural networks. Exam-
ples include relational learning in knowledge graphs (Cohen
2016; Kazemi and Poole 2017; Minervini et al. 2019), in-
ducing logical rules from examples (Evans and Grefenstette
2017; Payani and Fekri 2019) or combining statistical ma-
chine learning with logic-based deduction (Manhaeve et al.
2018; Dai et al. 2019). Real-valued semantics for differ-
entiable learning have been suggested (Serafini and d’Avila
Garcez 2016). Unlike such approaches, we maintain two-
valued semantics and only use continuous representations
as a means towards converging to a desired two-valued in-
terpretation. We do not require learning, either.

The matrix representation of logic programs was first in-
troduced by Sakama et al. (Sakama, Inoue, and Sato 2017;
Sakama et al. 2018; Nguyen et al. 2018). In this work
we build upon their method for computing the semantics
of a definite program by extending it in a novel way to
the larger class of normal programs. While they present a
method for computing stable models in their work, it in-
volves a translation of normal to definite programs plus a
non-differentiable operation, thus, excluding gradient-based
search. More recently, the authors considered the computa-
tion of 3-valued models of a program’s completion in vector
spaces as a first step towards computing supported models
(Sato, Sakama, and Inoue 2020), although the method is also
non-differentiable. Further non-differentiable tensor-based
characterizations of logic programming have been consid-
ered for datalog programs (Sato 2017) and abduction (Sato,
Inoue, and Sakama 2018; Aspis, Broda, and Russo 2018).

Blair et al. (1999) consider an extension of two-valued
logic into continuous vector space by means of a polyno-
mial representation of a given formula. This polynomial can
be found by solving a linear system of equations constructed
from the formula’s truth table. Given a set of normal clauses
and their polynomial representation, a continuous dynamical
system is constructed such that its fixed points correspond to
supported models. These models are then searched for using
gradient descent. In contrast, our dynamical system relies on
a second-degree polynomial and a Sigmoid. The usage of a
Sigmoid is critical, as it allows us to define a two-valued se-
mantics over continuous spaces in a meaningful way, which
Blair et al. cannot do.

More recently, gradient-based methods have been consid-
ered for logical inference by Sato and Kojima (2019). Their
work focuses on abduction, SAT solving and probabilistic
inference. Computing supported models is discussed briefly
for a restricted class of Datalog programs but the approach
is not fully demonstrated or proven. Our approach, on the
other hand, focuses on Answer Set Programs. It is our belief
that computation in vector spaces has the potential of allow-
ing for ASP solving for large-scale programs, although this
is not the focus of this paper.

6 Conclusion
We presented a new method for computing supported and
stable models of a propositional normal program, using
a gradient-based search algorithm in continuous vector
spaces. The method, which relies on a vector representa-
tion of interpretations and a matrix representation of pro-
gram reduct, was proven to maintain the semantics of the
original program under appropriate conditions. Experiments
demonstrated the feasibility of the approach, as well as the
importance of selecting an appropriate distribution for initial
vectors, depending on the type of program, to improve the
chance of converging to a supported model. The importance
of the problem encoding with respect to the length of clauses
was also demonstrated.

The results presented in this paper open new possibili-
ties for facilitating neural-symbolic learning and inference.
More efficient solving of ASP or SAT is also an interesting
goal that we do not take at present, but may be achieved by
developing this method further. In particular, alternative ap-
proximations of H1 such as tanh can be considered. Exper-
imentation aimed at establishing good choices of initial vec-
tor distributions under various conditions will improve its
empirical performance. The method is easily implementable
to be run on GPU hardware, allowing many attempts to be
carried out in parallel. In addition, both the matrix repre-
sentation of program reducts and the Jacobian tend to be
highly sparse matrices. An implementation using an effi-
cient sparse representation will therefore prove highly ben-
eficial. Finally, less expensive optimisation algorithms such
as Quasi-Newton methods may prove effective as well.
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