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Abstract

We consider the compilation of a binary neural network’s de-
cision function into tractable representations such as Ordered
Binary Decision Diagrams (OBDDs) and Sentential Decision
Diagrams (SDDs). Obtaining this function as an OBDD/SDD
facilitates the explanation and formal verification of a neural
network’s behavior. First, we consider the task of verifying
the robustness of a neural network, and show how we can
compute the expected robustness of a neural network, given
an OBDD/SDD representation of it. Next, we consider a
more efficient approach for compiling neural networks, based
on a pseudo-polynomial time algorithm for compiling a neu-
ron. We then provide a case study in a handwritten digits
dataset, highlighting how two neural networks trained from
the same dataset can have very high accuracies, yet have very
different levels of robustness. Finally, in experiments, we
show that it is feasible to obtain compact representations of
neural networks as SDDs.

1 Introduction
Recent progress in artificial intelligence and the increased
deployment of AI systems have highlighted the need for
explaining the decisions made by such systems; see, e.g.,
(Baehrens et al. 2010; Ribeiro, Singh, and Guestrin 2016b;
Ribeiro, Singh, and Guestrin 2018; Lipton 2018; Shih, Choi,
and Darwiche 2018b; Ignatiev, Narodytska, and Marques-
Silva 2019b; Darwiche and Hirth 2020).1 For example, one
may want to explain why a classifier decided to turn down
a loan application, or rejected an applicant for an academic
program, or recommended surgery for a patient. Answer-
ing such why? questions is particularly central to assign-
ing blame and responsibility, which lies at the heart of legal
systems and is further a requirement in certain contexts.2
The formal verification of AI systems has also come into fo-
cus recently, particularly when such systems are deployed in
safety-critical applications.

We propose a knowledge compilation approach for ex-
plaining and verifying the behavior of a neural network clas-

1It is now recognized that opacity, or lack of explainability is
“one of the biggest obstacles to widespread adoption of artificial
intelligence” (The Wall Street Journal, August 10, 2017).

2Take for example the European Union general data protection
regulation, which has a provision relating to explainability, http:
//www.privacy-regulation.eu/en/r71.htm.

sifier. Knowledge compilation is a sub-field of AI that stud-
ies in part tractable Boolean circuits, and the trade-offs be-
tween succinctness and tractability (Selman and Kautz 1996;
Cadoli and Donini 1997; Darwiche and Marquis 2002; Dar-
wiche 2014). By enforcing different properties on the struc-
ture of a Boolean circuit, one can obtain greater tractability
(the ability to perform certain queries and transformations in
polytime) at the possible expense of succinctness (the size
of the resulting circuits). Our goal is to compile the Bool-
ean function specified by a neural network into a tractable
Boolean circuit that facilitates explanation and verification.

We consider neural networks whose inputs are binary
(0/1) and that use step activations. Such a network would
have real-valued parameters, but the network itself induces
a purely Boolean function. We seek a tractable Boolean cir-
cuit that represents this function, which we obtain in two
steps. First, note that neurons with step activations and bi-
nary inputs then produce a binary output—each neuron in-
duces its own Boolean function. Using, e.g., the algorithm
of (Chan and Darwiche 2003) we can obtain a tractable cir-
cuit for a given neuron’s Boolean function. The neural net-
work then induces a Boolean circuit, although it may not
be tractable. Thus, we compile this circuit into a tractable
one by enforcing additional properties on the circuit until
certain operations become tractable, as done in the field of
knowledge compilation. We then explain the decisions and
verify the properties of this circuit, as done in (Shih, Choi,
and Darwiche 2018b; Shih, Choi, and Darwiche 2018a); cf.
(Darwiche and Hirth 2020).

Our approach follows a recent trend in analyzing machine
learning models using symbolic approaches such as satis-
fiability and satisfiability modulo theory; see, e.g., (Katz
et al. 2017; Leofante et al. 2018; Narodytska et al. 2018;
Shih, Choi, and Darwiche 2018b; Ignatiev, Narodytska, and
Marques-Silva 2019a; Ignatiev, Narodytska, and Marques-
Silva 2019b; Shih, Darwiche, and Choi 2019; Audemard,
Koriche, and Marquis 2020). While machine learning and
statistical methods are key for learning classifiers, it is clear
that symbolic and logical approaches, which are indepen-
dent of any of the models parameters, are key for analyzing
and reasoning about them. Our approach, based on compila-
tion into a tractable Boolean circuit, can go beyond queries
based on (for example) satisfiability, as we shall show.

This paper is organized as follows. In Section 2, we re-
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Figure 1: A neural network and a neuron. A sigmoid activation
σ(x) = 1

1+exp{−x} acts as a soft threshold which tends to 0 and 1
as x goes to −∞ and∞, respectively. A ReLU activation σ(x) =
max(0, x) outputs 0 if x < 0 and outputs x otherwise.

view relevant background material. In Section 3, we show
how to reduce neural networks to Boolean circuits by com-
piling each neuron into a Boolean circuit. In Section 4, we
discuss how to obtain tractable circuits, via knowledge com-
pilation. In Section 5, we show how a tractable circuit en-
ables one to reason about the robustness of a neural network.
In Section 6, we provide a case study with experimental re-
sults and finally conclude with a discussion in Section 7.

2 Technical Preliminaries
A feedforward neural network is a directed acyclic graph
(DAG); see Figure 1a. The roots of the DAG are the neural
network inputs, call them X1, . . . , Xn. The leaves of the
DAG are the neural network outputs, call them Y1, . . . , Ym.
Each node in the DAG is called a neuron and contains an
activation function σ; see Figure 1b. Each edge I in the
DAG has a weight w attached to it. The weights of a neural
network are its parameters, which are learned from data.

In this paper, we assume that the network inputs Xi are
either 0 or 1. We further assume step activation functions:

σ(x) =

{
1 if x ≥ 0
0 otherwise

A neuron with a step activation function has outputs that are
also 0 or 1. If the network inputs are also 0 or 1, then this
means that the inputs to all neurons are 0 or 1. Moreover,
the output of the neural network is also 0 or 1. Hence, each
neuron and the network itself can be viewed as a function
mapping binary inputs to a binary output, i.e., a Boolean
function. For each neuron, we shall simply refer to this func-
tion as the neuron’s Boolean function. When there is a single

A

B

C

B

1 0

(a) An OBDD
A B C

(b) A circuit

Figure 2: An OBDD and circuit representation of a neuron σ(A+
B − C − 1) where σ is a step activation function.

output Y , we will simply refer to the corresponding function
as the network’s Boolean function.

3 From Neural Networks to Boolean Circuits
Consider a neuron with step activation function σ, inputs Ii,
weights wi and bias b. The output of this neuron is simply

σ(
∑
i

wi · Ii + b) =

{
1 if

∑
i wi · Ii + b ≥ 0

0 otherwise (1)

As an example, consider a neuron with 3 inputs A,B and C
with weights w1 = 1.15, w2 = 0.95 and w3 = −1.05 and a
bias of −0.52. This neuron outputs 1 iff:

1.15 ·A+ 0.95 ·B − 1.05 · C ≥ 0.52

Treating a value of 1 as true and a value of 0 as false, we can
view this neuron as a Boolean function f(A,B,C) whose
output matches that of the neuron, on inputs A,B and C.
Figure 2 highlights two logically equivalent representations
of this neuron’s Boolean function. Figure 2a highlights an
Ordered Binary Decision Diagram (OBDD) representation3

and Figure 2b highlights a circuit representation. These
functions are equivalent to the sentence:

[¬C ∧ (A ∨B)] ∨ [C ∧A ∧B],

i.e., if C is 0 then A or B must be 1 to meet or surpass the
threshold (≥ 0), and if C is 1 then both A and B must be 1.

OBDDs, as in Figure 2a, are tractable representations—
they support many operations in time polynomial (and typi-
cally linear) in the size of the OBDD (Bryant 1986; Meinel

3An Ordered Binary Decision Diagram (OBDD) is a rooted
DAG with two sinks: a 1-sink and a 0-sink. An OBDD is a
graphical representation of a Boolean function on variables X =
{X1, . . . , Xn}. Every OBDD node (but the sinks) is labeled with a
variable Xi and has two labeled outgoing edges: a 1-edge and a 0-
edge. The labeling of the OBDD nodes respects a global ordering
of the variables X: if there is an edge from a node labeled Xi to a
node labeledXj , thenXi must come beforeXj in the ordering. To
evaluate the OBDD on an instance x, start at the root node of the
OBDD and let xi be the value of variableXi that labels the current
node. Repeatedly follow the xi-edge of the current node, until a
sink node is reached. Reaching the 1-sink means x is evaluated to
1 and reaching the 0-sink means x is evaluated to 0 by the OBDD.
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and Theobald 1998; Wegener 2000). Circuits, as in Fig-
ure 2b, are not in general tractable as OBDDs, although we
will later seek to obtain tractable circuits through knowledge
compilation, a subject which we will revisit in more depth
in Section 4. Note further that OBDDs are also circuits that
are notated more compactly.4

Our first goal is to obtain a tractable circuit representa-
tion of a given neuron. First, consider the following class of
threshold-based linear classifiers.

Definition 1. Let X be a set of binary features where each
feature X in X has a value x ∈ {0, 1}. Let x denote an
instantiation of variables X. Consider functions f that map
instantiations x to a value in {0, 1}. We call f a linear clas-
sifier if it has the following form:

f(x) =

{
1 if

∑
x∈x wx · x ≥ T

0 otherwise (2)

where T is a threshold, x ∈ x is the value of variable X
in instantiation x, and where wx is the real-valued weight
associated with value x of variable X .

Note that such classifiers are also Boolean functions. The
following result, due to (Chan and Darwiche 2003), gives us
a way of obtaining a tractable circuit representing the Bool-
ean function of such classifiers.

Theorem 1. A linear classifier in the form of Equation 2 can
be represented by an OBDD of sizeO(2

n
2 ) nodes, which can

be computed in O(n2
n
2 ) time.

(Chan and Darwiche 2003) further provided an algorithm
to obtain the result of Theorem 1, although much more effi-
ciently than what the bounds suggest. It was originally for
compiling naive Bayes classifiers to Ordered Decision Dia-
grams (ODDs). However, this algorithm applies to any clas-
sifier of the form given by Equation 2, which includes naive
Bayes classifiers, but also logistic regression classifiers, as
well as neurons with step activation functions (Elkan 1997).

Compiling a linear classifier such as a neuron or a naive
Bayes classifier is NP-hard (Shih, Choi, and Darwiche
2018b), hence algorithms, such as the one from (Chan and
Darwiche 2003), are unlikely to have much tighter bounds.
However, we can significantly tighten this bound if we make
additional assumptions about the classifier’s parameters.

Theorem 2. Consider a linear classifier in the form of
Equation 2, where the weights wx and threshold T are in-
tegers. Such a classifier can be represented by an OBDD
of size O(nW ) nodes, and compiled in O(nW ) time, where
W = |T |+

∑
x |wx| is a sum of absolute values.

While this result is known, Appendix A provides a construc-
tion for completeness.5 Note that the integrality assumption
of Theorem 2 can be applied to classifiers with real-valued

4An OBDD node labeled by variable X and with children fx
and fx̄ is equivalent to the circuit fragment (x ∧ fx) ∨ (x̄ ∧ fx̄).

5This result appears, for example, as an exercise in https:
//www.cs.ox.ac.uk/people/james.worrell/lectures.html. This result
also falls as a special case of (Chubarian and Turan 2020), which
showed how to compile tree-augmented naive Bayes classifiers into
OBDDs, where a naive Bayes classifier is a special case.
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(a) neural network
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(b) circuit of neuron
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(c) circuit of network

Figure 3: A neural network, the circuit of a single neuron, and the
circuit of the original network. Wires highlighted in red and blue
correspond to the inputs A and B, respectively.

weights by multiplying the parameters by a constant and
then truncating (i.e., the parameters have fixed precision).
As we show later, this pseudo-polynomial time algorithm
enables the compilation of neurons, and ultimately neural
networks, with hundreds of features. This is in contrast to
the preliminary work of (Choi et al. 2019), which was based
on the algorithm of (Chan and Darwiche 2003) for compil-
ing neurons that scaled only to dozens of features.

Now that we can compile each neuron into a (tractable)
Boolean circuit, the whole neural network will then induce
a Boolean circuit as illustrated in Figure 3. That is, for
the given neural network in Figure 3a, each neuron is com-
piled into a Boolean circuit as in Figure 3b. The circuits for
neurons are then connected according to the neural network
structure, leading to the Boolean circuit in Figure 3c, where
the circuit of each neuron is portrayed as a block.

Using the algorithm of (Chan and Darwiche 2003), the
Boolean circuit that we obtain from a neuron is tractable.
The network’s Boolean circuit, that we construct from the
Boolean circuits of the neurons, may not be tractable how-
ever. To use the explanation and verification techniques pro-
posed in (Shih, Choi, and Darwiche 2018b; Shih, Choi, and
Darwiche 2018a), we require a tractable circuit; cf. (Dar-
wiche and Hirth 2020). We next show how to obtain such a
circuit using tools from the field of knowledge compilation.

4 Tractability via Knowledge Compilation
In this section, we provide a short introduction to the do-
main of knowledge compilation, and then show how we can
compile a neural network into a tractable Boolean circuit.

We follow (Darwiche and Marquis 2002), which consid-
ers tractable representations of Boolean circuits, and the
trade-offs between succinctness and tractability. In partic-
ular, they consider Boolean circuits of and-gates, or-gates
and inverters, but where inverters only appear at the inputs
(hence the inputs of the circuit are variables or their nega-
tions). This sub-class of circuits is called Negation Normal
Form (NNF) circuits. Any circuit with and-gates, or-gates
and inverters can be efficiently converted into an NNF cir-
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Figure 4: Containment of four complexity classes: NP ⊆ PP ⊆
NPPP ⊆ PPPP. Their canonical problems are labeled in blue.

cuit while at most doubling its size.
By imposing properties on the structure of NNF circuits,

one can obtain greater tractability (the ability to perform
certain operations in polytime) at the possible expense of
succinctness (the size of the resulting circuit). To moti-
vate this trade-off, consider Figure 4, which highlights the
containment relationship between four complexity classes.
The “easiest” class is NP, and the “hardest” class is PPPP.
The canonical problems that are complete for each class all
correspond to queries on Boolean expressions. One popu-
lar computational paradigm for solving problems in these
classes is to reduce them to the canonical problem for that
class, and to compile the resulting Boolean expressions to
circuits with the appropriate properties.67 For example, (Oz-
tok, Choi, and Darwiche 2016) shows how to solve PPPP-
complete problems by reduction to MajMajSAT queries on
a specific tractable class of Boolean circuits.

Consider now a property on NNF circuits called decom-
posability (Darwiche 2001a). This property asserts that the
sub-circuits feeding into an and-gate cannot share variables.
An NNF circuit that is decomposable is said to be in De-
composable Negation Normal Form (DNNF). In a DNNF
circuit, testing whether the circuit is satisfiable can be done
in time linear in the size of the circuit. Another such prop-
erty is determinism (Darwiche 2001b). This property asserts
that for each or-gate, if the or-gate outputs 1 then exactly one
of its input is 1. A DNNF circuit that is also deterministic is
called a d-DNNF. The circuit in Figure 2b is an example of a
d-DNNF circuit. In a d-DNNF circuit, counting the number
of assignments that satisfy the circuit can be done in time
linear in the size of the circuit, assuming the circuit also sat-
isfies smoothness (Darwiche 2003).8 Hence, with these first
two properties, we can solve the canonical problems in the
two “easiest” classes illustrated in Figure 4.

A more recently proposed class of circuits is the Senten-
tial Decision Diagram (SDD) (Darwiche 2011; Xue, Choi,
and Darwiche 2012; Choi and Darwiche 2013). SDDs are

6For more on this paradigm, see http://beyondnp.org.
7For a video tutorial on this paradigm, “On the role of logic

in probabilistic inference and machine learning,” see https://www.
youtube.com/watch?v=xRxP2Wj4kuA

8Counting how many assignments satisfy a given circuit allows
us to tell whether a majority of them satisfy the circuit (MajSAT).

a subclass of d-DNNF circuits that assert a stronger form of
decomposability, and a stronger form of determinism. SDDs
subsume OBDDs and are exponentially more succinct (Bova
2016). SDDs support polytime conjunction and disjunction.
That is, given two SDDs α and β, there is a polytime algo-
rithm to construct another SDD γ that represents α ∧ β or
α ∨ β.9 Further, SDDs can be negated in linear time.10

These polytime operations allow a simple algorithm for
compiling a Boolean circuit with and-gates, or-gates and in-
verters into an SDD. We first obtain an SDD for each circuit
input. We then traverse the circuit bottom-up, compiling the
output of each visited gate into an SDD by applying the cor-
responding operation to the SDDs of the gate’s inputs.

SAT and MajSAT can be solved in linear time on SDDs.
Further properties on SDDs allow the problems E-MajSAT
and MajMajSAT, the two hardest problems illustrated in Fig-
ure 4, to be also solved in time linear in the size of the SDD
(Oztok, Choi, and Darwiche 2016). In our experiments, we
compiled the Boolean circuits of neural networks into stan-
dard SDDs as this was sufficient for efficiently supporting
the explanation and verification queries we are interested in.

5 On the Robustness of Classifiers
Neural networks are now ubiquitous in machine learning and
artificial intelligence, but it is increasingly apparent that neu-
ral networks learned in practice can be fragile. That is, they
can be susceptible to misclassifying an instance after small
perturbations have been applied to it (Szegedy et al. 2013;
Goodfellow, Shlens, and Szegedy 2014; Moosavi-Dezfooli,
Fawzi, and Frossard 2016; Wang et al. 2018; Zhang, Zhang,
and Hsieh 2019). Next, we show how compiling a neural
network into a tractable circuit can provide one with the abil-
ity to analyze the robustness of a neural network’s decisions.

We consider first the robustness of a binary classifier’s de-
cision to label a given instance 0 or 1. The notion of robust-
ness that we consider is based on the following question:
how many features do we need to flip from 0 to 1 or 1 to 0,
before the classifier’s decision flips? That is, we consider the
robustness of a given instance to be the (Hamming) distance
to the closest instance of the opposite label.

Definition 2 (Instance-Based Robustness). Consider a
Boolean classification function f : {0, 1}n → {0, 1} and
a given instance x. The robustness of the classification of x
by f , denoted by rf (x), is defined as follows. If f is a trivial
function (true or false), then rf (x) =∞. Otherwise,

rf (x) = min
x′:f(x′) 6=f(x)

d(x,x′)

where d(x′,x) denotes the Hamming distance between x′

and x, i.e., the number of variables on which x and x′ differ.

This notion of robustness was also considered by (Shih,
Choi, and Darwiche 2018a), who also assumed binary (or

9If s and t are the sizes of input SDDs, then conjoining or dis-
joining the SDDs takes O(s · t) time, although the resulting SDD
may not be compressed (Van den Broeck and Darwiche 2015).

10In our case study in Section 6, we used the open-source SDD
package available at http://reasoning.cs.ucla.edu/sdd/.
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categorical) features. Other notions of robustness are dis-
cussed in (Leofante et al. 2018), for real-valued features.

Given a classification function f , we refer to an instance
x as being k-robust if rf (x) = k, i.e., it takes at least k
flips of the features to flip the classification. In general, it
is intractable to compute the robustness of a classification,
unless P=NP. Consider the following decision problem:

D-ROBUST: Given function f , instance x, and integer
k, is rf (x) ≥ k?

Theorem 3. D-ROBUST is coNP-complete.

Proof. Let f be a DNF formula over n variables, and let x be
an arbitrary instantiation of these variables. Further, let ` be
a literal of a new variable. The problem is in coNP, because
it is polytime falsifiable: given a counterexample x′, we can
check in polytime thatD(x,x′) < k and that f(x′) 6= f(x).
The problem is coNP-hard since f is a tautology iff the DNF
f ∨ ` and instantiation x has robustness at least n + 1 (i.e.,
infinite). See also Footnote 14.

Theorem 3 implies that we can use a SAT solver to com-
pute the robustness of an instance relative to a Boolean func-
tion.11 Given a tractable circuit (in particular, an OBDD),
this question can also be answered in time linear in the
size of the circuit (Shih, Choi, and Darwiche 2018a).12 We
employ the algorithm given by (Shih, Choi, and Darwiche
2018a) in our case studies in Section 6.

Next, rather than consider the robustness of just one clas-
sification, we can consider the average robustness of a clas-
sification function, over all possible inputs. In other words,
we consider the expected robustness of a classifier, under a
uniform distribution of its inputs.

Definition 3 (Model-based Robustness). Consider a Bool-
ean classification function f : {0, 1}n → {0, 1}. The
model robustness of f is defined as:

mr(f) =
1

2n

∑
x

rf (x)

Let f be the classification function whose robustness we
want to assess. If f(x) = 1 we refer to x as a positive in-
stance; otherwise f(x) = 0 and we refer to x as a negative
instance. We propose Algorithm 1 for computing the model

11For a given k, we can determine if rf (x) ≤ k by first encoding
the set of instances within a distance of k away from x as a CNF
formula φ, using a standard encoding. We then encode the value
of f(x) and the neural network’s classification function as a CNF
formula ∆, using a technique similar to that by (Narodytska et al.
2018). The formula φ∧∆ is then satisfiable iff rf (x) ≤ k. Finally,
we iterate over all possible values of k (or perform binary search),
so the instance-based robustness is just the smallest value of k such
that rf (x) ≤ k (i.e., φ ∧∆ is SAT).

12The robustness of an instance y,x can be computed by the
following recurrence, which recurses on the structure of an OBDD:
rf (y,x) = min{rf |y(x), 1 + rf |ȳ(x)} where rf (x) = 0 if f is
false and rf (x) =∞ if f is true.

Algorithm 1 model-robustness(f )

input: A classifier’s Boolean function f
output: The (positive) model-based robustness mr(f)

main:
1: M,h1 ← 0, f
2: for k from 2 to n do
3: hk ←

∧
X(hk−1|x ∧ hk−1|x̄)

4: fk−1 ← hk−1 ∧ ¬hk
5: M ←M + (k − 1) ·model count(fk−1)
6: end for
7: M ←M + n ·model count(hn) {since fn ≡ hn}
8: return M

robustness of a classifier over all positive instances (the ro-
bustness of negative instances can be computed by invoking
Algorithm 1 on function ¬f ).13

Our algorithm is based on computing the set of functions
hk, which are the Boolean functions representing all pos-
itive instances x that have robustness k or higher. That
is, hk represents all instances x where f(x) = 1 and
where rf (x) ≥ k. First, h1 = f . For k = 2 we have:
h2 =

∧
X(f |x ∧ f |x̄), where f |x denotes the conditioning

of f on value x, i.e., the function that we would obtain by
setting X to true (replace every occurrence of X with true,
and in the case of f |x̄, replace X with false). Say that x
is an instance of f |x ∧ f |x̄, and thus f(x) = 1 and f(x)
remains 1 no matter how we set X . By taking the conjunc-
tion across all variables X , we obtain all instances x whose
output would not flip after flipping any single feature X .
Next, consider the robustness of the instances of h2. Some
of these instances x will become 1-robust with respect to
h2. These instances are in turn 2-robust with respect to the
original function f . More generally, we can compute hk
from hk−1, via hk =

∧
X(hk−1|x ∧ hk−1|x̄). We can now

compute the functions fk representing all of the k-robust ex-
amples of f , via fk = hk ∧ ¬hk+1. The model count of f ,
denoted by model count(f), is the number of instances x
satisfying a Boolean function f . We can then compute the
model robustness of f by:

mr(f) =
1

2n

n∑
k=1

model count(fk) · k.

Consider now the most robust instances of a function f .

Definition 4 (Maximum Robustness). Consider a Boolean
classification function f : {0, 1}n → {0, 1}, where f is
non-trivial. The maximum robustness of f is defined as:

maxr(f) = max
x

rf (x).

Note that the instances x of hk is a subset of the instances
of hk−1, as computed in Algorithm 1. Hence, the model

13Recently, (Baluta et al. 2019) proposed an approach for esti-
mating robustness using approximate model-counting, with PAC-
style guarantees. Their approach scaled to 10× 10 digits datasets;
our exact approach scales to 16× 16 digits datasets in Section 6.
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count of hk will decrease as we increase k. At a large
enough k, then hk+1, and hence also fk+1, will have no
models and will equal false. At this point, we know k is the
maximum robustness, and we can stop Algorithm 1 early.
Further, this fk gives us the set of examples that are most
robust (requiring the most number of features to flip).14

Finally, we observe that model-based robustness appears
to be computationally more difficult than instance-based ro-
bustness. In particular, the model-robustness over positive
instances can be shown to be a PP-hard problem.

D-P-MODEL-ROBUST: Given function f and integer
k, is the positive model robustness of f at least k?

Theorem 4. D-P-MODEL-ROBUST is PP-hard.

Proof. Let f be a CNF formula over n variables and let `
be a literal of a new variable. Note that model counting is
#P-complete for CNF (Valiant 1979), and that any positive
instance of the CNF f ∧ ` has a robustness of 1. It follows
that model count(f) ≥ k iff the positive model robustness
of f ∧ ` is at least k/2n+1.

To compute model-based robustness using Algorithm 1, we
must be able to negate, conjoin and condition on Boolean
functions, as well as compute their model count. Given a
circuit represented as an SDD, operations such as negation
and counting the models of an SDD can be done in time lin-
ear in the size of the SDD. Conjoining two SDDs of size s
and t takes time O(st) although a sequence of conjoin oper-
ations may still take exponential time, as in Algorithm 1.

6 A Case Study
We next provide a case study in explaining and verifying a
convolutional neural network via knowledge compilation.

6.1 (Binary) Convolutional Neural Networks
In our case study, we consider binary convolutional neural
networks (binary CNNs).15 That is, if we assume binary
inputs and step activations, then the outputs of all neurons
are binary, and the output of the network itself is also binary.
Hence a binary CNN represents a Boolean function. We can
construct a Boolean circuit representing a binary CNN, and
then compile it to a tractable one as described in Section 4.

Our binary CNNs contain three types of layers:

• convolution + step layers: a convolution layer consists of
a set of filters, that can be used to detect local patterns in
an input image. Typically, a ReLU unit is applied to the

14Note that if f is a non-trivial Boolean function, then fn must
be false. Suppose fn were not false, and that x is an instance of
fn. This means we can flip any and all variables of x, and it would
always be an example of f . This implies that f must have been
true, and hence a trivial function.

15A number of binary variations of neural networks have been
proposed in the literature. The XNOR-Networks of (Rastegari et
al. 2016) are another binary variation of CNNs, which also assumes
binary weights. The binarized neural networks (BNNs) of (Hubara
et al. 2016) have binarized parameters and activations. In work
closely related to ours, (Narodytska et al. 2018) studied the verifi-
cation of BNNs, using SAT solvers, as discussed in Section 1.

output of a filter. In a binary CNN, we assume step acti-
vations (whose parameters are trained first using sigmoid
activations, then replacing them with step activations);

• max-pooling layers: a max-pooling layer can be used to
reduce the dimension of an image, helping to reduce the
overall computational and statistical demands. In a binary
CNN, if the inputs of a max-pooling layer is 0 or 1, then
the “max” reduces to a logical “or”;

• fully-connected layers: if the inputs are binary and if we
use step activations, then each neuron represents a Bool-
ean function, as in Section 3.

6.2 Experimental Setup
We consider the USPS digits dataset of handwritten digits,
consisting of 16 × 16 pixel images, which we binarized to
black and white (Hull 1994). Here, we performed binary
classification using different pairs of digits. We first trained
a CNN using sigmoid activations, using TensorFlow. We
replaced the sigmoid activations with step activations, to ob-
tain a binary CNN that we compiled into a tractable circuit.
In particular, we compiled the binary CNN into a Sentential
Decision Diagrams (SDD). We shall subsequently provide
analyses of the binary CNN, via queries on the SDD.

More specifically, we created two convolution layers,
each with stride size 2. We first swept a 3 × 3 filter on the
original 16× 16 image (resulting in a 7× 7 grid), followed
by a second 2×2 filter (resulting in a 3×3 grid). These out-
puts were the inputs of a fully-connected layer with a single
output. We did not use max-pooling as the dimension was
reduced enough by the convolutions. Finally, we optimized
a sigmoid cross-entropy loss using the Adam optimizer.

The SDD circuits compiled from neural networks in the
following experiments are exact as the compilation pro-
cess utilized the exact neuron compiler based on (Chan and
Darwiche 2003).16 We later also evaluate the newly pro-
posed, approximate neuron compiler, which has a pseudo-
polynomial time complexity, showing the trade-off it leads
to between classification accuracy and size of compilation.

6.3 Explaining Decisions
We consider how to explain why a neural network classified
a given instance positively or negatively. In particular, we
consider prime-implicant explanations (PI-explanations), as
proposed by (Shih, Choi, and Darwiche 2018b); see also
(Ignatiev, Narodytska, and Marques-Silva 2019a; Darwiche
and Hirth 2020). Say that an input image x is classified
positively, i.e., as a digit-1. A PI-explanation returns the
smallest subset y of the inputs in x that render the remaining
inputs irrelevant. That is, once you fix the pixel values y, the
values of the other pixels do not matter—the network will
always classify the instance as a digit-1.17

16An updated version of the compiler used in these experi-
ments is available at https://github.com/art-ai/nnf2sdd. The com-
piler integrates the newly proposed neuron compiler with pseudo-
polynomial time complexity.

17Consider in contrast “Anchors,” recently proposed by (Ribeiro,
Singh, and Guestrin 2016a; Ribeiro, Singh, and Guestrin 2018). An
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(a) digit-0 (b) digit-1

(c) digit-0 (d) digit-1

(e) a 1 labeled as a 0 (f) a 0 labeled as a 1

Figure 5: A correctly classified digit-0 and digit-1 from the test set
(first row), the corresponding PI-explanations (second row, gray
striped regions represent “don’t care’s”), and the corresponding
fooling images (third row).

We first trained a CNN to distinguish between digit-0 and
digit-1 images, which achieved 98.74% accuracy. The re-
sulting SDD had 5,900 nodes and 28,735 edges. We took
one correctly classified instance of each digit from the test
set, shown in Figures 5a & 5b. The shortest PI-explanations
for these two images are displayed in Figures 5c & 5d. In
Figure 5c, the PI-explanation consists of three white pixels.
Once we fix these three pixels, the network will always clas-
sify the image as a digit-0, no matter how the pixels in the
gray region are set. Similarly, Figure 5d sets three black
patches of pixels to the left and right, and sets two center
pixels to white, which is sufficient for the network to always
classify the image as a digit-1.

These PI-explanations provide strong guarantees: the pix-
els in the gray region can be manipulated in any way and the
classification would still not change. They are so strong in
fact that one can easily create counterexamples to fool the
network. In Figures 5e & 5f, we fill in the remaining pixels
in such a way that the digit-0 image looks like a digit-1, and
vice versa. The network classifies these new images incor-
rectly because it is misled by the subset of pixels shown in
the PI-explanation of Figures 5c & 5d. Using this method,
we can readily generate counterexamples such as these. We

anchor for an instance x is a subset of the instance that is highly
likely to be classified with the same label, no matter how the miss-
ing features are filled in (according to some distribution). In con-
trast, PI-explanations are exact.

(a) Marginal grid (b) Unateness grid

Figure 6: Visualizations of the relationship between the output of
the network and each individual pixel.

obtained similar results with other pairs of digits.

6.4 Explaining Model Behavior
To explain the network’s behavior as a whole (and not just
per instance), we provide two visualizations of how each
pixel contributes to the classification decision: a marginal
grid and a unateness grid. Figure 6a is a marginal grid,
which highlights the marginals of the output neuron, i.e., the
probability that each pixel is white given that the output of
the network is digit-1. In general, it is intractable to compute
such marginals, which naively entails enumerating all 2256

possible input images and then checking the network output.
If we can compile a neural network’s Boolean function into
a tractable circuit, like an SDD, then we can compute such
marginals in time linear in the size of the circuit.

In Figure 6a, red pixels correspond to marginals greater
than 1

2 , and redder pixels are closer to one. Blue pixels cor-
respond to marginals less than 1

2 , and bluer pixels are closer
to zero. The grid intensities have been re-scaled for clarity.
Not surprisingly, we find that if the output of the network is
high (indicative of a digit-1), then it is somewhat more likely
that the pixels in the middle are set to white.

Figure 6b is a unateness grid, which identifies pixels that
sway the classification in one direction only. Red pixels
are positively unate (monotone), so turning them from off
to on can only flip the classification from digit-0 to digit-1.
Blue pixels are negatively unate, i.e., turning them from off
to on can only flip the classification from digit-1 to digit-0.
Black pixels are ignored by the network completely. Finally,
gray pixels do not satisfy any unateness property. In gen-
eral, determining whether an input of a Boolean function is
unate/monotone or unused are computationally hard prob-
lems. In tractable circuits such as SDDs, they are queries
that can be performed in time polynomial in the circuit size.

In Figure 6b, the majority of pixels are unate (monotone),
suggesting that the overall network behavior is still relatively
simple. Note that there are many unused pixels on the right
and bottom borders. This can be explained by the lack of
padding (i.e., given the filter size and stride length, no filter
takes any of these pixels as inputs). There is another block
of unused pixels closer to the middle. On closer inspection,
these pixels are unique to one particular filter in the second
convolution layer (no other filter depends on their values).
In the tractable circuit of the output neuron, we find that the
circuit does not essentially depend on the output of this fil-
ter. Thus, the output of the network does not depend on the
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Figure 7: Level of robustness k vs. proportion of instances. Net 1
is plotted in blue (right) and Net 2 in red (left).

values of any of these pixels. Note that deciding whether an
input of a neuron is unused is an NP-hard problem.18 How-
ever, given a tractable circuit such as an SDD, this question
can be answered in time linear in the size of the circuit.

We emphasize a few points now. First, this (visual) analy-
sis is enabled by the tractability of the circuit, which allows
marginals to be computed and unate pixels to be identified
efficiently. Second, the analysis also emphasizes that the
network is not learning the conceptual differences between
a digit-0 and a digit-1. It is identifying subsets of the pixels
that best differentiate between images of digit-0 and digit-
1 from the training set with high accuracy. This perhaps ex-
plains why it is sometimes easy to “fool” neural networks,
which we demonstrated in Figure 5.

6.5 Analyzing Classifier Robustness
Next, we provide a case study in analyzing CNNs based on
their robustness. We consider the classification task of dis-
criminating between a digit-1 and a digit-2. First, we trained
two CNNs with the same architectures (as described ear-
lier), but using two different parameter seeds. We achieved
98.18% (Net 1) and 96.93% (Net 2) testing accuracies. The
SDD of Net 1 had 1,298 nodes and a size of 3,653. The SDD
of Net 2 had 203 nodes and a size of 440.19 Net 1 obtained
a model-robustness of 11.77 but Net 2 only obtained a ro-
bustness of 3.62. For Net 2, this means that on average, 3.62
pixel flips are needed to flip a digit-1 classification to digit-
2, or vice versa. Moreover, the maximum-robustness of the
Net 1 was 27, while that of Net 2 was only 13. For Net 1, this
means that there is an instance that would not flip unless you
flipped (the right) 27 pixels. These are two networks which
are similar in terms of accuracy (differing by only 1.25%),
but very different when compared by robustness.

Figure 7 further highlights the differences between these
two networks by the level of robustness k. On the x-axis, we
increase the level of robustness k (up to the max of 27), and
on the y-axis we measure the proportion of instances with
robustness k, i.e., we plot 2−256 · model count(fk), as in
Section 5. Clearly, the first network more robustly classifies

18This reduction is similar to the one showing that compiling a
linear classifier is NP-hard (Shih, Choi, and Darwiche 2018b).

19The size of a decision node in an SDD is the number of its
children. The size of an SDD is the aggregate size of its nodes.

(a) a most robust digit-1 (b) a most robust digit-2

(c) a least robust digit-1 (d) a least robust digit-2

(e) classified as digit-2 (f) classified as digit-1

Figure 8: Visualizations of robustness.

a larger number of instances. Given two networks with sim-
ilar accuracies, we prefer the one that is more robust, as it
would be more resilient to adversarial perturbations and to
noise. When we compute the average instance-based robust-
ness of testing instances, Net 1 obtains an average of 4.47,
whereas Net 2 obtains a lower average of 2.61, as expected.

Next, we consider in more depth Net 2, which again
had a test set accuracy of 96.93%. First, we visualize the
most robust and the least robust instances of the CNN. Fig-
ures 8a & 8b depict an example of a most robust digit-1 and
digit-2, from the testing set. Similarly Figures 8c & 8d de-
pict an example of a least robust digit-1 and digit-2, both
having robustness 1. For these latter two instances, it suf-
fices to flip a single pixel in each image, for the classifier
to switch its label. These perturbations are given in Fig-
ures 8e & 8f. Finding training examples that have low-
robustness can help finding problematic or anomalous in-
stances in the dataset, or otherwise indicate weaknesses of
the learned classifier. Finding training examples that have
high-robustness provides an insight into which instances that
the classifier considers to be prototypical of the class.

6.6 Pseudo-Polynomial Neuron Compilation
Finally, we evaluate the pseudo-polynomial time algorithm
of Theorem 2, for compiling a neuron into an SDD (and
more specifically into an OBDD). This algorithm runs in
polynomial time when the precision of the neuron’s param-
eters are fixed. We consider the same USPS digits dataset
used in our case study. Instead of training a neural network,
we train a single neuron with 16× 16 = 256 inputs to clas-
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Figure 9: Precision (in digits) versus test-set accuracy and node
count. Upper row is an average over 10 random parameter seeds
for 0-vs-1. Lower row is an overage over all 45 pairs of digits.

sify a digit, which corresponds (roughly) to logistic regres-
sion. Having n = 256 inputs is well beyond the scope of
the exact algorithm proposed by (Chan and Darwiche 2003),
whose worst-case running time can be O(2

n
2 ).

Consider first Figure 9 (upper row). Here, we trained a
single neuron as a 0-versus-1 classifier, and averaged over
10 different parameter seeds. On the x-axis, we increase
the number of digits of precision in the weights, and on
the y-axes we measure test-set accuracy and the size of the
OBDD in terms of node count. First, we find that with
2 digits of precision, we maintain a high 98.6% accuracy.
Next, we observe that even with a single digit of precision,
we can still maintain around a 97.8% accuracy. Next, we
find that as we increase the digits of precision, the size of
the resulting OBDD grows exponentially, as expected since
compiling a neuron to an OBDD is NP-hard (Shih, Choi,
and Darwiche 2018b). All 10 cases failed (out-of-memory)
for 5 digits of precision. These observations suggest that a
high degree of precision is not necessary to obtain good pre-
dictive performance, as observed by (Rastegari et al. 2016;
Hubara et al. 2016) as well, in the more extreme case of bi-
narized weights. We see a similar story in Figure 9 (lower
row), where we have averaged over all 45 pairs of digits.

7 Conclusion and Discussion
We proposed a knowledge compilation approach for ex-
plaining and verifying the behavior of a neural network.
We considered in particular neural networks with 0/1 inputs
and step activation functions. Such networks have neurons
that correspond to Boolean functions. The network itself
also corresponds to a Boolean function, which maps an in-
put feature vector into a class. We showed how to compile
the Boolean function of each neuron and the network itself
into a tractable circuit in the form of a Sentential Decision
Diagram (SDD). We also introduced a pseudo-polynomial
time algorithm that compiles neurons into tractable circuits,
which can scale to neurons with hundreds of inputs when
fixing the precision of neuron weights. We also devel-
oped new queries and algorithms for analyzing the robust-

ness of a Boolean function. In a case study, we explained
and analyzed the robustness of binary CNNs for classifying
handwritten digits, and empirically evaluated the pseudo-
polynomial time algorithm for compiling neurons.

As highlighted in Section 4, the field of knowledge com-
pilation studies the trade-offs between succinctness (the
size of a circuit) and tractability (the number of polytime
queries supported by the circuit). In the context of ex-
plainable AI, this amounts to a trade-off between scalabil-
ity and amenability to analysis. In terms of computational
complexity, queries such as instance-based robustness cor-
respond to the complexity class NP and can therefore be
tackled using SAT/SMT/MILP approaches. Queries such
as model-based robustness correspond to the complexity
class PP and require approaches based on model counting
and knowledge compilation (such as the approach we pro-
posed in this paper). Since NP ⊆ PP, approaches based on
SAT solving (NP) are inherently more scalable, e.g., (Katz
et al. 2017; Narodytska et al. 2018; Ignatiev, Narodytska,
and Marques-Silva 2019a), whereas approaches based on
model counting and knowledge compilation offer more pow-
erful types of analyses (Shih, Choi, and Darwiche 2018b;
Baluta et al. 2019; Audemard, Koriche, and Marquis 2020;
Darwiche and Hirth 2020). Another class of promising ap-
proaches are the ones based on approximate model count-
ing (Baluta et al. 2019), which represent an interesting com-
promise between scalability and analysis.

A Proof of Theorem 2
Consider a neuron with inputs X1, . . . , Xn. Setting the in-
puts X1, . . . , Xi results in a smaller sub-classifier (or sub-
neuron) over inputs Xi+1, . . . , Xn. No matter how we set
the inputs X1, . . . , Xi the resulting sub-classifier is identi-
cal (has the same weights) except for the threshold being
used. Two different settings of inputs X1, . . . , Xi may lead
to identical sub-classifiers with the same threshold. Say we
set variables from X1 to Xn. There are at most 2W pos-
sible valid thresholds, so there are at most 2nW possible
sub-classifiers that we can see while setting variables.

Consider an n ×W matrix A where cell A[i][j] is asso-
ciated with the sub-classifier where variable Xi is about to
be set, and where j is the threshold being used. If Xi is set
to 1, we obtain the sub-classifier at A[i + 1][j + wi] where
wi is the (integer) weight of feature Xi. If Xi is set to 0,
we obtain the sub-classifier at A[i + 1][j]. Each cell A[i][j]
thus represents an OBDD node for the corresponding sub-
problem, whose hi- and lo-children are known. We add an
(n + 1)-th layer where every sub-classifier with threshold
below 0 is ⊥, and where every sub-classifier at or above 0 is
>. The root of the original neuron’s OBDD is then found at
A[1][T ], which we can extract and reduce if needed.

The size of matrix A bounds the size of the OBDD to
O(nW ) nodes. Further, it takes constant time to populate
each entry, and hence O(nW ) time to construct the OBDD.

Finally, we note that the above construction also fol-
lows the proof of Theorem 1 given by (Chan and Darwiche
2003), based also on identifying equivalence classes of sub-
classifiers. Thus, we can view Theorem 2 as a tightening of
the bounds of Theorem 1 for a special case (integer weights).
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