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Abstract

In this paper we advocate the use of Inductive Logic Program-
ming as a device for explaining black-box models, e.g. Sup-
port Vector Machines (SVMs), when they are used to learn
user preferences. We present a case study where we use the
ILP system ILASP to explain the output of SVM classifiers
trained on preference datasets. Explanations are produced in
terms of weak constraints, which can be easily understood by
humans. We use ILASP both as a global and a local approxi-
mator for SVMs, score its fidelity, and discuss how its output
can prove useful e.g. for interactive learning tasks and for
identifying unwanted biases when the original dataset is not
available. Finally, we highlight directions for further work
and discuss relevant application areas.

1 Introduction
In recent years, there has been a sharp increase of Machine
Learning algorithms that are able to match or even exceed
human performance in a variety of tasks. Although they
are able to carry out complex tasks, these reasoning sys-
tems are often regarded as black-boxes, whose internal struc-
ture and functioning cannot be easily translated to human-
understandable sentences. This issue has raised concern
about the applicability, transparency and reproducibility of
these black-box models to scenarios in which taking bad
decisions can lead to severe consequences, most notably in
medical applications, where no trade-offs between accuracy
of the model and its interpretability are possible (He et al.
2019). For this reason, the General Data Protection Regula-
tion (GDPR)1 introduced the right to an explanation, which
aims at guaranteeing the right to obtain meaningful expla-
nations of the logic involved by an automated system to all
the individuals potentially affected by its decisions. This
much debated principle has provided strong rationale not
only to develop transparent Machine Learning algorithms
(i.e., algorithms that, by design, can provide explanations
for their own decisions), but also to post-hoc methods that
automatically extract the logic behind decisions taken by
black-box models (see (Guidotti et al. 2018) for a survey
of such methods). Transparent systems trade-off between
accuracy and ability to explain. On the other hand, post-hoc
methods do not alter the black-boxes’ accuracy, and seek to

1https://eur-lex.europa.eu/eli/reg/2016/679/oj

reconstruct explanations for their output that aim to be as
clear and correct as possible. In this work we follow the
latter approach and propose a post-hoc method to explain
black-box models for preference learning using Answer Set
Programming (ASP) (Calimeri et al. 2020) and the state-
of-the-art Inductive Logic Programming framework ILASP
(Law, Russo, and Broda 2014; Law, Russo, and Broda 2015;
Law, Russo, and Broda 2018). The standard syntax of
ASP defines complex constructs such as weak constraints
(Calimeri et al. 2020), that can be used to naturally ex-
press preference relations. In turn, these preferences can
be learned by ILASP. Thanks to its ability to generalise
from examples, the output of any black-box can be pro-
cessed by ILASP in order to find an appropriate ASP pro-
gram that mimics its behaviour. There are many advan-
tages to this procedure: first, ASP programs can be read-
ily translated into natural language that can be understood
even by non-experts. Second, it can be used to overcome
a major issue of non-transparent Machine Learning mod-
els: these are in fact often trained on enormous amounts of
data which may encode unwanted (moral, racial) biases or
artefacts (see e.g. (Caliskan, Bryson, and Narayanan 2017;
Schramowski et al. 2020)). In situations where only the
black-box model is available (and not the data it was trained
on) logic-based method may expose such systematic biases
by e.g. showing that decisions are being taken according to
prejudices or unfair principles.

2 Background and Related Work
In this section we briefly overview related work, and demon-
strate basic definitions from Explainable AI (XAI), Answer
Set Programming (ASP) and Inductive Logic Programming
(ILP).

XAI is a quickly growing field of study (see e.g. (Guidotti
et al. 2018) for a survey) that aims to generate human-
understandable explanations for decisions taken by black-
boxes. However, little attention has been paid so far to
ILP approaches within the field of XAI. Some examples
are (Rabold, Siebers, and Schmid 2018; Rabold et al. 2020)
and (Shakerin and Gupta 2019). These works, similarly to
ours, demonstrate the use of an ILP framework for local
explanation of black-boxes using a modification of LIME
(Ribeiro, Singh, and Guestrin 2016). Unlike our approach,
these works use the Prolog-based system Aleph (Srinivasan
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2004) as their ILP system. Our work, instead, is based
on the ILP system ILASP which has been proven to scale
favourably with respect to Aleph in terms of accuracy in a
variety of tasks (Law, Russo, and Broda 2018). A further
major difference is that our approach focuses specifically on
ranking and preference learning tasks, in which one typi-
cally wants to predict an order relation on a collection of
objects, e.g. “The user prefers fish over vegetables”. It is
worth noting here that ILP is only one of the possible ap-
proaches to generate explanations – other methods such as
Exceptional Preferences Mining (Rebelo de Sá et al. 2016)
and LIME (Ribeiro, Singh, and Guestrin 2016) are possible.
We intend to investigate their relationships with ILASP in
forthcoming work.

Our work is based on model-theoretic logic programming
language ASP. As we previously mentioned, a feature of
ASP that is central to our work is that it can represent weak
constraints. We briefly show their general form, and then
provide the intuition behind their semantics through an ex-
ample.

Weak constraints have the form:

:˜ b1, ..., bn [w@l, t1, ..., tm]

for terms t1, . . . , tm, w, l, literals b1, . . . , bn for m≥ 0,
n≥ 0. Terms w and l are called weight and level of the con-
straint, respectively. Terms t1, . . . , tm are used to handle
independence among weak constraints2. Unlike hard con-
straints, weak constraints do not affect the answer sets of
a theory. Instead, they induce a preference relation among
them. Intuitively, each answer set satisfying the body of a
weak constraint gets a penalty that is proportional to that
weak constraint’s weight. For instance, consider the ASP
program P consisting of the following axioms:

p(a). p(b). p(c).
0{ q(X) }1 :- p(X).

This theory has 8 answer sets, namely: {p(a), p(b), p(c)},
{p(a), p(b), p(c), q(b)}, {p(a), p(b), p(c), q(c)}, {p(a),
p(b), p(c), q(b), q(c)}, {p(a), p(b), p(c), q(a)}, {p(a), p(b),
p(c), q(a), q(c)}, {p(a), p(b), p(c), q(a), q(b)} and {p(a),
p(b), p(c), q(a), q(b), q(c)}. Augmenting P with the fol-
lowing weak constraints:

:˜ q(a). [1@2, a]
:˜ q(b). [3@1, b]
:˜ q(c). [-1@2, c]

results again in the 8 answer sets above, since answer sets are
not modified by weak constraints. We denote the resulting
augmented theory by P+.

To describe the preference relation induced by these weak
constraints, we first introduce the notion of cost of an answer
set at some priority level l. This is defined as the sum of
weights at priority level l for all the weak constraints such
that their bodies are satisfied by the answer set. For instance,
answer set {p(a), p(b), p(c), q(a), q(b), q(c)} satisfies all the

2We are not going to discuss this syntax here, since all weak
constraints in the remainder of this paper are independent from
each other. The interested reader can find the full syntax and se-
mantics in (Calimeri et al. 2020).

bodies of weak constraints in P+. Therefore its cost at prior-
ity level 2 is 0 (which results from adding the weights of the
first and third constraint above), whereas its cost at priority
level 1 is 3.

We say that an answer set A is preferred to an answer set
B (according to theory T ) if the cost of A is strictly smaller
than that ofB at the highest level for which their costs differ.
For an ASP theory T this is written A �T B.

Recall theory P+ above, and consider an-
swer sets A1 = {p(a), p(b), p(c)} and A2 =
{p(a), p(b), p(c), q(a), q(b), q(c)}. Note that A1 does
not satisfy any of the bodies of the weak constraints
in P+, therefore its cost is 0 at all priority levels. On
the other hand, A2 satisfies all the bodies of such weak
constraints, therefore its cost at priority level 2 is 0,
and its cost at level 1 is 3. Therefore, these two an-
swer sets differ at priority level 1, and we conclude that
A1 �P+ A2. It is worth noting that negative weights can
be assigned to weak constraints. Therefore, for instance,
{p(a), p(b), p(c), q(c), q(b)} �P+ {p(a), p(b), p(c)}.

Weak constraints can be learned using ILASP (Law,
Russo, and Broda 2014). To our knowledge, ILASP is the
only ILP system that, to date, can learn weak constraints
from examples, i.e. ordered pairs of partial answer sets (Law,
Russo, and Broda 2015), and therefore it can naturally be ap-
plied to preference learning tasks. It should be noted that this
generality comes at an increased computational cost with re-
spect to other ILP languages that do not support them. In a
nutshell, the user can provide ILASP with a number of or-
dered pairs, such that the user always prefers the first ele-
ment of the pair to the second. ILASP, given some addi-
tional background knowledge (the language bias) required
to define the hypothesis space, will find a suitable theory
(including weak constraints) that covers the examples in the
input set of preferences. ILASP also works in the case of
noisy data, that is, when not all the examples can be cov-
ered. Instead, theories that does not cover some of the ex-
amples are given a (user-customisable) penalty by ILASP,
which then tries to find the theory in the hypothesis space
that is minimally penalised. We use ILASP version 3 which
is specifically targeted to noisy learning tasks (Law, Russo,
and Broda 2018).

Finally, we make a terminological remark. In Explainable
AI terminology (Guidotti et al. 2018), the extent up to which
a transparent model (ILASP, in our case) is able to imitate
a black-box model is known as fidelity. In the remainder of
this paper, we use and measure fidelity in terms of accuracy
scores.

3 Explaining Black-boxes With ILASP
Similarly to other work on Machine Learning techniques for
small preference datasets (see e.g. (Qomariyah and Kaza-
kov 2017; Law, Russo, and Broda 2018)), we demonstrate
our proposed approach by applying it to Support Vector Ma-
chines (SVMs) trained on the SUSHI preference dataset3
(Kamishima 2003). The SUSHI preference dataset com-
prises sushi preferences of 5000 users. Each user was asked

3http://www.kamishima.net/sushi/
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Feature Type Range ASP Encoding
style cat {0,1} maki/nothing

major group cat {0,1} seafood/nothing
minor group cat {0, . . . , 11} minor_group(·)

oiliness cont [0, 4] value(oil,·)
frequency cont [0, 3] value(freq,·)

price cont [0, 5] value(price,·)
frequency2 cont [0, 1] value(freq2,·)

Table 1: Features of the SUSHI dataset. Types “cat” and “cont”
correspond to categorical and continuous variables, respectively.
Feature “style” indicates whether the sushi is maki (0) or not (1),
“major group” indicates whether it is made with seafood (0) or
not (1), “minor group” describes the subcategory (aomono, akami,
shiromi, tare, clam or shell, squid or octopus, shrimp or crab, roe,
other seafood, egg, meat, vegetables), “frequency” indicates how
often the sushi is eaten and “frequency2” how frequently it is sold.

to rank 10 types of sushi (ebi, anago, maguro, ika, uni, tako,
ikura, tamago, tekka maki and kappa maki) in the form of
a total ordering. Each sushi is associated to the 7 features
described in Table 1. We considered a subset of 10 users.
For each of them, we trained an SVM (with polynomial ker-
nel) to learn his/her preferences. Given two sushi items, the
trained SVM guesses which sushi is preferred over the other
according to the user. For instance, if B is an SVM (or,
more generally, any kind of black-box) trained on a user’s
preferences and Q = (ika, tamago) is a query, the output
of the SVM B(Q) = 1 (resp. B(Q) = −1) means that the
SVM thinks that the user prefers sushi type ika over sushi
type tamago (resp. the user prefers tamago over ika).

Note that as far as we are concerned, accuracy scores of
the SVMs on the underlying dataset are not relevant, as we
are working under the hypothesis that the dataset may not be
available4.

We have tested ILASP both as a global and local approx-
imator for the SVM.

ILASP as global approximator: In the case of global
approximation, one is concerned with finding a transparent
representation of the whole black-box, i.e. the logic that may
lead to every possible outcome or decision. The procedure
for using ILASP as a global approximator of a preference
learning system is given in Algorithm 1. It samples N pairs
of items at random from the feature space. Each pair (i1, i2)
is collected in a list O together with the black-box’s predic-
tion B(i1, i2). Note that, thanks to the information recorded
in B(i1, i2), the set O can be considered as a set ordered
pairs (or examples, in the terminology introduced in Section
2) such that the first element of the pair is always preferred
to the second element by the underlying black-box. ILASP
is then trained on these ordered pairs in O using an appro-
priate language bias L.

An output theory for our example is:

:˜ minor_group(3). [1@5, 5]
:˜ minor_group(1). [1@4, 3]

4For reference, SVM with a polynomial kernel reached an ac-
curacy of ≈ 80.4% using 10-folds cross validation on the first 10
users of the dataset

Algorithm 1 ILASP as a global black-box approximator
Input: Black-box B, language bias L, natural number N
Output: An ASP theory TB

1: O ← {}
2: for j ∈ {1, 2, . . . , N} do
3: i1 ← randomly sample from feature space()
4: i2 ← randomly sample from feature space()
5: O ← O ∪ ((i1, i2), B(i1, i2))
6: end for
7: TB ← ILASP(L,O)
8: return TB

:˜ seafood. [1@3, 2]
:˜ value(price,V0), maki. [V0@2, 4, V0]
:˜ minor_group(9). [-1@1, 1]

meaning that, according to ILASP, the SVM seems to think
that (in order of priority) the User 1 does not like sushis of
minor groups 3 and 1, that s/he does not like seafood sushi,
that s/he does not like expensive sushis of style maki, and
that s/he likes sushis of minor group 9.

The graph on Figure 1 plots the fidelity of ILASP as a
function of the number of items it is trained on. Note that,
based on a theory, it is not always possible to decide whether
a particular type of sushi is preferred over another as dif-
ferent items may get the same penalty score. For example,
the output theory above does not allow one to decide which
sushi is preferred between two non-maki, non-seafood sushi
of minor group 0. We refer to these pairs as unclassified
pairs. In Figure 1 we plot both the fidelity for the case where
unclassified pairs are regarded as errors, and the fidelity for
the case where unclassified pairs are simply discarded and
are not considered when computing the fidelity.

ILASP as a local approximator: A local approximator
for a black-box B, a query Q and an associated distance
metric πQ produces an ASP theory TB,Q that seeks to ex-
plain why the black-box B produces output B(Q) on input
Q. The procedure for using ILASP as a local approximator
is given in Algorithm 2 and it is a modification of the LIME
method (Ribeiro, Singh, and Guestrin 2016). It departs from
Algorithm 1 in that the two items i1 and i2 are obtained by
sampling around Q (compare lines 3 and 4 of Algorithm
1 with line 3 of Algorithm 2), meaning that pairs that are
closer to Q according to a user-defined distance metric πQ
have a greater probability of being sampled. In addition,
these distances are recorded in list O and we make ILASP
to take them into account during the training phase. Theo-
ries that cover examples that are far from Q are penalised
more than theories that cover examples that are close to Q.
Pairs of items (i1, i2) are weighted by considering a distance
metric πQ(i1, i2) to calculate their distance from Q. In our
experiments we considered the following metric:

πQ(i1, i2) =
∑

j∈{1,2}

√∑
f

(d(ij(f), qj(f)))
2

where ij(f) is the value of feature f for item ij , and
d(ij(f), qj(f)) evaluates to ij(f)− qj(f) when f is a con-
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Figure 1: Fidelity of ILASP as a global approximator vs. cardinal-
ity of training set

tinuous feature, whereas it evaluates to

d(ij(f), qj(f)) =

{
0 if ij(f) = qj(f)

3 otherwise

when f is a categorical feature5. During the training phase,
we make ILASP take into account distances by making the-
ories that do not cover a pair (i1, i2) pay a penalty that is
inversely proportional to the distance of (i1, i2) from Q.

As an illustration, consider the following pair of items
Q = (q1, q2): q1 = [style = 1, major group =
0, minor group = 11, oiliness = 4, frequency =
0, price = 2, frequency2 = 0] and q2 = [style =
1, major group = 0, minor group = 6, oiliness =
3, frequency = 1, price = 3, frequency2 = 0]. Our
local approximator procedure, when run on an SVM trained
on User 3’s preferences, produces the following output:
:˜ value(freq,V0),

minor_group(11).[-V0@4, 3, V0]
:˜ value(oil,V0).[-V0@2, 2, V0]
:˜ minor_group(6).[1@1, 1]

This ASP theory provides information about why q1 is pre-
ferred over q2 by the SVM. In fact, it seems that in a
neighbourhood of Q the SVM gives maximum priority to
the items of minor group 11 with high non-zero frequency.
However, although q1 is of minor group 11, it has frequency
0. The second priority is to maximise oiliness. Sushi q1 has
higher oiliness than q2. According to ILASP, this is why the
SVM prefers q1 to q2. In addition, the third weak constraint
gives more information on what is preferred when two sushis
also have the same oiliness.

The example above shows that it is not always the case
that all weak constraints contribute towards explaining why

5We chose 3 as an arbitrary value for distance between cate-
gorical features, as ILASP works with integer weights and 3 was a
reasonable choice given the ranges of continuous features defined
in Table 1

Algorithm 2 ILASP as a local black-box approximator
Input: Black-box B, language bias L, natural number N ,

Query Q to be explained, distance πQ
Output: An ASP theory TB,Q

1: O ← {}
2: for j ∈ {1, 2, . . . , N} do
3: i1, i2 ← sample around(Q)
4: O ← O ∪ ((i1, i2), B(i1, i2), πQ(i1, i2))
5: end for
6: TB,Q ← ILASP(L,O)
7: return TB,Q

a sushi is preferred over another: for instance, the reader
may verify that axiom
:˜ value(freq,V0),

minor_group(11).[-V0@4, 3, V0]

above does not help differentiating between items q1 and q2,
as it assigns a penalty of 0 to both these sushis.

Note that this does not constitute a limitation: it is rather
the case that sometimes too many axioms are being pro-
duced by ILASP in the output theory. Therefore, to improve
readability, one might want to filter out these constraints and
only output those that are relevant to the local explainability
task, e.g. one might want to output only the weak constraint

:˜ value(oil,V0). [-V0@2, 2, V0]

in this case.
To score the fidelity of our ILASP-based local approxima-

tor we performed an experiment where we considered pairs
sampled from a neighborhood of Q, both during the train-
ing and the testing of ILASP (with disjoint training and test
sets). Running Algorithm 2 for the first 10 users on a train-
ing set of cardinality 45 for 100 times on random queries
resulted in ≈ 91% fidelity and ≈ 0.04 standard deviation.

4 Conclusion
In this work, we performed preliminary experiments on
the use of ILP for explaining black-box learning systems.
Specifically, we tested the ILASP framework both as global
and local approximator of a classic machine learning algo-
rithm (SVM), trained to classify user’s preferences regard-
ing sushi. When employed as global estimator, our approach
achieved 75.5% and 78.3% of fidelity considering unclassi-
fied data as errors or not taking it in account, respectively.
Best results were obtained by training the system with a set
of about 80 samples (dichotomic preferences), but, as shown
in Figure 1, after 45 samples, fidelity values both converge
to a plateau (71.0% - 74.2%). For this reason, we chose 45
as training set size for testing our local approximator. In this
case ILASP scored an average fidelity of 91.0%, producing
a quite good local explanation for SVM queries. At the mo-
ment, fidelity is the only metric we adopt to evaluate our
approach. If, in addition, absolute preferences of the users
were available (e.g., “User1 rates oily sushis 7 out of 10”)
we would be able to validate output theories on them. For
this reason, we plan to build a dataset that also includes such
information.
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Ongoing work includes efforts to incorporate fragments
of this framework, alongside machine learning black-
boxes and other logic-based systems (D’Asaro et al. 2017;
D’Asaro et al. 2020), into a decision-making support sys-
tem in the context of healthcare project AVATEA (D’Asaro,
Origlia, and Rossi 2019). The project requires to take de-
cisions and provide natural language explanations and feed-
back about users’ preferred rehabilitation strategies. Often,
these decision are taken by black-box classifiers, and be-
ing able to provide therapists with useful information about
them is a non-trivial task that can be addressed using some
of the techniques described here.

Beside its explanation power, the proposed method could
be useful to discover unwanted biases and artefacts in the
training set the black-box was originally trained upon. This
could make black-boxes users aware of such biases and en-
able them to provide feedback on such explanations (e.g., it
might be the case that a user disagrees with the decisions
taken). This could in principle be used to interact with the
user and ask him/her to provide more data if such biases
seem to be present. Following this idea, future developments
will include the gathering of a large dataset, also featuring
meta-information on the user preferences about items’ fea-
tures.
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