Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

Seq2KG: An End-to-End Neural Model for Domain Agnostic
Knowledge Graph (not Text Graph) Construction from Text

Michael Stewart and Wei Liu

The University of Western Australia
michael.stewart @research.uwa.edu.au, wei.liu@uwa.edu.au

Abstract

Knowledge Graph Construction (KGC) from text unlocks in-
formation held within unstructured text and is critical to a
wide range of downstream applications. General approaches
to KGC from text are heavily reliant on the existence of
knowledge bases, yet most domains do not even have an
external knowledge base readily available. In many situa-
tions this results in information loss as a wealth of key in-
formation is held within “non-entities”. Domain-specific ap-
proaches to KGC typically adopt unsupervised pipelines, us-
ing carefully crafted linguistic and statistical patterns to ex-
tract co-occurred noun phrases as triples, essentially con-
structing text graphs rather than true knowledge graphs. In
this research, for the first time, in the same flavour as Col-
lobert et al.’s seminal work of “Natural language process-
ing (almost) from scratch” in 2011, we propose a Seq2KG
model attempting to achieve “Knowledge graph construction
(almost) from scratch”. An end-to-end Sequence to Knowl-
edge Graph (Seq2KG) neural model jointly learns to generate
triples and resolves entity types as a multi-label classification
task through deep learning neural networks. In addition, a
novel evaluation metric that takes both semantic and struc-
tural closeness into account is developed for measuring the
performance of triple extraction. We show that our end-to-
end Seq2KG model performs on par with a state of the art
rule-based system which outperformed other neural models
and won the first prize of the first Knowledge Graph Contest
in 2019. A new annotation scheme and three high-quality
manually annotated datasets are available to help promote this
direction of research.

1 Introduction

Automatic construction of knowledge graphs directly from
text has attracted considerable attention from the research
community in recent years (Wu et al. 2019). Knowledge
graphs encapsulate valuable information, typically extracted
from large collections of textual data, and hence critical in
providing background semantic knowledge in a variety of
tasks such as question answering and knowledge discov-
ery (Kertkeidkachorn and Ichise 2017; Stewart et al. 2017),
and more recently in vision and language tasks such as auto-
matic image captioning (Zhou, Sun, and Honavar 2019) and
video description (Vasile and Lukasiewicz 2018).
Knowledge graph construction (KGC) from text tradi-
tionally involves two primary stages. Information extrac-
tion yields triples that identify subject and object entities,

748

connecting them through relations (Allahyari et al. 2017).
Most systems handle this task using a pipeline of open in-
formation extraction, named entity recognition and relation
extraction (Martinez-Rodriguez, Lopez-Arevalo, and Rios-
Alvarado 2018). Entity linking then resolves the entities and
relations to concepts in a knowledge base such as DBpe-
dia (Mehta, Singhal, and Karlapalem 2019).

This traditional approach to constructing a knowledge
graph from entities and relations linked to concepts in a
knowledge base presents two key issues. Firstly, many
domains feature entities that do not exist in a knowledge
base (Chen et al. 2018), and often cannot be labelled us-
ing standard named entity classes. Secondly, a wealth of in-
formation is lost when important information is held within
phrases that do not conform to a specific known entity class.
Take the following as an example:

Retailers in Phoenix , Ariz., say P&G ’s new powdered
detergent — to be called Cheer with Color Guard — will
be on shelves in that market by early November.

Traditional KGC techniques would only capture the fact
that Cheer with Color Guard is a product of P&G. No infor-
mation is captured on the fact that it is a detergent or that it
will be released in early November, as shown in Figure 1.

We therefore argue that in order to provide a general, do-
main agnostic solution for KGC from text, it is beneficial
to approach KGC without the assumption of a knowledge
base. The head and tail of each triple should be comprised
of any terms carrying important information, regardless of
whether they are named entities or not. The attributes of
each node (i.e. the entity type) as well as the relations can
be determined through the text itself, alleviating the need
for a knowledge base. These attributes serve to encapsulate
the knowledge held within the text, differentiating our ap-
proach as true knowledge graph construction as opposed to
text or data graph extraction. Our method is generalisable
to a range of domains and excels when important informa-
tion is held within “non-entities” or when a domain-specific
knowledge base is not available.

Existing text graph construction systems, despite the sim-
ilarity with ours in their knowledge-base free nature, need
complex pipelines purposely built for the target domains
such as education (Chen et al. 2018), geoscience (Wang et
al. 2018), and industry-specific news (Stewart, Enkhsaikhan,

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

powdered
detergent

P&G

[ORG,

ORG/COMPANY] [SUBSTANCE]

called

early
November

Cheer with

on shelves in Color Guard

[PRODUCT]

[TIME]

Figure 1: A knowledge graph constructed from text that encapsu-
lates useful information without requiring an external knowledge
base. Node attributes (i.e. entity type) are denoted with square
brackets. Light blue indicates that a node would not appear when
traditional KGC from text is applied.

and Liu 2019). They are hence not domain agnostic. Fur-
thermore, text graphs do not store any node attributes, mean-
ing they cannot be considered true knowledge graphs. Pre-
dicting triples and node attributes from text directly using
deep learning would offer a solution to these issues, but there
is not yet any suitable data format for training an end-to-end
neural model to directly predict a set of triples and their as-
sociated attributes from text.

Another key issue in existing KGC from text research is a
lack of evaluation metrics for automatically evaluating the
quality of triples produced by a KGC system. State-of-
the-art KGC research employs qualitative manual evalua-
tion (Mehta, Singhal, and Karlapalem 2019) as the devel-
opment of graph evaluation metrics is still an ongoing area
of research.

In light of these issues we first introduce a data anno-
tation scheme that enables the training of end-to-end deep
learning models for knowledge graph construction from un-
structured text. The significance of this work is in the
same flavour as “Natural language processing (almost) from
scratch” (Collobert et al. 2011). So long as the training data
is prepared according to our proposed annotation scheme,
any sequence labelling model can be used to construct
knowledge graphs directly from text, almost from scratch.

Then we present two neural models: a filtering model, and
an end-to-end model. The end-to-end model takes text as a
sequential input and jointly performs triple extraction and
entity typing to determine node attributes, which is capable
of turning a sequence into a knowledge graph (Seq2KG).
The triples are considerably more fine-grained and applica-
ble to a wide variety of domains when compared to named
entity recognition.

Existing graph evaluation metrics typically target either
structure or semantic similarity, but hardly both. For ex-
ample, You et al. (2018) use maximum mean discrepancy

749

to measure structural similarity, while Hawes and Kelleher
(2004) combine relation-based and feature-based alignment
to measure for measuring semantic similarity. For fairer,
stricter and simple performance evaluation, we introduce
a new evaluation measure Embedding Similarity (ESim)
based on random walks and averaging word embeddings for
KG comparison. ESim captures both graph-level structural
information as well as word-level semantic information.

Finally, we release three high quality annotated KGC
datasets to the research community, one of which is also
labelled with entity types.

2 Related Work

Knowledge graph construction from text has been ap-
proached from a few different perspectives. The majority
of KGC systems construct true knowledge graphs, but some
more domain-specific KGC systems instead construct text
graphs. The primary difference between the two is that the
knowledge graph captures some form of knowledge related
to its nodes or relations (Wu et al. 2019), whereas text graphs
do not. This knowledge capturing is performed by linking
each concept in the graph to an entity or relation in an exist-
ing knowledge base.

The majority of KGC systems are built to handle clean,
public domain corpora such as news reports and wiki arti-
cles. The system proposed by (Mehta, Singhal, and Karla-
palem 2019) is a pipeline comprising named entity recog-
nition, coreference resolution, triple extraction, and predi-
cate mapping. Named entity recognition is used as a way
to map entity mentions in text to their corresponding con-
cepts in DBPedia. Triple extraction is performed using OL-
LIE (Schmitz et al. 2012), an Open Information Extraction
(OpenlE) method. A novel method is presented for predicate
mapping, whereby the relation phrases are mapped to DBPe-
dia concepts using a hierarchical multi-stage siamese recur-
rent network. The vast number of triples produced by Ope-
nlE requires the candidate triples to be filtered with the aid
of the knowledge base. Consequently, the coverage of the
entities is limited by the number of concepts in the knowl-
edge base. Potential new concepts cannot be added.

Other pipeline-based systems feature vastly different or-
ganisations of components. The pipeline introduced by
(Martinez-Rodriguez, Lopez-Arevalo, and Rios-Alvarado
2018) comprises sentence segmentation, part of speech tag-
ging, syntax tree parsing, entity recognition and linking, re-
lation extraction, and triple filtering. The systems employs
OpenlE as a means to extract relations, rather than entire
triples, ensuring that the heads and tails of each triple are
entities present in a knowledge base. NOUS (Choudhury
et al. 2017) uses a distant supervision approach to filter the
triples produced by OpenlE prior to mapping the predicates
to entries in a knowledge base, creating a new entry if the
node or relation does not yet exist. T2KG (Kertkeidkachorn
and Ichise 2017), on the other hand, comprises a pipeline
of entity mapping, coreference resolution, triple extraction,
triple integration, and predicate mapping. The entity map-
ping stage identifies named entities in the text and maps
them to existing concepts in a knowledge base, creating new
concepts if they are not present. Triples are constructed via

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

OpenlE, and the predicate mapping stage maps the relations
of each triple to existing predicates in a knowledge base.

In less ubiquitous domains it is rare for KGC systems to
link nodes and edges to concepts in an existing knowledge
base because no such knowledge base exists. These sys-
tems hence construct text graphs, linking one entity or noun
phrase to another via a relation. (Wang et al. 2018) con-
struct text graphs from Chinese geoscience literature. The
nodes and edges in the graph are comprised of noun phrases
that are segmented using a conditional random field (CRF).
(Chen et al. 2018) target the education domain, extracting
education-related concepts (as opposed to entities) as nodes
using a CRF. Relations are extracted using association rule
mining. (Stewart, Enkhsaikhan, and Liu 2019) construct text
graphs from industry-specific news using a complex pipeline
comprising many NLP techniques such as tokenisation, part-
of-speech (POS) tagging, named entity recognition, corefer-
ence resolution, and noun/verb phrase chunking.

In summary, it is common for KGC systems to link enti-
ties and relations to concepts in a knowledge base when con-
structing a KG from a domain whereby such a knowledge
base is readily available. This is not possible in domain-
specific applications, however. Every system is built from
a pipeline designed to handle a specific domain, but there
does not yet exist a KGC system capable of encapsulating
knowledge from a wide variety of domains.

3 Models for Domain-independent
Knowledge Graph Construction from Text

We hereby introduce three models' for knowledge graph
construction: a rule-based method and two neural models.
The goal of each method is to produce a set of triples that
represent a document in the form of a knowledge graph. For
example, if given the following document:

We’ve known for some time now that Lamborghini is
making an SUV. Called the Urus , it is rumored to be
powered by a twin-turbo 4.0-liter V8 generating 600
hp.

Our models aim to produce the triples:

e (Lamborghini, making, SUV)

e (SUV, Called, Urus)

e (Urus, powered by, twin-turbo 4.0-liter V8)
o (twin-turbo 4.0-liter V8, generating, 600 hp)

In addition, our End-to-End Seq2KG model also labels the
entity types of the head and tails of each triple, assigning
[ORGANISATION, ORGANIZATION/COMPANY] to
Lamboghini, [PRODUCT, PRODUCT/CAR] to Urus, and
so on. In this way it is able to capture knowledge directly
from text without requiring an external knowledge base.
The embedding layers of the deep learning-based mod-
els use BERT (Devlin et al. 2018) to encode the input se-
quences. BERT achieves strong performance on a wide vari-
ety of NLP tasks and is able to encapsulate contextual infor-

"The source code of each model is available on GitHub:
https://github.com/Michael-Stewart-Webdev/Seq2KG

750

—

Text Cleaning Text Processing

Coreference

Triple Mapping Resolution

Chunking

Triple Filtering Article Removal

Figure 2: A diagram of the core components of our rule-based
method for triple extraction.

mation more effectively than many other embedding tech-
niques such as Word2Vec (Mikolov et al. 2013) as it gener-
ates embeddings for each token with respect to the context
in which it appears.

3.1 Rule-based Model

The rule-based model, first introduced as a method for
extracting triples from automotive and catering news
datasets (Stewart, Enkhsaikhan, and Liu 2019), uses a
pipeline-based approach in order to convert a document into
a set of triples. It comprises seven distinct stages, as shown
in Figure 2, each of which may be adjusted to suit a partic-
ular domain. This rule-based pipeline outperformed other
neural models at the time and won the first prize of 2019
ICDM/ICBK Knowledge Graph Contest?>. Therefore, we
use it as a pseudo-upperbound to match other models’ per-
formance against. In other words, a neural model without
domain restriction achieving similar or better performance
than this rule-based model will be considered as the new
state of the art.

Text cleaning: Text data is cleaned to manage special
characters such as hyphen and quotation marks and also
break sentences joined together with no space between them.

Text processing: The text is processed through tokenisa-
tion, POS tagging, entity recognition and dependency pars-
ing steps using SpaCy?>.

Chunking: Noun phrases (NPs) and verb phrases (VPs)
are chunked. Noun chunks are phrases that have a noun and
the words describing the noun. For example, an American
multinational automaker and a suburb of Detroit. Action
words are also chunked so that verb phrases can contain
verbs, particles and/or adverbs that represent more mean-
ingful relations between entities. For example, was founded
by and incorporated on.

Coreference Resolution: A list of coreferenced items is
created using NeuralCoref*. For our example the one coref-
erence item is identified, i.e. the term i referring to Urus.

*http://icdm2019contest.mlamp.cn/
*https://spacy.io/
*https://github.com/huggingface/neuralcoref

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

Algorithm 1 Chunking of noun phrases and verb phrases

1: procedure CHUNKPHRASES(document)

2: for each sentence in document do
> Chunk noun phrases (NPs) and tag as ENTITY
3: chunk NPs > NP
4: chunk '('+NP+')’ > (NP)
5: chunk NP 4/ of’ + NP > NP of NP
6: chunk NP + NP > NP NP
> Chunk verb phrases and tag as VERB
7: chunk VERB + PART > verb + particle
8: chunk VERB + ADP > verb + adpositions
9: chunk ADP + VERB 1 adpositions + verb
10: chunk PART + VERB > particle + verb
11: chunk VERB + VERB > verb + verb
12: return document > Document with phrase chunks

1
¥

’ Prediction layer ‘
f
’ Fully-connected feed forward layer(s) ‘

A
E RT | | st] | SERT ‘
A A A
’ “Urus” ‘ ’ “powered by” ‘ ’ “twin-turbo 4.0-liter V8” ‘

1 ‘ D

’ Triple extraction system ‘

Figure 3: The filtering model. ® denotes concatenation.

Coreference items are resolved on the triples by replacing
the original phrase with the referred phrase for each item.
For example, it will be replaced by Urus.

Triple Mapping: Triples are created from the sentences
in head, relation, tail format using Algorithm 2. First, head
and tail entities are extracted with their relations from the
sentences and creates a list of triples. Second, a graph is
created from those triples to uncover the relations among
named entities in separate sentences. Based on the relations
of prepositions such as in, on, at, more triples are created
to provide more links between named entities in the graph.
Finally, the triples created by these two steps are joined to
make the full list of triples for the given text.

Triple Filtering: To improve the quality of the triples, the
filtering is performed to remove any triple with a stop word
as a head entity. The stop words include NLTK stop words,
names of days (Monday to Sunday) and names of months
(January to December).

Article Removal: To clean the entities we removed some
tokens including articles (e.g., a, an, the), possessive pro-
nouns (e.g., its, their) and demonstrative pronouns (e.g., that,
these) from the head and tails of each triple.

3.2 Filtering Model

The filtering model, as shown in Figure 3, is a deep-learning
based model that aims to take the output of an existing triple
extraction system and identify the set of valid triples con-

751

tained within. It accomplishes this by classifying each triple
into one of two classes (valid and invalid) using a fully con-
nected feed forward neural network, which can be replaced
by any binary classifier. For example, if given the triples
(Urus, revealed, twin-turbo 4.0-liter V8), (Urus, powered
by, twin-turbo 4.0-liter V8), the model should classify the
first triple as invalid (i.e. class 0), and the second as valid
(class 1). All of the triples labelled as valid by the model
will form the set of output triples.

Input triples During both training and evaluation, the in-
put triples to the model are generated using a greedy triple
extraction algorithm, which is a pipeline comprising part of
speech tagging and regular expression-based noun/relation
phrase chunking. These tasks are performed using NLTK?>.
Triples are constructed from each sentence by enumerating
over all combinations of (noun phrase 1, relation phrase,
noun phrase 2) up to a certain distance threshold. This
method provides the model with a large sampling of triples
with which to filter and identify the valid triples.

When training the model, we construct a set of ground
truth triples (with a label of 1) using the rule-based method,
discussed in Section 3.1. The rule-based model was found
to produce better results than OpenlE because OpenlE tends
to produce a vast number of irrelevant triples consisting of
long phrases.

Hidden and output layers The first layer of the filtering
model encodes the head, relation and tail of a triple using
BERT. We take the embedding of each sequence via aver-
age pooling, i.e. the final vectors obtained are the average
embedding across all wordpieces in each input sequence.
We denote the embedding vectors for the head, relation and
tail as e, e, and e; respectively. These three vectors are
concatenated to form the combined representation c. Let
® : R" ® R" = R?" denote the concatenation of two vec-
tors:

c=ep,Oer Oey ey

The combined representation ¢ € R3" is then fed through

one or more fully connected feed forward layers, each of

which use a tanh activation function. Given A and B are
weight matrices that are learned, and b is the bias:

x=tanhc=cAT +b 2)

The outputs of the final linear layer are then fed through

one final layer, which performs a linear transformation fol-

lowed by a sigmoid activation function to translate the

weights back to a single value between 0 and 1. Given B
is a weight matrix that is learned:

1
1+ e—(zBT+b) 3)

During the evaluation stage, the predicted value 3’ is used
to determine whether the given input is a valid triple or not.
We apply a simple threshold: if y' > ¢, where ¢ is the thresh-
old value, then the triple is considered valid and is appended
to the output set for the current document.

y =

Shttps://www.nltk.org/

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

Algorithm 2 Triple mapping algorithm

procedure GETTRIPLES(document)

2: for each sentence in document do
relations < verbs + prepositions + postpositions
4: for each r in relations do
heads < entities on the left side of r
6: tails < entities on the right side of r
for each h in heads do
8: for each t in tails do

triples < triples + [h,r,]

> Select relations such as showcased, has, in, to, during

> Get the head entities for the relation r
> Get the tail entities for the relation r

> Add [head, relation, tail] to the list of triples

10: return triples > Return the list of triples
procedure EXTRACTTRIPLES(document)
> Extract triples from the document at the sentence level
12: triples <— GETTRIPLES(document)
> Extract the triples at the document level using the graph shortest paths
G <+ create graph(triples) > Build a graph from the triples using NetworkX package
14: paths < get shortest paths(G) > Get all shortest paths between named entities
for each h,t in pairs of named entities do
16: if 1 and t connected by a path using ‘in’, ‘at’, ‘on’ prepositions then
triples < triples + [h," in’,] > Add [head, ‘in’, tail] to the list of triples
18: return triples > Return the full list of triples
head_1 rel_1 - tail_1, organization, - - - product,
head_2 organization/company product/car
A A 4 A A A A A A
Output | |
layer
A A 4 A A A A A A A
Bi-GRU
layer(s)
BERT
4 A A A)
Lamborghini is making an SUV

Figure 4: A diagram of our End-to-End Seq2KG model. The tokens to the left and right of the example sequence are not shown for brevity.

Loss function The loss of the filtering model is calculated
using binary cross entropy:

loss = —(y'log(y) + (1 —y)log(1 —y')) (4
where y is the correct class for the current triple (i.e. O or 1)
and y’ is the value predicted by the model.

3.3 End-to-End Seq2KG Model

The End-to-End Seq2KG model, as shown in Figure 4, aims
to extract triples directly from the text and label each node
with its corresponding entity type(s) via a neural network ar-
chitecture. In contrast to the rule-based method and filtering
method, the End-to-End Seq2KG model requires absolutely
no feature engineering. It does not need to be tailored to a
specific domain and is thereby domain agnostic. While it

752

requires annotated training data, obtaining annotated data is
preferable to carefully crafting rules for a potentially “brit-
tle” rule-based system. Moreover, the process of annotating
data is a task that can be performed by anybody with knowl-
edge of the domain, in contrast to the construction of rule-
based systems which demand programming knowledge and
expertise in natural language processing.

The End-to-End Seq2KG model treats the task of KGC
as a multi-label sequence labelling problem: given a sen-
tence comprised of tokens, its goal is to label each token
with its membership and role in zero or more triples, as well
as its entity type(s). The set of triples for the sentence is then
produced based on the triple membership labels assigned to
each token by the model. This allows the model to generate
a dynamic number of triples per sentence.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

The model utilses the Bi-directional Gated Recurrent
Unit (Bi-GRU) (Cho et al. 2014), a recurrent architecture
that excels at handling sequential data. The GRU con-
verges quicker and requires fewer parameter updates than
the LSTM (Chung et al. 2014). The Bi-GRU, as opposed
to a unidirectional GRU, allows for both forward and back-
wards contexts to be taken into account when predicting the
validity of a triple or the membership of a word in a triple.
Note that the Bi-GRU can be replaced with any sequence la-
belling model, such as the transformer (Vaswani et al. 2017).

When extracting triples from documents comprised of
multiple sentences, the End-to-End Seq2KG model is sup-
plemented by a simple pre-processing step that performs
coreference resolution on each document via Neuralcoref®.
In our example, “it” is replaced with “Urus” prior to the
training of our models.

Hidden and output layers The input sequence is first em-
bedded via BERT before being sent to both the triple pre-
diction component and entity typing component. The em-
beddings pass through one or more Bi-GRU layers, each
of which encodes the input sequence from left-to-right and
right-to-left.

The forward and backwards Bi-GRU layers serve to en-
code the embedded inputs and provide the final output layer
with a representation that may be mapped to a sequence of
label probabilities. The update gate z and reset gate of the
GRU r are calculated as follows, where U and W are weight
matrices to be learned, x; is the input at time ¢, and h; is the
hidden state at time ¢ (Koehn 2009):

zt = O'(xtUz + ht,lwz + bz) (Sa)
ry = O'("EtUT —+ ht,lwr —+ br) (Sb)

The hidden state of the GRU is then calculated as follows:

%t = tanh(xtUh + (’I“t ® ht_l)Wh)
ht = (1 — Zt) *ht—l + z¢ *Et

(6a)
(6b)

The outputs of this layer are then fed through one final
layer, which performs a linear transformation followed by
the sigmoid activation function as per Equation 3. The out-
put vector, y’, contains one weight corresponding to each
label € N, where N is the set of all labels.

Loss function The loss of each component is calculated
using categorical cross entropy:

Iln = —(ynlog(yy,) + (1 — yn)log(1 —y,,)) (Ta)

ZnGN ln

= 7b
N (7b)

loss =

Here, y,, € {0,1} is the ground truth label of the class
of index n, {y,, € R|0 <y, < 1} is the prediction score
associated with the class of index n, and N is the set of

Shttps://github.com/huggingface/neuralcoref

753

labels. We then average the loss of each component. Given
lossy is the loss of the triple extraction component, and [oss,
is the loss of the entity typing component:

loss; + loss,
tf 8)

The joint loss is used to backpropagate the weights across
the entire model in order co-train the triple extraction and
entity typing components.

joint_loss =

4 Annotated Datasets
4.1 Problem Formulation

There are currently no datasets available for evaluating triple
extraction systems due to the lack of a suitable data for-
mat for representing a dynamic number of ground truth
triples within text. Existing KGC from text systems employ
pipelines of named entity recognition, relation extraction,
coreference resolution and entity linking separately. There
are three primary issues arising from the current data formats
used to train KGC from text systems:

1. Complexity: training a KGC from text system requires
multiple datasets, each with different formats, i.e. one for
NER, one for relation extraction, and so on;

2. The heads and tails of a triple may not necessarily be

named entities, and hence applying NER to identify po-
tential heads/tails is bound to miss important concepts that
are not named entities; and

3. Relation extraction identifies whether two given named

entities are related, but often a concept is related to multi-
ple other concepts rather than one single concept.

We therefore introduce a novel data format that allows
for the task of triple extraction to be treated as a multi-label
sequence labelling problem. We take inspiration from en-
tity typing research (Ling and Weld 2012; Ren et al. 2016),
where the training examples are given as a list of tokens and
entity mentions. Figure 5 shows an example of this data for-
mat (top), and how we have applied the format to model the
data for knowledge graph construction (bottom).

Using this data format a model can learn to predict both
triple membership and entity types. For the triples, a model
may learn to predict one or more labels per token which rep-
resent the membership of that token in a particular triple.
These predictions can then be converted to a set of triples
by searching for the heads, relations and tails of each triple
using a simple algorithm: starting from n = 1, find a con-
tiguous sequence of tokens whose predicted labels contain
head_n, and repeat for rel_n and tail_n. These three sets of
tokens form the first triple, and the process is repeated until
no further triples are found or n > T, where 1" is an upper
limit on the number of triples. The ideal value of 7" depends
on the dataset; we found 7' = 10 to be sufficient for our
evaluation datasets.

In summary, the problem formulation of our proposed an-
notation format is as follows: given a sentence, label each
token with both its membership in one or more triples, as
well as its corresponding entity type(s).

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)

Main Track

{tokens: [“The”, “Urus”, “is”, “rumored”, “to”, “be”, “powered”, “by”, “a”,

“twin-turbo”, “4.0-liter”, “V8”, “generating”, “600”, “hp.”],
mentions: [{start: 0, end: 1, labels: [“product”, “product/car”]}]}
{tokens: [“The”, “Urus”, “is”, “rumored”, “to”, “be”, “powered”, “by”, “a”,

“twin-turbo”, “4.0-liter”, “V8”, “generating”, “600”, “hp.”],
mentions: { triples: [

{start: 1, end: 2, labels: [“tl1l”, “tl/head”]},

{start: 6, end: 8, labels: [“tl1l”, “tl/rel”]},

{start: 9, end: 12, labels: [“tl1l”, “tl/tail”, “t2”, “t2/head”]},

{start: 12, end: 13, labels: [“t2”, “t2/rel”]},

{start: 13, end: 15, labels: [“t2”, “t2/tail”]}]}]

entity types: [

{start: 1, end: 2, labels: [“product”, “product/car”]}]1}1}

Figure 5: The standard annotation scheme for entity typing (top) and its translation to knowledge graph construction (bottom).

Documents Avg Tokens/doc Avg Triples/doc Avg Entities/doc
Name | Train | Dev | Test | Train | Dev Test | Train | Dev | Test | Train | Dev | Test
CS 162 20 20 | 1845 | 184.7 | 176.0 | 7.5 85 | 63 - - -
AE 646 81 81 | 217.2 | 206.3 | 210.1 7.3 73 | 7.6 - - -
BBN 1639 | 183 | 166 | 28.7 | 28.5 | 279 3.6 42 | 39 24 22 | 22

Table 1: A summary of the three datasets introduced in this paper.

4.2

In this paper we introduce three datasets’: Catering Services
(CS), Automotive Engineering (AE), and BBN. The CS and
AE datasets contain news articles relating to the catering and
automotive industries, respectively. The BBN dataset con-
tains single sentences taken from Wall Street Journal arti-
cles.

The CS and AE datasets were obtained by scraping a
variety of catering and automotive news websites, respec-
tively, ranging from articles dating 2012-2014. We took
the first n paragraphs of each article until the total charac-
ter count of the scraped document exceeded 800. Articles
shorter than 800 characters in length were not included in
the dataset. Each article in each dataset was tokenised using
NLTK (Bird, Klein, and Loper 2009).

The data collection process was different for the BBN
dataset, which is a standard benchmarking dataset for entity
typing (Ren et al. 2016). We simply took a small portion of
the BBN dataset, which has already been tokenised and an-
notated for entity typing by (Ren et al. 2016), and labelled
each token with their triple membership(s).

After processing, each dataset was split into 80% training,
10% validation and 10% test data. The detailed statistics of
each dataset is displayed in Table 1.

Data Collection & Preprocessing

4.3 Annotation Procedure

Each dataset was manually annotated using Redcoat (Stew-
art, Liu, and Cardell-Oliver 2019), a powerful web-based
tool for labelling data for hierarchical entity typing. In con-

"The datasets are available on GitHub:
https://github.com/Michael-Stewart-Webdev/Seq2KG

trast to other popular annotation tools such as BRAT (Stene-
torp et al. 2012) and Amazon SageMaker Ground Truth®,
Redcoat supports multi-label annotation, meaning a single
token can be labelled with multiple categories. This was
critical to our application as it allowed for many tokens to
be the head, relation, and/or tail of multiple triples, as seen
in Figure 5 where 4.0-liter V8 is both the tail of the first triple
and the head of the second triple.

Annotation took place over several days, with three an-
notators in total. A meeting was held to ensure consistent
annotation between annotators. Several rules were agreed
upon during this meeting:

1. A rule of thumb for annotating heads and tails is that they
should ideally be concepts appearing in Wikipedia.

2. A rule of thumb for annotation relations is that they should
typically be verbs.

3. The heads, relations and tails should be as condensed as
possible (e.g. the only head, relation and tail in Bugatti
unveiled their brand new Veyron model should be Bugatti,
unveiled, and Veyron, respectively).

4. The first appearance of a coreferring mention should be
labelled as the head of every corresponding triple, e.g.
in the sentence Mercedes is a company. It manufactures
cars, the first triple should be (Mercedes, is, company)
and the second should be (Mercedes, manufactures, cars)
as opposed to (it, manufactures, cars).

5. Annotators should aim for approximately 6-10 triples per
document, with the exception of the BBN dataset where
annotators should aim for 1-3 triples per document.

8https://aws.amazon.com/sagemaker/groundtruth/

754

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

6. If a document is too difficult to label with a high level
of confidence it should not labelled and hence not be in-
cluded in the dataset.

Each dataset was annotated for triple membership using
the annotation scheme shown in Figure 5. The BBN dataset,
which was already labelled for entity typing by (Ren et al.
2016), is the only dataset that is labelled for entity typing as
well as triple membership.

S Experiments
5.1 Models
We evaluate the performance of four models:

e Rule-based:
tion 3.1;

our rule-based model, discussed in Sec-

e Filtering: our filtering model, discussed in Section 3.2;

e End-to-End Seq2KG (no ET): our End-to-End Seq2KG
model, discussed in Section 3.3. It learns to predict triples
from text, but not the entity types of each head and tail;
and

e End-to-End Seq2KG (ET): our End-to-End Seq2KG
model, which jointly learns to perform both triple extrac-
tion and entity typing.

5.2 Model Parameters

After parameter tuning we found that the best performance
on the development set for both of our models were achieved
with a hidden dimension size of 768, and 0.5 dropout prior
to the final layer. The models were optimised using ADAM.
The batch size was 5 for the filtering model and 10 for the
End-to-End Seq2KG model. The filtering model and End-
to-End Seq2KG models were trained with a learning rate of
0.00001 and 0.001, and max sequence length of 10 and 100,
respectively. Documents were split into sentences when
training and evaluating the End-to-End Seq2KG model in
order to fit the max sequence length.

5.3 Embedding Similarity (ESim)

Existing research in KGC from text evaluates triples us-
ing qualitative manual analysis, as a meaningful evaluation
metric that compares the quality of predicted triples to the
ground truth triples does not yet exist (Mehta, Singhal, and
Karlapalem 2019). It is difficult to combine both structural
and semantic similarity in one measure, and hence knowl-
edge graph evaluation metrics typically target one or the
other. For example, the metric proposed by (You et al.
2018) incorporates maximum mean discrepancy (Gretton et
al. 2012) to measure structural similarity, while the method
proposed by (Hawes and Kelleher 2004) combines relation-
based and feature-based alignment to measure semantic sim-
ilarity.

In light of the lack of suitable, easily applicable metrics
for evaluating graphs produced by KGC systems, we intro-
duce a novel and simple evaluation metric, termed as em-
bedding similarity (or ESim), to provide a way to quantita-
tively evaluate the performance of KGC models. The metric
works as follows. For each document, construct a Directed

755

Acyclic Graph P from the predicted triples, and G from
the ground truth triples. Then, perform %k random walks
(k = 10 in our evaluation) on each graph to obtain two
sets PR and GR. The token sequences of PR and GR are
then embedded. For example, if PR; is a subgraph contain-
ing the nodes { Lamborghini, SUV,Urus}, and the edges
{making, Called} connecting nodes 1 to 2 and 2 to 3 re-
spectively, we embed the sequence “Lamborghini making
SUV Called Urus”. Each embedded sequence pr;, gr; in
PR and GR is compared pairwise using cosine similarity,
and averaged to obtain the final score s for that document:

b) = ab _ ZZL:I aib,-
e PR S TN S T
(9a)
o Ziiicos(f(PR), /(GRy))

k

where f is a function that computes the average word em-
bedding across a sequence of tokens from a subgraph (BERT
in our case). The overall score across the entire corpus is the
average of all document-level scores. The score captures
the semantic meaning behind each of the heads, relations
and tails in each triple via embeddings while also captur-
ing graph-level structural information via the random walk
mechanism.

5.4 Evaluating Entity Typing Performance

To evaluate the ability of the joint model to perform entity
typing alongside triple extraction, we use Strict Accuracy,
Loose Macro, and Loose Micro score (Ling and Weld 2012).
Given P is the set of predicted entity labels across each to-
ken of each head and each tail, and 7" is the ground truth
labels of those same tokens:

e Strict Accuracy:

precision = (Z §(t. =t.))/|P| (10a)
ee PNT
recall = (Y 3(te =t.))/|T]| (10b)
eePNT
e Loose Macro:
- 1 |te Nt
precision = —(- (11a)
iz
1 |te Nt
recall = —(- (11b)
72
e Loose Micro:
te Nt
precision = M (12a)
2cep Itel
te Nt
recall = M (12b)

ZeGT |tA€|

The F1 scores of each metric are then calculated as fol-
lows:

Pl 2 X precision X recall

13
precision + recall (13)

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)

Main Track
CS AE BBN Mi-f1 | Ma-f1 | Strict acc
Rule-based 0.919 | 0.897 | 0.849 End-to-End Seq2KG (ET) | 0.588 | 0.654 0.654
Filtering 0.691 | 0.197 | 0.427
End-to-End Seq2KG (no ET) | 0.879 | 0.902 | 0.797 Table 3: The results of the End-to-End Seq2KG (ET) model’s en-
End-to-End Seq2KG (ET) N N 0.809 tity typing performance on the BBN dataset in terms of F1 Score.

Table 2: The results of each model’s triple extraction performance
on the three datasets according to the ESim metric. Each score is
the average score of evaluating the same model 3 times.

6 Results
Our results aim to determine the following:

e Triple extraction performance: How well do the filter-
ing and End-to-End Seq2KG models perform triple ex-
traction from text when compared to the rule-based sys-
tem?

o Entity typing effectiveness: How well does the End-to-
End Seq2KG model perform entity typing during the pro-
cess of KGC?

6.1 Triple Extraction Performance

Table 2 displays the results of each of the three models on
the CS, AE and BBN datasets according to the embedding
similarity metric. Note that the End-to-End Seq2KG model
was not evaluated on the CS or AE datasets as those datasets
are not labelled with entity types.

The results show that while the rule-based system
achieves the best overall performance across the three
datasets, the End-to-End Seq2KG model performs almost
as well in every case. The strong performance of the rule-
based system is not surprising given it was designed to ex-
tract triples from news datasets. The fact that our End-to-
End Seq2KG model performs similarly indicates that End-
to-End Seq2KG triple extraction is extremely useful consid-
ering it does not require the construction of handcrafted rules
to be applied to specific domains.

The filtering model does not perform as well, however.
It performs very poorly across all three datasets, especially
on the automotive engineering news. There key reason for
this phenomenon lies in its preliminary regular-expression
based triple extraction method that builds the set of candi-
date triples. During training, the ground truth triples are
appended to the set of candidate triples and are assigned a
label of 1, indicating that they are correct. During evalu-
ation, however, the ground truth triples are not known and
the model must rely on the greedy triple extraction method
to provide it with the correct triples alongside the incorrect
ones. In practice it is exceedingly challenging to identify
the correct triples using regular expression parsing, and so
the model ends up predicting very few triples, hence receiv-
ing a low score. We attempted to use OpenlE instead, but it
performed even worse due to the excessively long head and
tail phrases.

6.2 Entity Typing Performance

Table 3 displays the results of the End-to-End Seq2KG (ET)
model on entity typing according to F1 Score. For refer-

756

Each score is the average score of evaluating the same model 3
times.

ence, the system proposed by (Ren et al. 2016) achieves a
micro, macro and strict F1 score of 0.638, 0.698 and 0.710
respectively on the full BBN test dataset. Their model is
trained on the entire corpus, however, which contains nearly
30,000 documents in contrast to our small subset of 1639
documents.

The results show that the model is certainly capable of
learning to perform entity typing as part of the KGC pro-
cess, although its performance could be improved. A notable
finding is that learning to perform entity typing does not neg-
atively affect the triple extraction performance, which sug-
gests that it would be possible to also learn to predict other
attributes directly from the text as well.

7 Conclusion

In this research, for the first time, in the same flavour
as Collobert et al.’s seminal work of “Natural language
processing (almost) from scratch” in 2011, we proposed a
Seq2KG model attempting to achieve “Knowledge graph
construction (almost) from scratch”. Through an end-to-end
trainable model, Seq2KG jointly learns to generate triples
and resolves entity types as a multi-label classification task
through deep learning neural networks. The model training
is enabled through a new annotation scheme we devised, and
trained and tested on three quality annotated datasets. To
ensure a fair and strict evaluation, we proposed a new eval-
uation that captures both graph-level structural information
as well as word-level semantic information. The Seq2KG
model outperforms a neural filtering model and on par with
a state-of-the-art prize winning rule-based model which is
domain specific with heavily hand-crafted rules.

As the first work of its kind, the paper presented here
can be seen as a framework with substitutable compo-
nents. Other binary classifiers can be used in the filtering
model, such as support vector machines. Different meth-
ods can be applied to the joint loss function in the end-to-
end model, or the sequence labelling component could be
replaced with other sequence labelling models such as the
transformer (Vaswani et al. 2017). It would also be interest-
ing to test the ability of the model to predict structured rela-
tions as opposed to verb-based relations from the text. More
research into evaluation metrics is also needed; knowledge
graph isomorphism or ontology mapping would be potential
areas of interest.

References
Allahyari, M.; Pouriyeh, S.; Assefi, M.; Safaei, S.; Trippe,
E. D.; Gutierrez, J. B.; and Kochut, K. 2017. A brief sur-
vey of text mining: Classification, clustering and extraction
techniques. arXiv preprint arXiv:1707.02919.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

Bird, S.; Klein, E.; and Loper, E. 2009. Natural language
processing with Python: analyzing text with the natural lan-
guage toolkit. ” O’Reilly Media, Inc.”.

Chen, P.; Lu, Y.; Zheng, V. W.; Chen, X.; and Li, X. 2018.
An automatic knowledge graph construction system for k-12
education. In Proceedings of the Fifth Annual ACM Confer-
ence on Learning at Scale, 40. ACM.

Cho, K.; Van Merriénboer, B.; Gulcehre, C.; Bahdanau, D.;
Bougares, F.; Schwenk, H.; and Bengio, Y. 2014. Learning
phrase representations using rnn encoder-decoder for statis-
tical machine translation. arXiv preprint arXiv:1406.1078.
Choudhury, S.; Agarwal, K.; Purohit, S.; Zhang, B.; Pirrung,
M.; Smith, W.; and Thomas, M. 2017. Nous: Construc-
tion and querying of dynamic knowledge graphs. In 2017
IEEFE 33rd International Conference on Data Engineering
(ICDE), 1563-1565. IEEE.

Chung, J.; Gulcehre, C.; Cho, K.; and Bengio, Y. 2014.
Empirical evaluation of gated recurrent neural networks on
sequence modeling. arXiv preprint arXiv:1412.3555.

Collobert, R.; Weston, J.; Bottou, L.; Karlen, M.;
Kavukcuoglu, K.; and Kuksa, P. 2011. Natural language
processing (almost) from scratch. Journal of machine learn-
ing research 12(Aug):2493-2537.

Devlin, J.; Chang, M.-W; Lee, K.; and Toutanova, K. 2018.
Bert: Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805.

Gretton, A.; Borgwardt, K. M.; Rasch, M. J.; Scholkopf, B.;
and Smola, A. 2012. A kernel two-sample test. Journal of
Machine Learning Research 13(Mar):723-773.

Hawes, N., and Kelleher, J. 2004. Analogy hy alignment:
On structure mapping and similarity. In STAIRS 2004: Pro-
ceedings of the Second Starting Al Researchers’ Symposium,
volume 109, 205. I0S Press.

Kertkeidkachorn, N., and Ichise, R. 2017. T2kg: An end-to-
end system for creating knowledge graph from unstructured
text. In Workshops at the Thirty-First AAAI Conference on
Artificial Intelligence.

Koehn, P. 2009. Statistical machine translation. Cambridge
University Press.
Ling, X., and Weld, D. S. 2012. Fine-grained entity recog-
nition. In AAAL

Martinez-Rodriguez, J. L.; Lopez-Arevalo, I.; and Rios-
Alvarado, A. B. 2018. Openie-based approach for knowl-
edge graph construction from text. Expert Systems with Ap-
plications 113:339-355.

Mehta, A.; Singhal, A.; and Karlapalem, K. 2019. Scalable
knowledge graph construction over text using deep learning
based predicate mapping. In Companion Proceedings of The
2019 World Wide Web Conference, 705-713. ACM.

Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and
Dean, J. 2013. Distributed representations of words and
phrases and their compositionality. In Advances in neural
information processing systems, 3111-3119.

Ren, X.; He, W.; Qu, M.; Huang, L.; Ji, H.; and Han, J.
2016. Afet: Automatic fine-grained entity typing by hi-
erarchical partial-label embedding. In Proceedings of the

757

2016 Conference on Empirical Methods in Natural Lan-
guage Processing, 1369—1378.

Schmitz, M.; Bart, R.; Soderland, S.; Etzioni, O.; et al.
2012. Open language learning for information extraction.
In Proceedings of the 2012 Joint Conference on Empiri-
cal Methods in Natural Language Processing and Compu-
tational Natural Language Learning, 523-534. Association
for Computational Linguistics.

Stenetorp, P.; Pyysalo, S.; Topi¢, G.; Ohta, T.; Ananiadou,
S.; and Tsujii, J. 2012. Brat: a web-based tool for nlp-
assisted text annotation. In Proceedings of the Demonstra-
tions at the 13th Conference of the European Chapter of the
Association for Computational Linguistics, 102—107. Asso-
ciation for Computational Linguistics.

Stewart, M.; Liu, W.; Cardell-Oliver, R.; and Griffin, M.
2017. An interactive web-based toolset for knowledge dis-
covery from short text log data. In International Confer-
ence on Advanced Data Mining and Applications, 853—858.
Springer.

Stewart, M.; Enkhsaikhan, M.; and Liu, W. 2019. Icdm
2019 knowledge graph contest: Team uwa. In Proceedings
of the 2019 IEEE International Conference on Data Mining
(ICDM), 1546-1551. 1EEE.

Stewart, M.; Liu, W.; and Cardell-Oliver, R. 2019. Red-
coat: A collaborative annotation tool for hierarchical entity
typing. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Processing
(EMNLP-1JCNLP): System Demonstrations, 193—198.

Vasile, D., and Lukasiewicz, T. 2018. Learning Structured
Video Descriptions: Automated Video Knowledge Extrac-
tion for Video Understanding Tasks: Confederated Inter-
national Conferences: CooplS, CTC, and ODBASE 2018,
Valletta, Malta, October 22-26, 2018, Proceedings, Part II.
315-332.

Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. At-
tention is all you need. In Advances in neural information
processing systems, 5998—6008.

Wang, C.; Ma, X.; Chen, J.; and Chen, J. 2018. Informa-
tion extraction and knowledge graph construction from geo-
science literature. Computers & geosciences 112:112-120.
Wu, X.; Wu, J.; Fu, X.; Li, J.; Zhou, P.; and Jiang, X. 2019.
Automatic knowledge graph construction: A report on the
2019 icdm/icbk contest. In 2019 IEEE International Con-
ference on Data Mining (ICDM), 1540-1545. IEEE.

You, J.; Ying, R.; Ren, X.; Hamilton, W. L.; and Leskovec,
J. 2018. Graphrnn: Generating realistic graphs with deep
auto-regressive models. arXiv preprint arXiv:1802.08773.
Zhou, Y.; Sun, Y.; and Honavar, V. 2019. Improving image
captioning by leveraging knowledge graphs. 283-293.

