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Abstract

Complex Event Recognition (CER) systems detect event oc-
currences in streaming time-stamped input using predefined
event patterns. Logic-based approaches are of special inter-
est in CER, since, via Statistical Relational AI, they com-
bine uncertainty-resilient reasoning with time and change,
with machine learning, thus alleviating the cost of manual
event pattern authoring. We present WOLED, a system based
on Answer Set Programming (ASP), capable of probabilis-
tic reasoning with complex event patterns in the form of
weighted rules in the Event Calculus, whose structure and
weights are learnt online. We compare our ASP-based imple-
mentation with a Markov Logic-based one and with a crisp
version of the algorithm that learns unweighted rules, on CER
datasets for activity recognition, maritime surveillance and
fleet management. Our results demonstrate the superiority
of our novel implementation, both in terms of efficiency and
predictive performance.

1 Introduction
Complex Event Recognition (CER) systems (Cugola and
Margara 2012) detect occurrences of complex events (CEs)
in streaming input, defined as spatio-temporal combinations
of simple events (e.g. sensor data), using a set of CE pat-
terns. Since such patterns are not always known beforehand
and existing ones often need to be updated, machine learn-
ing algorithms for the automatic construction/revision of CE
patterns are highly useful. Such algorithms should ideally
operate in an online fashion, by using the current CE pat-
tern set for inference (CER) in the incoming data stream,
and the labeled portions of the stream for updating the CE
pattern set. Moreover, such algorithms should be resilient to
noise & uncertainty, which are ubiquitous in temporal data
streams (Alevizos et al. 2017), and support reasoning with
existing domain knowledge, while taking into account com-
monsense phenomena (Mueller 2014), which often charac-
terize dynamic application domains, such as CER.

Logic-based CER systems (Artikis et al. 2012) stand up
to the aforementioned challenges. They combine reasoning
under uncertainty with machine learning, via Statistical Re-
lational AI techniques (De Raedt et al. 2016), while they are
capable of reasoning with time and change, and incorporat-
ing commonsense principles via action formalisms, such as
the Event Calculus (Artikis, Sergot, and Paliouras 2015).

A number of online learning algorithms, capable of tem-
poral reasoning with a set of CE patterns, while continuously
updating these patterns in the face of new data, have already
been proposed (Katzouris, Artikis, and Paliouras 2016;
Michelioudakis et al. 2016; Katzouris et al. 2018). We
advance the state of the art by proposing WOLED (On-
line Learning of Weighted Event Definitions), an algorithm
that learns CE patterns in the form of weighted rules in
the Event Calculus. In contrast to a predecessor algorithm
based on Markov Logic Networks (MLNs) (Katzouris et al.
2018), WOLED is based entirely on Answer Set Program-
ming (ASP), which allows to take advantage of the ground-
ing, solving, optimization and uncertainty modeling abili-
ties of modern answer set solvers, while employing structure
learning techniques from non-monotonic Inductive Logic
Programming (ILP) (De Raedt 2008), which are easily im-
plemented in ASP, towards more robust learning.

We compare WOLED’s ASP-based implementation to an
MLN-based one, and to crisp version of the algorithm that
learns unweighted rules, on three CE datasets for activity
recognition, maritime surveillance and vehicle fleet manage-
ment. Our results demonstrate the superiority of our novel
implementation, both in terms of efficiency and predictive
performance.

2 Related Work
Event Calculus-based CER (Artikis, Sergot, and Paliouras
2015) was combined with MLNs in (Skarlatidis et al. 2015),
in order to deal with the uncertainty of CER applications.
An inherent limitation of this approach is the fact that the
non-monotonic semantics of the Event Calculus is incom-
patible with the open-world semantics of MLNs. Therefore,
performing inference with Event Calculus-based MLN theo-
ries calls for extra, costly operations, such as computing the
completion of a theory (Mueller 2014), in order to endow the
first-order logic representations on which MLNs rely with a
non-monotonic semantics. We bridge this gap via translat-
ing probabilistic inference with MLNs into an optimization
task in ASP, which naturally supports non-monotonic and
commonsense reasoning. This also allows to delegate prob-
abilistic temporal reasoning and machine learning tasks to
sophisticated, off-the-shelf answer set solvers.

Translating MLN inference in ASP has been put forth in
(Lee and Wang 2016; Lee, Talsania, and Wang 2017). This
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(a)
Predicate Meaning
happensAt(E, T ) EventE occurs at time T .
initiatedAt(F, T ) At time T , a period of time for

which fluent F holds is initiated.
terminatedAt(F, T ) At time T , a period of time for

which fluent F holds is terminated.
holdsAt(F, T ) Fluent F holds at time T .
(b)
The axioms of the Event Calculus

holdsAt(F, T + 1)← (1)

initiatedAt(F, T )

holdsAt(F, T + 1)← (2)

holdsAt(F, T ),

not terminatedAt(F, T )

(c) (d)
Observations I1 at time 1: Weighted CE patterns:

happensAt(walk(id1 ), 1) 1.234 initiatedAt(move(X,Y ), T )←
happensAt(walk(id2 ), 1) happensAt(walk(X ),T),

coords(id1 , 201 , 454 , 1) happensAt(walk(Y ),T),

coords(id2 , 230 , 440 , 1) close(X ,Y , 25 ,T),

direction(id1 , 270 , 1) orientation(X ,Y , 45 ,T)

direction(id2 , 270 , 1)

Target CE instances at time 1: 0.923 terminatedAt(move(X,Y ), T )←
holdsAt(move(id1, id2), 2) happensAt(inactive(X ),T),

holdsAt(move(id2, id1), 2) not close(X ,Y , 30 ,T)

Table 1: (a), (b) The basic predicates and the EC axioms. (c) Ex-
ample CAVIAR data. For example, at time point 1 person with id1

is walking, her (X,Y ) coordinates are (201, 454) and her direction
is 270◦. The query atoms for time point 1 ask whether persons id1
and id2 are moving together at the next time point. (d) An example
of two domain-specific axioms in the EC. E.g. the first rule dictates
that moving together between two persons X and Y is initiated at
time T if both X and Y are walking at time T , their euclidean dis-
tance is less than 25 pixel positions and their difference in direction
is less than 45◦. The second rule dictates that moving together be-
tween X and Y is terminated at time T if one of them is standing
still at time T and their euclidean distance at T is greater that 30.

line of work is mostly concerned with theoretical aspects
of the translation, limiting applications to simple, proof-of-
concept examples. Although we do rely on the theoretical
foundation of this work, we take a more application-oriented
stand-point and investigate the usefulness of these ideas in
challenging domains, such as CER. Another important dif-
ference from previous work on combining MLNs with ASP
is that while the latter does not touch upon machine learn-
ing, we propose a methodology for learning both the struc-
ture and the weights of rules representing CE patterns, in an
online fashion, using ASP tools.

Regarding machine learning, a number of algorithms in
the non-monotonic branch of Inductive Logic Programming
(ILP), such as XHAIL (Ray 2009), TAL (Athakravi et al.
2013) and ILASP (Law, Russo, and Broda 2018) are ca-
pable of learning Event Calculus theories. However, these
algorithms are batch learners, they are thus poor matches
to the online nature of CER applications. Moreover, they
learn crisp logical theories, thus their ability to cope with
noise and uncertainty is limited. Existing online learn-
ing algorithms (Katzouris, Artikis, and Paliouras 2016;

Michelioudakis et al. 2016) rely on MLNs, so they suffer
from the same limitations discussed earlier in this section,
while a recent online learner based on probabilistic theory
revision (Guimarães, Paes, and Zaverucha 2019) is limited
to Horn logic and cannot handle Event Calculus reasoning.

3 Background
We assume a first-order language where atoms, literals (pos-
sibly negated atoms), rules and logic programs are defined
as in (Gebser et al. 2012) and not denotes negation as fail-
ure. Rules, atoms, literals and programs are ground if they
contain no variables. Rules are denoted by α ← δ1, . . . , δn,
where α is an atom and δ1, . . . , δn a conjunction of literals.
An interpretation I is a set of true ground atoms. I satis-
fies a ground literal a (resp. not a) iff a ∈ I (resp. a /∈ I)
and it satisfies a ground rule iff it satisfies the head, or does
not satisfy the body. I is a minimal (Herbrand) model of a
logic program Π iff it satisfies every ground rule in Π and
none of its strict subsets has this property. I is an answer
set of Π iff it is a minimal model of the program that results
from the ground instances of Π, after removing all rules with
a negated literal not satisfied by I , and all negative literals
from the remaining rules. A choice rule is an expression
of the form {α} ← δ1, . . . , δn, which is syntactic sugar for
α ← δ1, . . . , δn, not not α, with the intuitive meaning that
whenever the body δ1, . . . , δn is satisfied by an answer set I
of a program that includes the choice rule, instances of the
head α are arbitrarily included in I (satisfied) as well.

A weak constraint is an expression of the form
: ~ δ1, . . . , δn.[w], where δi’s are literals and w is an
integer. The intuitive meaning of a weak constraint c is that
the satisfaction of the conjunction δ1, . . . , δn by an answer
set I of a program that includes c incurs a cost of w for
I . Inclusion of weak constraints in a program triggers an
optimization process that yields answer sets of minimum
cost. We refer to (Gebser et al. 2012) for a formal account
of choice rules and weak constraints’ semantics. In what
follows we use the Clingo1 syntax for representing these
constructs.

The Event Calculus is a temporal logic for reasoning
about events and their effects. Its ontology comprises time
points (integers), fluents, i.e. properties which have certain
values in time, and events, i.e. occurrences in time that may
affect fluents and alter their value. Its axioms incorporate
the commonsense law of inertia, according to which fluents
persist over time, unless they are affected by an event. Its
basic predicates and axioms are presented in Table 1(a), (b).
Axiom (1) states that a fluent F holds at time T if it has been
initiated at the previous time point, while Axiom (2) states
that F continues to hold unless it is terminated. Definitions
of initiatedAt/2 and terminatedAt/2 predicates are provided in
a application-specific manner.

Using the Event Calculus in a CER context allows to rea-
son with CEs that have duration in time and are subject to
commonsense phenomena, via associating CEs to fluents.
In this case, a set of CE patterns is a set of conditions that

1https://potassco.org/
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initiate/terminate a target CE, i.e., a set of initiatedAt/2 and
terminatedAt/2 rules.

As an example we use the task of activity recognition, as
defined in the CAVIAR project2. The CAVIAR dataset con-
sists of videos of a public space, where actors perform some
activities. These videos have been manually annotated by
the CAVIAR team to provide the ground truth for two types
of activity. The first type, corresponding to simple events,
consists of knowledge about a person’s activities at a certain
video frame/time point (e.g. walking, standing still and so
on). The second type, corresponding to CEs/fluents, consists
of activities that involve more than one person, for instance
two people moving together, meeting each other and so on.
The aim is to detect CEs as of combinations of simple events
and additional domain knowledge, such as a person’s posi-
tion and direction.

Table 1(c) presents an example of CAVIAR data, consist-
ing of observations for a particular time point, in the form of
an interpretation I1. A stream of interpretations is matched
against a set of CE patterns (initiation/termination rules –
see Table 1(d)), to infer the truth values of CE instances in
time, using the Event Calculus axioms as a reasoning engine.
We henceforth call the atoms corresponding to CE instances
whose truth values are to be inferred/predicted, target CE
instances. Table 2(c) presents the target CE instances corre-
sponding to the observations in I1. Note that at time t the
corresponding target CE instances refer to t + 1, in accor-
dance to the Event Calculus axioms, which infer the truth
value of a CE instance at a time point, base on what happens
at the previous time point.

In WOLED, the CE patterns included in a logic program Π
are associated with real-valued weights, defining a probabil-
ity distribution over answer sets of Π. Similarly to Markov
Logic, where a possible world may satisfy a subset of the
formulae in an MLN, and the weights of the formulae in
a unique, maximal such subset determine the probability
of the possible world, an answer set of a program with
weighted rules may satisfy subsets of these rules, and these
rules’ weights determine the answer set’s probability. Based
on this observation, (Lee and Wang 2016) propose to assign
probabilities to answer sets of a program Π with weighted
rules as follows: For each interpretation I , first find the max-
imal subset RI of the weighted rules in Π that are satisfied
by I . Then, assign to I a weight WΠ(I) proportional to the
sum of weights of the rules inRI , if I is an answer set ofRI ,
else assign zero weight. Finally, define a probability distri-
bution over answer sets of Π by normalizing these weights.

Formally, let wr be the weight of rule r and ans(Π) the
set of all interpretations I which are answer sets of RI
and which, moreover, satisfy all hard-constrained rules in
Π (rules without weights). Then

WΠ(I) =

 exp

( ∑
r∈RI

wr

)
if I ∈ ans(Π)

0 otherwise
(1)

2http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/

PΠ(I) =
WΠ(I)∑

J∈ans(Π)

WΠ(J)
(2)

4 Structure & Weight Learning in ASP
The task that WOLED addresses is to online learn the struc-
ture and weights of CE patterns, while using their current
version at each point in time to perform CER in the stream-
ing input. We adopt a standard online learning approach
consisting of the following steps: at time t the learner main-
tains a theoryHt (weighted CE pattern set, as in Table 1(c)),
has access to some static background knowledge (e.g. the
axioms of the Event Calculus – Table 1(a)) and receives an
interpretation It, consisting of a data mini-batch (as in Table
1(b)). Then (i) the learner performs inference (CER) with
B ∪ Ht on It (B is the background knowledge) and gen-
erates a “predicted state”, consisting of inferred holdsAt/2
instances of the target predicate. Via closed-world assump-
tion, all such instances not present in the predicted state are
false; (ii) if available, the true state, consisting of the ac-
tual truth values of the predicted atoms is revealed; (iii) the
learner identifies erroneous predictions via comparing the
predicted state to the true one, and uses these mistakes to
update the structure and the weights of the CE patterns in
Ht, yielding a new theory Ht+1.

We next discuss each of these steps and their implemen-
tation using ASP tools.

4.1 Generating the Inferred State
To make predictions with the weighted CE patterns in the in-
coming data interpretations, WOLED uses MAP (Maximum
A Posteriori) probabilistic inference3, which amounts to
computing a most probable answer setA of Π = B∪Ht∪It.
From Equations (1), (2) it follows that

A = arg max
I∈ans(Π)

PΠ(I) = arg max
I∈ans(Π)

WΠ(I) =

arg max
I∈ans(Π)

∑
r∈RI

wr (3)

that is, a most probable answer set is one that maximizes the
sum of weights of satisfied rules, similarly to the MLN case,
for possible worlds. This is a weighted MaxSat problem
that may be delegated to an answer set solver using built-in
optimization tools. Since answer set solvers only optimize
integer-valued objective functions, a first step is to convert
the real-valued CE pattern weights to integers. We do so by
scaling the weights, via multiplying them by a positive fac-
tor, while preserving their relative differences, and rounding
the result to the closest integer.

Note that as it may be seen from Equation (3), weight
scaling by a positive factor does not alter the set of most

3Marginal inference, i.e. computing the probability of each tar-
get CE instance is also possible, but it is computationally expensive
since it requires a full enumeration of a program’s answer sets, of
utilizing techniques for sampling from such answer sets. We are
not concerned with marginal inference in this work.
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(a) Axioms of the Event Calculus & other BK: (b) Current CE pattern setHt with weights converted to integers:
holdsAt(E ,T + 1)← initiatedAt(E ,T), targetCE(E). 11 initiatedAt(a,T)← happensAt(b,T). (rule1 )

holdsAt(E ,T + 1)← holdsAt(E ,T), not terminatedAt(E ,T), targetCE(E). 13 terminatedAt(a,T)← happensAt(c,T). (rule2 )

targetCE(a). time(1 ..10). −2 initiatedAt(a,T)← happensAt(d,T). (rule3 )

(c) Current data interpretation It: (d) Syntactically transformed program T (Ht) for MAP inference:
happensAt(b, 2). happensAt(c, 5). happensAt(d, 8). initiatedAt(a,T)← satisfied(vars(T), rule1 ).

(e) Inferred state with crisp logical inference: {satisfied(vars(T), rule1 )} ← happensAt(b,T).

holdsAt(a, 3). holdsAt(a, 4). holdsAt(a, 5). holdsAt(a, 9). holdsAt(a, 10). : ~ satisfied(vars(T), rule1 ). [−11 , vars(T), rule1 ]

(f) Inferred state with probabilistic MAP inference: initiatedAt(a,T)← satisfied(vars(T), rule2 ).

holdsAt(a, 3). holdsAt(a, 4). holdsAt(a, 5). {satisfied(vars(T), rule2 )} ← happensAt(c,T).

satisfied(vars(5), rule2 ). satisfied(vars(2), rule1 ). : ~ satisfied(vars(T), rule2 ). [−13 , vars(T), rule2 ]

initiatedAt(a,T)← satisfied(vars(T), rule3 ).

{satisfied(vars(T), rule3 )} ← happensAt(d,T).

: ~ satisfied(vars(T), rule3 ). [2 , vars(T), rule3 ]

Table 2: ASP-based MAP inference with the Event Calculus.

Algorithm 1 MAPInference(B ,Ht , It)
Input: background knowledge B; the current CE pattern
set Ht; the input interpretation It.
Output: Target CE instances included in the most probable
answer set of B ∪ T (Ht) ∪ It.

1: T (Ht) := ∅
2: for each CE pattern ri = α ← δ1, . . . , δn in Ht with

integer weight wi do
3: let vars(α) be a term wrapping the variables of α.
4: Add to T (Ht) the following rules:
5: α← satisfied(vars(α), i).
6: {satisfied(vars(α), i)} ← δ1 , . . . , δn .
7: : ~ satisfied(vars(α), i). [−wi , vars(α), i ]

8: Find an optimal answer set Aopt of B ∪ T (Ht) ∪ It.
9: return the target CE instances in Aopt .

probable answer sets. Therefore, the inference result re-
mains unaffected, provided that rounding the weights to
integer values preserves their relative differences. To en-
sure the latter, we set the scaling factor to K/dmin , where
dmin = mini 6=j |wi − wj | is the smallest distance between
any pair of weights andK is a large positive constant, which
reduces precision loss when rounding the scaled weights to
integer values.

The MAP inference/weighted MaxSat computation is re-
alized via a standard generate-and-test ASP approach, pre-
sented in Algorithm 1, whose input is the background
knowledge B, the current CE pattern set Ht and the cur-
rent interpretation It. First, Ht is transformed into a new
program, T (Ht), as follows: each CE pattern ri in Ht of
the form ri = headi ← bodyi is “decomposed”, so as to as-
sociate headi with a fresh predicate, satisfied/2, wrapping
headi ’s variables and its unique id, i (line 5, Algorithm 1).
The choice rule in line 6, the “generate” part of the process,
generates instances of satisfied/2 that correspond to ground-
ings of bodyi. The weak constraint in line 7, the “test” part
of the process, decides which of the generated satisfied/2 in-
stances will be included in an answer set, indicating ground-
ings of the initial CE pattern ri, that will be true in the in-
ferred state.

As it may be seen from line 7, the violation of a weak con-
straint by an answer set A of Π = B ∪ T (Ht) ∪ It, i.e. the
satisfaction of a ground instance of ri by A, incurs a cost of
−wi on A, where wi is ri’s integer-valued weight. The op-
timization process triggered by the inclusion of these weak
constraints in a program generates answer sets of minimum
cost. During the cost minimization process, costs of−wi are
actually rewards for rules with a positive wi, whose satisfac-
tion by an answer set, via the violation of the corresponding
weak constraint, reduces the answer set’s total cost. The sit-
uation is reversed for rules with a negative weight, whose
corresponding weak constraint is associated with a positive
cost.

Obtaining the inferred state amounts to “reading-off” tar-
get CE instances from an optimal (minimum-cost) answer
set of the program B ∪ T (Ht) ∪ It.
Example 1. We illustrate the inference process via the ex-
ample in Table 2. In (a) the Event Calculus axioms are pre-
sented, with an extra predicate, targetCE/1, indicating the
target CE whose occurrences we wish to detect and which
is subject to the effects of inertia; (b) presents a CE pat-
tern set Ht, where we assume that the actual real-valued
weights of the patterns have been converted to integers, as
described earlier; (c) presents the current data interpreta-
tion It; (d) presents the program T (Ht) obtained from Ht,
via the transformation in Algorithm 1, to allow for MAP in-
ference; (e) presents the inferred state obtained with crisp
logical inference, i.e. the target CE instances included in
the unique answer set of the program BK ∪Ht ∪ It, where
the CE patterns’ weights have been disregarded. Note that
the occurrence of happensAt(b, 2 ) ∈ It initiates the target
CE a via rule1 ∈ Ht, so a holds at the next time point, 3,
and it also holds at time points 4 & 5 via inertia. Then,
the occurrence of happensAt(c, 5 ) ∈ It terminates a, via
rule2 ∈ Ht, so a does not holds at times 6,7,8, while
the occurrence of happensAt(d , 8 ) ∈ It re-initiates a, via
rule3 ∈ Ht, so a holds at times 9 & 10. Finally, (f) presents
the MAP-inferred state, i.e. the target predicate instances
included in an optimal (minimum-cost) answer set of the
program BK ∪ T (Ht) ∪ It (for illustrative purposes the
satisfied/2 instances in the optimal answer set are also pre-
sented). Note that the set of target CE inferences is reduced,
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as compared to the crisp case, since the negative-weight,
rule3 ∈ Ht is not satisfied by the optimal answer set. The
satisfied/2 instances in the MAP-inferred state correspond
to the ground atoms terminatedAt(a, 5), initiatedAt(a, 2),
which, along with inertia, are responsible for the target CE
inferences.

4.2 Weight Learning
Once the learner makes a prediction on the incoming inter-
pretation It and generates the inferred state, the true state is
revealed, if available (i.e., if It is labeled), and the CE pat-
terns’ weights are updated by comparing their true ground-
ings in the inferred and the true state. For a target CE α
and an initiatedAt/2 (resp. terminatedAt/2) CE pattern ri, a
true grounding, either in the inferred, or in the true state, is
a grounding of ri at time t, such that holdsAt(α, t + 1) is
true (resp. false). CE patterns that contribute towards cor-
rect predictions (target CE inferences) are promoted, while
those that make erroneous predictions are down-weighted.

As in (Katzouris et al. 2018), we use the AdaGrad al-
gorithm (Duchi, Hazan, and Singer 2011) for weight up-
dates, a version of Gradient Descent that dynamically adapts
the learning rate, i.e. the magnitude of weight promo-
tion/demotion, for each CE pattern individually, by taking
into account the pattern’s performance on the past data. Ada-
Grad updates a weight vector, whose coordinates correspond
to a set of features (the CE patterns in our case), based
on the subgradient of a convex loss function of these fea-
tures. Our loss function is a simple variant of the hinge
loss for structured prediction, originally used in (Huynh and
Mooney 2011) for MLNs, whose subgradient is the vector
with ∆gi in its i-th coordinate, denoting the difference in
the i-th CE pattern’s true groundings in the true and the in-
ferred state respectively. The weight update rule for the i-th
CE pattern is then:

w t+1
i = sign(w t

i −
η

C t
i

∆g t
i ) max{0 , |w t

i −
η

C i
t

∆g t
i | − λ

η

C i
t

}

where t/t+ 1-superscripts in terms denote respectively the
previous and the updated values, η is a learning rate pa-
rameter, λ is a regularization parameter and Cti = δ +√∑t

j=1(∆gji )
2 is a term that expresses the CE pattern’s

quality so far, as reflected by the accumulated sum of ∆gi’s,
amounting to its past mistakes (plus a δ ≥ 0 to avoid divi-
sion by zero in η/Cti ). TheCti term is the adaptive factor that
assigns a different learning rate to each CE pattern, since the
magnitude of a weight update via the term |wti −

η
Ci

t
∆gti | is

affected by the CE pattern’s previous history, in addition to
its current mistakes, as expressed by ∆gti . The regulariza-
tion term in Equation (1), λ η

Ci
t
, is the amount by which the

i-th CE pattern’s weight is discounted when ∆gti = 0. This
is to eventually push to zero the weights of irrelevant rules,
which have very few, or even no groundings in the data.

4.3 Updating CE patterns’ Structure
Similarly to OLED (Katzouris, Artikis, and Paliouras 2016),
WOLED learns CE patterns via a classical in ILP, hill-
climbing search process, generating a bottom rule (De Raedt

initiatedAt(meet(X ,Y ),T )←

initiatedAt(meet(X ,Y ),T )←
happensAt(inactive(X ),T )

initiatedAt(meet(X ,Y ),T )←
happensAt(active(X ),T )

initiatedAt(meet(X ,Y ),T )←
happensAt(active(X ),T ),
orientation(X ,Y , 45 ),T )

initiatedAt(meet(X ,Y ),T )←
happensAt(active(X ),T ),
close(X ,Y , 25 ),T )

initiatedAt(meet(X ,Y ),T )←
happensAt(active(X ),T ),
close(X ,Y , 25 ),T ),
orientation(X ,Y , 45 ),T )

initiatedAt(meet(X ,Y ),T )←
happensAt(active(X ),T ),
close(X ,Y , 25 ),T ),
happensAt(inactive(X ),T )

. . .

. . .

. . .

Bottom Rule

. . .. . .. . .

Figure 1: A subsumtion lattice.

2008) ⊥α from a CE instance α and then searching for a
high-quality CE pattern into the subsumption lattice defined
by ⊥α. It does so by progressively specializing an initially
empty-bodied rule with the addition of one literal at a time
from⊥α. To make this process online, the data in the incom-
ing interpretations are used once, to evaluate a CE pattern
and its current specializations. A Hoeffding test (Domingos
and Hulten 2000) allows to identify, with high probability,
the best specialization from a small subset of the input inter-
pretations. Once the test succeeds, the parent rule is replaced
by its best specialization and the process continues for as
long as new specializations improve the current rule’s per-
formance. New bottom rules are generated over time from
“missed” CE instances (not entailed by none of the exist-
ing CE patterns). Each such bottom rule instantiates a new
subsumption lattice, which is searched for new CE patterns.

In particular, at each point in time WOLED evaluates a
parent rule and its specializations on incoming data, via an
information gain scoring function, assessing the cumulative
merit of a specialization over the parent rule, across the por-
tion of the stream seen so far:

G(r, r′) = Pr · (log
Pr

Pr +Nr
− log Pr′

Pr′ +Nr′
)

where r′ is r’s parent rule and for each rule r, Pr (resp. Nr)
denotes the sum of true (resp. false) groundings of r in the
MAP-inferred states generated so far. The information gain
function is normalized in [0, 1] by taking 0 as the minimum
(as we are interested in positive gain only) and dividing aG-
value by its maximum, Gmax(r, r′) = Pr′ · (−log Pr′

Pr′+Nr′
).

When the range of G is [0, 1], a Hoeffding test succeeds,
allowing to select r1 as the best of a parent rule r’s special-

izations, when G(r1, r) − G(r2, r) > ε =
√

log1/δ
2N , where

r1, r2 are respectively r’s best and second-best specializa-
tions, δ is a confidence parameter and N is the number of
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Algorithm 2 LearnNewCEPatterns(B ,M ,Ht , It , I
MAP
t , I true

t )
Input: background knowledge B; mode declarations M ,
the current CE pattern set Ht; the current data interpretation
It; the MAP-inferred state IMAP

t ; the true state Itrue
t

Output: A set Hnew of new CE patterns.

1: Π := ∅, Hnew := ∅, H⊥ := ∅, T (H⊥) := ∅
2: Mistakes := Itrue

t \ IMAP
t .

3: for each m ∈Mistakes do
4: H⊥ ← generateBottomRule(m, It,M)

5: H⊥ ← compressBottomRules(H⊥)
6: for each bottom rule ri = αi ← δ1

i , . . . , δ
n
i in H⊥ do

7: Add to T (H⊥) the following rules:
αi ← use(i , 0 ), try(i , 1 , v(δ1i )), . . . , try(i ,n, v(δni )).
try(i , 1 , v(δ1i ))← use(i , 1 ), δ1i .
try(i , 1 , v(δ1i ))← not use(i , 1 ).
. . .
try(i ,n, v(δni ))← use(i ,n), δni .
try(i ,n, v(δni ))← not use(i ,n).

8: Π← B ∪ It ∪ T (Ht) ∪ T (H⊥),
where T (Ht) is the MAP inference-related transformation
of Algorithm 1 applied to the current CE pattern set Ht.

9: Add to Π the following rules:
{use(I , J )} ← ruleId(I ), literalId(J ).
: ~ use(I , J ). [1 , I , J ]

10: Add to Π one weak constraint of the form : ~ not α. [1]
(resp. : ~ α. [1]) for each target CE instance α included
(resp. not included – closed world assumption) in Itrue

t .
11: Find an optimal answer set Aopt of Π.
12: Remove from H⊥ every body literal δji for which

use(i, j) /∈ Aopt and each rule ri for which use(i, 0) /∈
Aopt.

13: Hnew ← H⊥.
14: return Hnew .

observations seen so far, we refer to (Katzouris, Artikis, and
Paliouras 2016) for further details.

A successful Hoeffding test results in replacing the parent
rule r with its best specialization r1 and moving one level
down in the subsumption lattice, via generating r1’s special-
izations and subsequently evaluating them on new data.

Figure 1 illustrates the process for an initiation CE pat-
tern. The rules at each level of the lattice represent the spe-
cializations of a corresponding rule at the preceding level.
The greyed-out part of the search space in Figure 1 repre-
sents the portion that has already been searched, while the
non greyed-out rule at the third level represents the best-so-
far rule that has resulted from a sequence of Hoeffding tests.

The specializations’ weights are learnt simultaneously to
those of their parent rules as described in Section 4.2, by
comparing the specializations’ true groundings over time
in the MAP-inferred states (generated from “top theories”,
consisting of parent rules only) and the true states respec-
tively.

Algorithm 3 WOLED(B ,M , I)
Input: background knowledge B; mode declarations M ; a
stream of interpretations I

1: Ht := ∅.
2: for each interpretation It ∈ I do
3: I MAP

t := MAPInference(B ,Ht , It).
4: Receive Itrue

t .
5: Mistakes := Itrue

t \ IMAP
t .

6: Ht ← SpecializePatterns(Ht).
7: Hnew := LearnNewPatterns(B,M, It, I

MAP
t , Itrue

t ).
8: Hnew ← UpdateWeights(Ht ∪Hnew,mistakes).
9: Ht ← Ht ∪Hnew.

4.4 Learning New CE patterns
If necessary, the existing CE pattern setHt is expanded with
the addition of new CE patterns, generated in response to
erroneous predictions. New initiatedAt/2 (resp. terminate-
dAt/2) patterns, generated from false negative (FN) (resp.
false positive (FP)) mistakes, have the potential to prevent
similar mistakes in the future. For instance, an FN mistake
at time t, i.e. a target CE instance predicted as false, while
actually being true at t, could have been prevented via a pat-
tern that initiates the target CE at some time prior to t.

Generating new CE patterns from the entirety of mistakes
may result in a very large number of rules, most of which are
redundant. To avoid that, WOLED uses the following strat-
egy for new CE pattern generation, presented in Algorithm
2: First, a set of bottom rules (BRs) is generated (line 4), us-
ing the constants in the erroneously predicted atoms to gen-
erate ground initiatedAt/2 and terminatedAt/2 atoms, which
are placed in the head of a set of initially empty-bodied
rules. The bodies of these rules are then populated with lit-
erals, grounded with constants that appear in the head, that
are true in the current data interpretation It. The signatures
of allowed body literals are specified via mode declarations
(De Raedt 2008).

Next, constants in the BRs are replaced by variables and
the BR set is “compressed” (line 5) to a bottom theory
H⊥, which consists of unique, w.r.t. θ-subsumption, vari-
abilized BRs. The new CE patterns are chosen among
those that θ-subsume H⊥. To this end, the generalization
technique of (Ray 2009; Katzouris, Artikis, and Paliouras
2015), which allows to search into the space of theories that
θ-subsume H⊥, is combined with inference with the ex-
isting weighted CE pattern set Ht, yielding a concise set
of CE patterns Hnew , such that an optimal answer set of
B ∪Ht ∪Hnew ∪ It best-approximates the true state asso-
ciated with It.

To this end, each BR ri ∈ H⊥ is “decomposed” in the
way shown in line 7 of Algorithm 2, where the head of ri
corresponds to an atom use(i, 0) and each of its body liter-
als, δji , to a try/3 atom, which, via the try/3 definitions pro-
vided, may be satisfied either by satisfying δji and an addi-
tional use(i, j) atom, or by “assuming” not use(i, j). Choos-
ing between these two options is done via ASP optimization
in line 9 of Algorithm 2, where the choice rule generates
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use/2 atoms that correspond to head atoms/body literals for
H⊥, and the subsequent weak constraint minimizes the gen-
erated instances to those necessary to approximate the true
state, as encoded via the additional weak constraints in line
10. New rules are “assembled” from the bottom rules inH⊥,
by following the prescriptions encoded in the use/2 atoms of
an optimal answer set of the resulting program, as in line 12.

This is essentially the XHAIL algorithm (Ray 2009) in
an ASP context. The difference of our approach from
usages of this technique in previous works (Ray 2009;
Katzouris, Artikis, and Paliouras 2015), is that here the
search into the space of H ′⊥s subsumers is combined with
MAP inference with the existing set of weighted CE patterns
(line 8, Algorithm 2). Therefore, new patterns are generated
only insofar they indeed help to better approximate the true
state. This technique allows to generalize from the data in
the current interpretation via avoiding to over-fit that data,
which may be potentially corrupted by noise.

Once the new CE patterns are generated, their weights
(initially set to a near-zero value) are updated based on their
groundings in It and the true state. Moreover, each new
pattern r is associated with the bottom rules fromH⊥, which
are θ-subsumed by ri. These bottom rules are used as a pool
of literals for further specializing r over time, as described
in Section 4.3.

WOLED’s learning strategy, mentioned at the beginning
of Section 4, is summarized in Algorithm 3.

5 Experimental Evaluation
We present an experimental evaluation of our approach on
three CER data sets from the domains of activity recogni-
tion, maritime monitoring and vehicle fleet management.

5.1 Datasets Used
CAVIAR4 is a benchmark dataset for activity recognition, de-
scribed in Section 3, consisting of 28 videos with 26,419
video frames in total. We experimented with learning CE
patterns for two CEs from CAVIAR, related to two people
meeting each other and moving together, which we hence-
forth denote by meeting and moving respectively. There are
6,272 video frames in CAVIAR where moving occurs and
3,722 frames where meeting occurs. A fragment of a CE
definition for moving is presented in Table 1(d).

Our second dataset is a publicly available dataset from
the field of maritime monitoring5. It consists of Automatic
Identification System (AIS) position signals collected from
vessels sailing in the area of Brest, France, for a period of six
months, between October and March 2015. The data have
been pre-processed using trajectory compression techniques
(Patroumpas et al. 2017), whereby major changes along each
vessel’s movement are tracked. This process allows to iden-
tify critical points along each trajectory, such as a vessel
stop, a turn, or a slow motion movement. Using the retained
movement features, i.e. the critical points, the trajectory of
a vessel may be reconstructed with small deviations from
the original one. The maritime dataset has been additionally

4http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/
55https://zenodo.org/record/1167595#.WzOOGJ99LJ9

pre-processed, in order to extract spatial relations between
vessels (e.g. vessels being close to each other) and areas of
interest, such as protected areas, areas near coast, open-sea
areas etc. There 16,152,631 critical points in the maritime
dataset, involving 4,961 vessels and 6,894 areas, for a total
size of approximately 1,3GB.

The maritime dataset is not labeled in terms of occur-
ring CE instances, we therefore used hand-crafted CE pat-
terns to perform CER on the critical points, thus generating
the annotation, and the purpose of learning was to recon-
struct the hand-crafted CE patterns. We experimented with
learning CE patterns for a CE related to vessels involved
in potentially suspicious rendezvous (henceforth denoted by
rendezVous), which holds when two vessels are stopped, or
move with very low speed in proximity to each other in the
open sea.

Our third dataset is provided by Vodafone Innovus6,
a commercial vehicle fleet management provider and our
partner in the Track & Know7 EU-funded funded project.
The dataset consists of real-world vehicle positional signals
(GPS) with a geographical coverage that practically includes
the entirety of Greece and a number of neighbouring coun-
tries, and a temporal duration of one month. The data consist
of time-stamped vehicle positions, in addition to mobility-
related events, such as abrupt acceleration, abrupt decel-
eration, harsh cornering, provided by an accelerometer de-
vice installed in each commercial vehicle. Moreover, map-
matched weather attributes were used to enrich the dataset
with contextual information, such as icy road. We refer to
(Tsilionis et al. 2019) for a detailed account of this dataset.

Similarly to the maritime dataset, due to the lack of CE-
related ground truth in the fleet management dataset, we
used hand-crafted patterns, developed in collaboration with
domain experts in Track & Know, to generate the ground
truth CE instances, and the purpose of learning was to recon-
struct these patterns from the data. We experimented with
learning CE patterns for one target CE related to danger-
ous driving, which holds in a number of occasions, such as
abruptly accelerating/decelerating on an icy road, or while
over-speeding, etc. The fleet management dataset consists
of 4M positional records for a total size of 527 MB.

All experiments were carried-out on a 3.6GHz processor
(4 cores, 8 threads) and 16GB of RAM. The code for all
algorithms used in these experiments in available online8.

5.2 Scalability of Inference
The purpose of our first experiment was to assess the scala-
bility of the ASP-based MAP inference process, which lies
at WOLED’s core. In this respect, we compare the ASP-
based version of WOLED, which we henceforth denote by
WOLED-ASP, with the version of (Katzouris et al. 2018),
which relies on MLN libraries, and which we henceforth de-
note by WOLED-MLN.

Contrary to WOLED-ASP, which is based entirely on the

6https://www.vodafoneinnovus.com
7https://trackandknowproject.eu/
8https://github.com/nkatzz/ORL
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(c) Rendezvous
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(d) Dangerous driving

Figure 2: Scalability of MAP inference.

Clingo9 answer set solver, WOLED-MLN is based on a num-
ber of different software tools. It uses the LoMRF library
for Markov Logic Networks (Skarlatidis and Michelioudakis
2014), for grounding MLN theories and performing circum-
scription via predicate completion (Skarlatidis et al. 2015),
in order to convert them into a form that supports the non-
monotonic semantics of the Event Calculus for reasoning,
something that WOLED-ASP has out of the box. MAP infer-
ence in WOLED-MLN is performed via a state-of-the-art in
MLNs, Integer Linear Programming-based approach, which
is introduced in (Huynh and Mooney 2009) and is imple-
mented using the lpsolve10 solver.

To compare the MAP inference scalability of the two im-
plementations, we used the task of online weight learning
with hand-crafted CE patterns, where the learner is required
to first perform MAP inference on the incoming interpreta-
tions with a fixed-structure CE pattern set, and then update
the CE patterns’ weights based on their contribution to er-
roneous inferences in the MAP-inferred state. Given that
the weight update cost is negligible and the CE pattern set
is fixed, the MAP inference cost is the dominant one in this
task, and in turn, it depends on the cost of grounding the cur-
rent CE pattern set, plus the cost of solving the correspond-
ing weighted MaxSat problem for each incoming interpre-
tation. Note that since the CE pattern sets for each CE are
fixed in this experiment, predicate completion in WOLED-
MLN is performed only once at the beginning of a run, there-
fore its cost is negligible.

The data were consumed by the learners in mini-batches,
where each mini-batch is an interpretation consisting of data
in a particular time interval. We performed weight learn-
ing with different mini-batch sizes of 50, 100, 500 & 1000
time points. The size, in total number of literals in a CE
pattern set, of the hand-crafted theories used in this experi-
ment was as follows: meeting 23 literals, moving 28 literals,
rendezVous 18 literals and dangerousDriving 16 literals.

We measured the average MAP inference time (grounding
plus solving time) for WOLED-ASP and WOLED-MLN re-
spectively, throughout a single-pass over the data, for differ-
ent mini-batch sizes. Note that as the mini-batch size grows,
so does the size of the corresponding ground program from
which the MAP-inferred state is extracted.

9https://potassco.org/
10https://sourceforge.net/projects/lpsolve

Figure 2 presents the results, which indicate that the
growth in the size of the ground program, as the mini-batch
size increases, entails an exponential growth to the MAP in-
ference cost for WOLED-MLN. In contrast, thanks to Clingo’s
highly optimized grounding and solving abilities, MAP in-
ference with WOLED-ASP takes near-constant time.

5.3 Online Structure & Weight Learning
Performance

In our next experiment we assess WOLED-ASP’s predictive
performance and efficiency in the task of online structure
& weight learning and we compare it to (i) WOLED-MLN;
(ii) OLED (Katzouris, Artikis, and Paliouras 2016), the crisp
version of the algorithm that learns unweighted CE patterns;
(iii) HandCrafted, a set of predefined rules for each CE and
(iv) HandCrafted-WL, the rules in HandCrafted with weights
learnt by WOLED-ASP.

To assess the predictive performance of the systems com-
pared we used two methods: Prequential (predictive sequen-
tial) evaluation, or interleaved test-then-train (Bifet et al.
2018), where each incoming data interpretation is first used
to evaluate the current CE pattern set and then to update its
structure and weights, and standard cross-validation. In pre-
quential evaluation we typically measure the average pre-
diction loss over time, which is an indication of a learner’s
ability to incorporate new knowledge that arrives over time
into the current model. With cross-validation we assess a
learner’s generalization abilities, by evaluating the predic-
tive performance of a learnt model on a test set.

The results are presented in Table 3, where the follow-
ing statistics are reported for each one of the systems being
compared: (i) the average prequential loss, which, for the
n-th mini-batch in the learning process is defined as S/n,
where S is the cumulative sum of false positive and false
negative predictions up to that time. The value reported in 3
is the final value of S/n in a prequential run; (ii) F1-score on
a test set. For CAVIAR we used tenfold cross-validation and
the reported F1-scores are micro-averages obtained from ten
different test sets. For the maritime and the fleet manage-
ment datasets, whose size makes tenfold cross-validation
impractical, we used half the dataset for training and half
for testing, so the reported F1-scores are obtained for the
latter half; (iii) CE pattern set sizes (total number of literals)
at the end of a prequential run (i.e., after a single-pass over
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Method Prequential
Loss

F1-score (test
set)

Theory size Inference
Time (sec)

Pred. Compl.
Time (sec)

Total Time
(sec)

Moving WOLED-ASP 1.723 0.821 26 15 – 112
WOLED-MLN 2.817 0.801 47 187 28 478

OLED 3.755 0.730 24 13 – 74
HandCrafted 6.342 0.637 28 – – –

HandCrafted-WL 4.343 0.702 28 16 – 52

Meeting WOLED-ASP 1.212 0.887 34 12 – 82
WOLED-MLN 2.554 0.841 56 134 12 145

OLED 3.224 0.782 42 10 – 36
HandCrafted 5.734 0.735 23 – – –

HandCrafted-WL 4.024 0.753 23 13 – 31

Rendezvous WOLED-ASP 0.023 0.98 18 647 – 4,856
WOLED-MLN 0.088 0.98 18 2,923 434 6,218

OLED 0.092 0.98 18 623 – 4,688

Dang.Drive WOLED-ASP 0.045 0.99 21 341 – 2,465
WOLED-MLN 1.234 0.99 28 926 287 3,882

OLED 1.756 0.99 21 312 – 2,435

Table 3: Online structure & weight learning results.

a dataset); (iv) Total inference time at the end of a prequen-
tial run (MAP inference for WOLED-ASP, WOLED-MLN &
HandCrafted-WL, crisp logical inference for OLED); (v) For
WOLED-MLN, total time spent on predicate completion at
the end of a prequential run; (vi) Total training time at the
end of a prequential run, which includes time spent on CE
pattern generation, computing θ-subsumption etc, i.e. the
dominant costs involved in learning CE patterns structure.
Note that we report on (iv), (v), (vi) only for approaches that
require training (i.e., not for HandCrafted). Also, we did not
experiment with hand-crafted CE patterns in the maritime
and the fleet management datasets, since in these datasets
hand-crafted CE patterns were used to generate the ground
truth in the first place.

In addition to the different implementations of proba-
bilistic inference, an important difference between WOLED-
ASP and WOLED-MLN from an algorithmic perspective, lies
in the new CE pattern generation process of Section 4.4.
Thanks to its ASP-based implementation and the underly-
ing optimization tools, WOLED-ASP is able to perform the
search for new CE patterns, while taking into account the
contribution of the weights of existing ones in approximat-
ing the true state of an interpretation It. As a result, it
generates new patterns only when this does indeed result in
a better approximation of the true state, given the existing
weighted patterns. In contrast, WOLED-MLN, lacks this abil-
ity. It generates a bottom theory H⊥ from the erroneously
predicted atoms, and then attempts to gradually learn a high-
quality CE pattern from the rules therein, regardless of their
quality. In comparison, WOLED-ASP’s strategy may lead, in
principle, to simpler theories of more meaningful rules and
lower online error (i.e. better prequential performance). The
results in Table 3 seem to validate this claim. WOLED-ASP
achieves the best prequential performance among all com-
pared approaches. It also achieves superior cross-validation
performance, as compared to WOLED-MLN (test set F1-

scores), which indicates that its new CE pattern generation
strategy affects its ability to generalize. Moreover, WOLED-
ASP learns simpler CE patterns sets, as shown by the the-
ory size statistic. OLED lacks the ability for weight learn-
ing, while HandCrafted-WL does not update the CE pat-
terns’ structure, which explains their inferior prequential and
cross-validation performance. The trade-off is their lower
training times.

Regarding efficiency, it may be seen by comparing infer-
ence times to total training times, that the dominant cost is
related to structure learning tasks (recall that total training
times factor-in such costs). Yet, in comparison to WOLED-
MLN, WOLED-ASP achieves significantly lower costs for
MAP inference, which approximate the cost of OLED’s
crisp logical inference. In addition to its more sophisti-
cated CE pattern creation strategy, which tends to generate
fewer CE patterns of high quality, this results in WOLED-
ASP being significantly more efficient than WOLED-MLN.
Note also, that an additional, not negligible cost for WOLED-
MLN stems from the necessity of predicate completion.

6 Conclusions & Future Work

We presented an online algorithm for learning complex
event patterns in the form of weighted Event Calculus rules.
Our system is entirely implemented in Answer Set Program-
ming and it is capable of combining temporal reasoning
under uncertainty via probabilistic logical inference, with
online structure and weight learning techniques. Our em-
pirical evaluation on three CE datasets indicates that it is
significantly more efficient than an implementation based
on Markov Logic Networks, while achieving superior on-
line predictive performance and having better generaliza-
tion abilities. Future work involves combination of semi-
supervised/active learning strategies, capable of handling
the scarcity of labeled data in streaming settings.
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