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Abstract

We develop a notion of explanations for acceptance of argu-
ments in an abstract argumentation framework. To this end we
show that extensions returned by Dung’s standard semantics
can be decomposed into i) non-deterministic choices made
on even cycles of the given argumentation graph and then ii)
deterministic iteration of the so-called characteristic function.
Naturally, the choice made in i) can be viewed as an explana-
tion for the corresponding extension and thus the arguments it
contains. We proceed to propose desirable criteria a reason-
able notion of an explanation should satisfy. We present an
exhaustive study of the newly introduced notion w.r.t. these
criteria. Finally some interesting decision problems arise from
our analysis and we examine their computational complexity,
obtaining some surprising tractability results.

1 Introduction
Explainable AI is a highly relevant topic of current research.
The ultimate goal is to develop intelligent systems equipped
with tools to provide reasons for decisions made and actions
taken. Achieving this goal is a key challenge in all areas of AI
nowadays as it enables human users to understand artificially
intelligent systems. This is inevitable in order to maintain
the user’s trust in an AI system and hence the system’s raison
d’être.

These requirements triggered a considerable amount of
research, not only for artificial neural networks, but also for
several knowledge representation and reasoning formalisms.
For example in description logics (Baader, McGuinness, and
Nardi 2003) the notions of a justification (Horridge et al.
2013) or pinpointing (Baader and Peñaloza 2010) the rea-
son for an (undesired) outcome have been introduced and
investigated; explanations have been studied for Answer Set
Programming (Brewka, Eiter, and Truszczynski 2011) in
(Dauphin and Satoh 2019) as well as for abstract argumenta-
tion frameworks (AFs) (Dung 1995) in e.g. (Saribatur, Wall-
ner, and Woltran 2020). Some approaches also investigate ex-
planations for (non-monotonic) logics in general (Belle 2017;
Brewka and Ulbricht 2019).

The present paper is a contribution to explanations in AFs.
The field of formal argumentation has become a vibrant re-
search area in Artificial Intelligence. One of the main booster
of this development was the seminal paper by Phan Minh
Dung in 1995 on abstract argumentation frameworks (AFs).

His work is based on the observation that argument evalua-
tion, i.e. the selection of reasonable sets of arguments consti-
tuting a coherent world view, can be done without taking into
account the internal structure of arguments. Consequently,
arguments can be treated as abstract, atomic entities and it
suffices to know about the attack relation among the argu-
ments only.

Defining and utilizing explanations in AFs gained quite
some attention recently. Several papers view AFs as tools to
explain (Zeng et al. 2018; Cocarascu, Cyras, and Toni 2018;
Rago et al. 2020) while others propose notions of explana-
tions for acceptable sets of arguments within an AF. For
example, based on novel semantics (Fan and Toni 2015),
by delving into subframeworks of a given AF (Saribatur,
Wallner, and Woltran 2020; Ulbricht and Wallner 2021), or
considering the SCCs (Alfano et al. 2020). In this paper,
we extend the investigation of the theoretical point of view.
As a matter of fact, many mature Dung-style semantics are
complete-based. Complete extensions can be characterized as
conflict-free fix points of the so-called characteristic function
(Dung 1995). Obviously, such a description can be hardly
used to explain a certain outcome to an user. However, there
is one notable exception in the family of complete seman-
tics, namely the uniquely defined grounded semantics. This
semantics can be easily understood as its unique point of
view traces back to unattacked arguments. More precisely,
unattacked arguments are accepted. Then, further accepted
arguments can be obtained given that they are defended by
previous ones and so on. Grounded semantics reflects a very
skeptical point of view and its acceptance can also be un-
derstood in terms of a human-like dialogue (Caminada and
Podlaszewski 2012). Our approach for explaining complete
extensions is based on three crucial ingredients:

1. We use the easily understandable grounded semantics as
base line and completion.

2. We make use of the fact that different complete extensions
of a given AF are due to different arguments occurring in
even cycles of the corresponding graph (Dvořák 2012)

3. We utilize the so-called reduct of an AF, a simple yet
powerful tool that was recently considered to characterize
the behavior of AF semantics (Baumann, Brewka, and
Ulbricht 2020a).
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The main contributions of this paper can be summarized as
follows:
• We motivate (Section 3) and introduce (Section 4) so-

called explanation schemes which formalize how to de-
compose any complete extension into their arguments oc-
curring in even cycles and iteration of the characteristic
function.

• We utilize the aforementioned schemes in order to develop
a notion of explanations for acceptance of arguments in a
given AF. We propose desirable criteria for explanations
and analyze the notion based on the schemes w.r.t. them
(Section 5). We compare our notion to recently proposed
ones from the literature.

• We investigate the computational complexity of naturally
arising decision problems and show that there is no trade
off in comparison to computing extensions (Section 6).
We would like to point out that although the main aim of

the paper is to make the outcome (extensions) more under-
standable for non-experts, we are well aware that there is
still a long way to go between theoretical foundations and
user-consumable explanations. However, we believe that the
following study is an excellent starting point.

2 Background
We fix a non-finite background set U . An AF (Dung 1995) is
a directed graph F = (A,R) where A ⊆ U represents a set
of arguments and R ⊆ A×A models attacks between them.
For a given F = (B,S) we let A(F ) = B and R(F ) = S.
In this paper we consider finite AFs only and we use F for
the set of all these graphs.

For arguments a, b ∈ A, if (a, b) ∈ R we say that a attacks
b as well as a attacks (the set) E given that b ∈ E ⊆ A.
We frequently use the so-called range of a set E defined as
E⊕ = E ∪ E+ where E+ = {a ∈ A | E attacks a}. The
E-reduct of F is the AF FE = (E∗, R ∩ (E∗ ×E∗)) where
E∗ = A \ E⊕. This means, FE is the subframework of F
obtained by removing the range of E.

A set E ⊆ A is conflict-free in F (for short, E ∈ cf (F ))
iff for no a, b ∈ E, (a, b) ∈ R. We say a set E defends an
argument a if any attacker of a is attacked by some argu-
ment of E. A semantics is a function σ : F → 22

U
with

F 7→ σ(F ) ⊆ 2A. This means, given an AF F = (A,R) a
semantics returns a set of subsets of A. These subsets are
called σ-extensions. We say that an argument a ∈ A is cred-
ulously accepted if a ∈

⋃
σ(F ). Similarly, a is considered

as skeptically accepted if a ∈
⋂
σ(F ). In case of uniquely

defined semantics, i.e. |σ(F )| = 1 for any F we may simply
speak of accepted arguments as both notions coincide.

In this paper we consider so-called admissible, complete,
preferred, grounded and stable semantics (abbr. ad , co, pr ,
gr , stb). All mentioned semantics were already introduced
by Dung in 1995 (Dung 1995). For the present paper it will
be convenient to utilize the so-called characteristic function
ΓF to define the semantics: Given an AF F = (A,R) and
E ⊆ A, we have ΓF (E) = {a ∈ A | E defends a}.
Definition 2.1. Let F = (A,R) be an AF and E ∈ cf (F ).

1. E ∈ ad(F ) iff E ⊆ ΓF (E),

2. E ∈ co(F ) iff E = ΓF (E),
3. E ∈ pr(F ) iff E is ⊆-maximal in co(F ),
4. E ∈ gr(F ) iff E =

⋃
i∈N Γi

F (∅),
5. E ∈ stb(F ) iff E∈cf (F ) and E attacks any a ∈ A \ E.

Since |gr(F )| = 1 for any AF F , we will sometimes abuse
notion and identify {G} with G if G ∈ gr(F ). This way, we
may write expressions like “E ∪ gr(F )” whenever there is
no risk of confusion.

Let F = (A,R) be an AF. A sequence a1, a2, . . . , an of
arguments with ai ∈ A, (ai, ai+1) ∈ R for all i < n, and
ai 6= aj for i 6= j is called a path in F . If a1, . . . , an is a
path and (an, a1) ∈ R, then the sequence a1, . . . , an, a1 is
called a cycle. If n is even, then the cycle is called an even
cycle. By Ev(F ) we denote the set of all arguments in F
occurring in an even cycle.

We recall the modularization property and a character-
ization of Dung’s classical semantics given in (Baumann,
Brewka, and Ulbricht 2020a, Propositions 3.2 and 3.4). Both
results will be convenient throughout the present paper.

Proposition 2.2. Let F = (A,R) be an AF and E ∈ cf (F ).

1. E ∈stb(F ) iff FE = (∅, ∅),
2. E ∈ad(F ) iff no attacker of E occurs in FE ,
3. E ∈ pr(F ) iff no attacker of E occurs in FE and⋃

ad
(
FE
)

= ∅, and

4. E ∈ co(F ) iff no attacker of E occurs in FE and no
argument in FE is unattacked.

Proposition 2.3 (Modularization Property). Given an AF
F = (A,R) and σ ∈ {ad , co, stb, pr , gr}. If E ∈ σ(F )
and E′ ∈ σ

(
FE
)
, then E ∪ E′ ∈ σ(F ).

3 Motivation
As already stated in the introductory part our approach for
explaining complete extensions is based on three essential
ingredients, namely grounded semantics, choices on even
cycles as well as the application of the recently introduced
reduct. Consider the following example.

Example 3.1. Assume F is given as follows:

e

f

g

c

b

a d1

d2

Let us consider complete semantics. According to the fix
point characterization as presented in Definition 2.1 we ob-
tain co(F ) = {{a, b}, {a, b, d1, f}, {a, b, d2}}. Hence, the
argument f is credulously accepted. So, how to explain this
acceptance?

First, the most skeptical approach is to accept unattacked
arguments (and its consequences), i.e. to compute the
grounded extension. Here, we obtain E0 = {a, b} as
grounded extension. The reduct FE0 formalizes the situ-
ation we face after computing E0, namely the situation after
accepting the grounded extension.
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e

f

g

c

b

a d1

d2

Now, in the second step, we are faced with a choice. We
have to decide between choosing d1 or d2. As the goal is
to explain acceptability of f , let us decide for E1 = {d1}.
Accepting E1 yields the following remaining subframework(
FE0

)E1 :

e

f

g

c

b

a d1

d2

Finally, after the choice and its consequences, we collect all
arguments accepted by the most sceptical semantics and we
are done. In this case, we obtain E2 = {f} as the grounded
extension of

(
FE0

)E1 . Combining all three steps yields the
witnessing set E = E0 ∪ E1 ∪ E2 = {a, b, d1, f} justifying
credulous acceptance of f .

In the previous example, the actual choice that we made
was taking d1 over d2 yielding the complete extension given
as E = {a, b, d1, f} as opposed to E′ = {a, b, d2}. The aim
of this paper is to show that this choice should be interpreted
as explanation for the acceptance of f .

4 Theoretical Foundations
In the next section, we lay the required theoretical founda-
tions and make some more elaborate observations which are
interesting on their own. More specifically, we give a formal
definition of so-called explanation schemes. We investigate
fundamental properties, in particular we show that an exten-
sion E ∈ co(F ) which is not the grounded one needs to
contain arguments in Ev(F ). Our main result is then that
any complete extension can be decomposed in such an ex-
planation scheme, i.e. each E ∈ co(F ) stems from choosing
appropriate even cycle arguments and iterating the character-
istic function Γ.

4.1 Explanation Schemes
Definition 4.1. Let F = (A,R) be an AF. Let X ⊆ A. The
triple (E0, E1, E2) is an explanation scheme whenever
• E0 ∈ gr(F ),
• E1 ⊆ Ev

(
FE0

)
with E1 ∈ cf (F ),

• E2 ∈ gr((FE0)E1).
IfE0∪E1∪E2 defendsE1, then (E0, E1, E2) is a successful
explanation scheme. IfX ⊆ E0∪E1∪E2, then (E0, E1, E2)
is a (successful) explanation scheme for X .

Note that any explanation scheme is uniquely determined
givenE1 asE0 is the unique grounded extension of F andE2

the unique grounded extension of (FE0)E1 . We will hence
sometimes speak of the scheme induced by E1 instead of

writing the tuple (E0, E1, E2). Moreover, given E1 we will
sometimes write E2(E1) to indicate the functional depen-
dency.
Example 4.2. In our motivating Example 3.1 we found a
successful explanation scheme for X = {f} which is given
as i) E0 = {a, b} being the grounded extension of F , ii)
E1 = {d1} occurs in an even cycle of the reduct FE0 , and
iii) E2 = {f} is the grounded extension of

(
FE0

)E1 .
By definition, E0, E1 and E2 are conflict-free for any

scheme induced by E2. The following lemma states that
success is a sufficient condition for E1 ∪ E2 ∪ E3 to be
conflict-free as well.
Lemma 4.3. If an explanation scheme (E0, E1, E2) is suc-
cessful, then E0 ∪ E1 ∪ E2 is conflict-free.

The following lemma will play a central role when infer-
ring the main results of this paper. We state it explicitly here
as it is interesting on its own. It formalizes the intuition that
FE corresponds to the AF which we obtain from F after
setting E to true and E+ to false. More precisely, it states
that if X defends some a in FE , then E ∪X defends a in F .

Lemma 4.4. For any AF F = (A,R) and E ⊆ A as well as
X ⊆ A

(
FE
)
, ΓFE (X) is the set of arguments in A \ E⊕

which is defended by E ∪ X in F . In particular, for any
integer i, Γi+1

FE (∅) is the set of arguments in A \E⊕ which is
defended by E ∪ Γi

FE (∅) in F .

Proof. (⊆) Let e ∈ ΓFE (X) and let y be an attacker of e. If
y occurs in FE , then X attacks y. Otherwise, since e occurs
in FE , y /∈ E and thus y ∈ E+. In both cases, E∪X attacks
y. Since y was an arbitrary attacker, E ∪X defends e in F .

(⊇) Assume E ∪ X defends e ∈ A \ E⊕. Let y be any
attacker of e. If E attacks e, then y does not occur in FE .
Otherwise, some x ∈ X must attack y. Since X ⊆ A

(
FE
)
,

x occurs in FE . Hence X counterattacks y in FE . In both
cases, X defends e in FE , i.e. e ∈ ΓFE (X).

We also require the following monotonicity result, stating
that choosing more arguments results in at least as many
arguments in the induced scheme.
Lemma 4.5. Let F = (A,R) be an AF. Let E1 and E′1
induce explanation schemes and let E1 ⊆ E′1. If the union
E0 ∪ E′1 ∪ E2(E′1) is conflict-free, then

E0 ∪ E1 ∪ E2(E1) ⊆ E0 ∪ E′1 ∪ E2(E′1).

In particular, E0 ∪ E1 ∪ E2(E1) is conflict-free as well.
We omit the proof of this lemma due to spaces restrictions.

It can be shown by an attentive induction over the number of
iterations of Γ and comparing the result on both sides.
Example 4.6. Consider the following AF F .

aF : b

c1

c2

d1

d2

e
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Consider the explanation schemes induced byE1 = {c2} and
E′1 = {c2, d2}. The first one yields ({a}, {c2}, ∅) and the
second ({a}, {c2, d2}, {e}). Indeed, we have that {a, c2} ⊆
{a, c2, d2, e} as predicted by Lemma 4.5.

Our next goal is to prove that any complete extension E of
a given AF F can be written as E0∪E1∪E2 for a successful
explanation scheme induced by E1. In this case, we say that
E can be decomposed into the scheme induced by E1. To
prove this assertion, we need to delve into the structure of
complete extensions, especially with regard to even cycles:

Proposition 4.7. [The role of choices] Let E ∈ co(F ). If E
is not the grounded extension of F , then there must be some
a ∈ E with a ∈ Ev(F ).

Proof. Let E,E′ ∈ co(F ) and assume none of them con-
tains an argument occurring in an even cycle. If F ′ is the
AF after turning each argument in an even cycle into a self-
attacker, then E,E′ ∈ co(F ′) as well. However, now it is
impossible to defend these arguments (except by attacking
them). Thus if F ′′ is the AF F ′ after removing all attacks
within even cycles, then E,E′ ∈ co(F ′′), too. Since F ′′
is even-cycle free, we find E = E′ (Dvořák 2012, Proposi-
tion 15), i.e. there is only one complete extension containing
no such arguments. The only candidate is gr(F ).

Example 4.8. Recall Example 4.6. The complete extensions
are {a}, {a, d2, e} {a, c1, d2, e}, {a, c2}, {a, c2, d1}, and
{a, c2, d2, e} where only the grounded extension {a} does
not contain arguments in Ev(F ) = {c1, c2, d1, d2}.

We also need the following auxiliary result which shows
how to decompose complete extensions w.r.t. the reduct.

Lemma 4.9. Let F = (A,R) be an AF and let E ∈ co(F ).
For any E′ ⊆ E there is a set E′′ satisfying i) E′ ∪ E′′ = E

and ii) E′′ ∈ co
(
FE′

)
.

Proof. The only candidate is E′′ = E \ E′. Clearly, i) is
satisfied, so we have to show that E′′ is complete in FE′ . To
this end we note that E′′ is trivially conflict-free and contains
all arguments it defends due to completeness ofE = E′∪E′′
and the fact that FE = (FE′)E

′′
. More precisely, FE does

not contain unattacked arguments and hence, the same applies
to (FE′)E

′′
. We have thus left to show that E′′ defends itself

in FE′ . However, E′ ∪ E′′ defends E′′ and hence, this
assertion can be inferred from Lemma 4.4.

We are now ready to prove the main theorem of this sec-
tion stating that each complete extension can be found via a
successful explanation scheme and vice versa.

Theorem 4.10. Given an AF F = (A,R) and a set of argu-
ments E ⊆ A. We have: E ∈ co(F ) iff E can be decom-
posed into a successful explanation scheme.

Proof. (⇐) E0 and E2 are defended against all their attack-
ers by definition and due to Lemma 4.4, respectively, and
E1 is defended since the explanation scheme is successful.
Hence E0 ∪ E1 ∪ E2 is admissible. Due to the requirement
E2 ∈ gr((FE0)E1), it must be complete as well.

(⇒) Let E ∈ co(F ). Consider the following decomposi-
tion:

• E0 is the grounded extension of F ,
• E1 = Ev

(
FE0

)
∩ E,

• E2 is the grounded extension of (FE0)E1 .

We have to show that E0 ∪ E1 ∪ E2 = E.
(⊆) E0 ⊆ E is a classical observation and E1 ⊆ E is

enforced by definition. Now assume we are given E0 ∪ E1

and compute the grounded extension G of F ∗ = FE0∪E1 .
Assume “⊆” is wrong, i.e. there is some a ∈ G \ E. Let
us assume a is chosen in a way that i) a ∈ Γi+1

F∗ (∅) and ii)
there is no a′ ∈ Γj

F∗(∅) with a′ /∈ E s.t. j < i + 1. By
Lemma 4.4, a is defended by E0 ∪E1 ∪Γi

F∗(∅) in F ; by the
assumption imposed on i we have Γi

F∗(∅) ⊆ E which yields
E0 ∪ E1 ∪ Γi

F∗(∅) ⊆ E. By monotonicity of Γ, E defends
a in contradiction to E ∈ co(F ) and a /∈ E.

(⊇) By Lemma 4.9, there is some complete extension of
F ∗ = FE0∪E1 s.t. the union with E0 and E1 yields E. Now
if E0 ∪ E1 ∪ E2 ( E, i.e. E2 ( E \ (E0 ∪ E1), then E2

must be another complete extension of F ∗ than the grounded
one. However, by Proposition 4.7, this contradicts the fact
that E0 ∪ E1 contains all even cycle arguments of E.

Example 4.11. Recall Example 3.1. The reader may verify
co(F ) = {{a, b}, {a, b, d2}, {a, b, d1, f}}. We already saw
in Example 4.2 that {a, b, d1, f} corresponds to the scheme
induced by E1 = {d1}. The grounded extension {a, b}
expectedly can be found via the scheme induced by E′1 = ∅.
Finally, letting E′′1 = {d2} yields a scheme for {a, b, d2}.
Example 4.12. Now consider again Example 4.8. We found
the complete extensions

{a} {a, c1, d2, e} {a, c2}
{a, c2, d1} {a, c2, d2, e} {a, d2, e}

They decompose into the schemes

({a}, ∅, ∅) ({a}, {c1, d2}, {e}) ({a}, {c2}, ∅)
({a}, {c2, d1}, ∅) ({a}, {c2, d2}, {e}) ({a}, {d2}, {e})
as predicted by the above Theorem 4.10.

Since all complete extensions can be attained via success-
ful explanation schemes, we find that X can be explained iff
it is contained in at least one admissible extension.
Corollary 4.13. There is a successful explanation scheme
for X iff X ⊆ E ∈ ad(F ).

We want to mention that this also entails that there is an
explanation scheme for each stable extension of F .
Corollary 4.14. If X ⊆ E ∈ stb(F ), then there is a suc-
cessful explanation scheme for X .

4.2 Further Variants of Explanation Schemes
Let us now continue with another notion of explanation
schemes. Since E0 is the grounded extension of F anyway,
one might wonder whether the first step can be skipped, mov-
ing to choosing E1 immediately. This yields the following
kind of schemes.
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Definition 4.15. Let F = (A,R) be an AF. Let X ⊆ A.
The tuple (E1, E2) is an abbreviated explanation scheme
whenever
• E1 ⊆ Ev (F ) with E1 ∈ cf (F ),
• E2 ∈ gr

(
FE1

)
.

If E1∪E2 defends E1, then it is successful. IfX ⊆ E1∪E2,
it is a (successful) abbreviated explanation scheme for X .
Example 4.16. Let us reconsider Example 3.1 and recall
E1 = {d1}:

e

f

g

c

b

a d1

d2

Computing gr
(
FE1

)
yields E2 = {a, b, f}, i.e. (E1, E2) is

a successful abbreviated scheme for X = {f}.
The following proposition formalizes that any explanation

scheme can be simulated by a canonical abbreviated one:
Proposition 4.17. Consider a given explanation scheme
(E0, E1, E2) and the abbreviated one (E1, E

′
2), then we have

that E0 ∪ E1 ∪ E2 = E1 ∪ E′2.
Vice versa, abbreviated explanation schemes may ignore

or even attack the grounded extension of an AF.
Example 4.18. Let F = (A,R) where A = {a, b, c} and
R = {(a, b), (a, c), (b, c), (c, b)}. Clearly, gr(F ) = {{a}}.
However, an abbreviated scheme may set E1 = {b} resulting
in an unsuccessful one since gr(FE1) = {{a}} attacks b.

The observation we just made holds in general.
Lemma 4.19. If for the scheme (E1, E2), E1 ∪ E2 is in
conflict with the grounded extension G of F , then the scheme
is unsuccessful.

However, if our abbreviated scheme is successful, then we
can show a counterpart to Proposition 4.17, that is, we find
an explanation scheme inducing the same set of arguments.
Proposition 4.20. If (E1, E2) is a successful abbreviated
scheme, then there is a corresponding scheme (E0, E

′
1, E

′
2)

s.t. E0 ∪ E′1 ∪ E′2 = E1 ∪ E2.
We thus infer the following main theorem.

Theorem 4.21. A set E ⊆ A is in co(F ) iff E can be decom-
posed into an abbreviated successful explanation scheme.
Example 4.22. Recall Examples 4.8 and 4.12. We found the
complete extensions

{a} {a, c1, d2, e} {a, c2}
{a, c2, d1} {a, c2, d2, e} {a, d2, e}.

They decompose into the abbreviated schemes

(∅, {a}) ({c1, d2}, {a, e}) ({c2}, {a})
({c2, d1}, {a}) ({c2, d2}, {a, e}) ({d2}, {a, e}).

One may wonder whether checking the extension in hind-
sight is really necessary. In principle, this is not the case,
given that E1 is admissible (modularization property). We
thus consider the following version.

Definition 4.23. Let F = (A,R) be an AF. LetX ⊆ A. The
triple (E0, E1, E2) is a secure explanation scheme whenever
• E0 ∈ gr(F ),
• E1 ⊆ Ev

(
FE0

)
s.t. E1 ∈ ad(FE0),

• E2 ∈ gr((FE0)E1).
If X ⊆ E0 ∪ E1 ∪ E2, then (E0, E1, E2) is a secure expla-
nation scheme for X .

In this case, however, not all complete extensions can be
attained.
Example 4.24. Consider the following AF F :

c db

a2

a1 d1

d2

The reader may verify that {a1, d1} induces a successful
scheme for F , namely (∅, {a1, d1}, {c}) where we see that c
defends d1 against d. However, since c is required to defend
d1 and does not occur in any even cycle, there is no secure
scheme which attains the complete extension {a1, c, d1}.

Within the scope of this paper, this is sufficient evidence to
not continue investigating secure schemes, although we are
convinced that they are an interesting topic of future work as
well.

5 Excursus: Admissible Extensions and
Explanation Schemes

The goal of this section is to extend the results we obtained so
far to admissible extensions. As it turns out, they can also be
computed by selecting even cycle arguments and iterating a
suitable operator. First we require a version of Proposition 4.7
adapted to admissible semantics. This will be based on the
notion strong admissibility, firstly introduced in (Baroni and
Giacomin 2007) and further studied in (Caminada and Dunne
2019; Baumann, Linsbichler, and Woltran 2016). We will
define it according to (Baumann, Linsbichler, and Woltran
2016, Definition 7).
Definition 5.1. Let F = (A,R) be an AF. A set E ⊆ A
is strongly admissible (E ∈ ads(F )) if there are finitely
many pairwise disjointA1, . . . , An s.t.E =

⋃
1≤i≤nAi with

A1 ⊆ ΓF (∅) and
⋃

1≤i≤j Ai defends Aj+1.

Now we introduce a variant of explanation schemes for
admissible sets. Thereby, we formalize a decomposition into
strongly admissible extensions and non-deterministic choices
in the even cycles in F .
Definition 5.2. Let F = (A,R) be an AF. Let X ⊆ A. The
tuple (E1, E2) is a strong admissibility-based explanation
scheme whenever
• E1 ⊆ Ev (F ) with E1 ∈ cf (F ),
• E2 ∈ ads

(
FE1

)
.

If E1∪E2 defends E1, then it is successful. IfX ⊆ E1∪E2,
it is a (successful) strong admissibility-based explanation
scheme for X .
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The following result can be viewed as a strong admissible
based counterpart to Proposition 4.7. It states that an admissi-
ble extension which does rely on choices made in even cycles
must be strongly admissible.
Proposition 5.3. Let F = (A,R) be an AF. If E ∈ ad(F )
satisfies E ∩ Ev(F ) = ∅, then E ∈ ads(F ).

Proof. Assume E is admissible. We let E′ be a maximal
subset of E with E′ ∈ ads(F ). By maximality (and due
to Definition 5.1), E′ does not defend any argument in the
difference E′′ = E \ E′. The rest is similar to the proof of
(Dvořák 2012, Proposition 15), adjusted to our setting. Let
e1 ∈ E′′. Since e1 is not defended by E′, there is some
s1 /∈ (E′)+ attacking e1. Since E ∩ Ev(F ) = ∅, e1 cannot
counterattack s1. Now assume for any integer i > 0 there
is some si /∈ (E′)+ attacking ei. Then {e1, . . . ei} cannot
attack si since this would induce an even cycle. There is
thus some ei+1 ∈ E′′ \ {e1, . . . ei} attacking si. Since E′
does not defend ei+1, there is an attacker si+1 of ei+1 not
attacked by E′. By finiteness, this procedure must eventually
fail. We conclude that choosing e1 ∈ E′′ must be impossible,
i.e. E′′ = ∅ and hence, E = E′ ∈ ads(F ).

As the reader may already predict, the next step is a coun-
terpart to Lemma 4.9.
Lemma 5.4. Let F = (A,R) be an AF and let E ∈ ad(F ).
For any E′ ⊆ E there is a set E′′ satisfying i) E′ ∪ E′′ = E

and ii) E′′ ∈ ad
(
FE′

)
.

Having established these two results, we are now ready to
infer the following characterization of admissible sets.
Theorem 5.5. A set E ⊆ A is in ad(F ) iff E can be decom-
posed into a strong admissibility-based explanation scheme.

Proof. (⇒) Given E ∈ ad(F ) we let E1 = E ∩ Ev(F )
and apply Lemma 5.4 to E1 ⊆ E: It must be the case that
E \ E1 ∈ ad

(
FE1

)
. We have to show that E \ E1 is even

strongly admissible in FE1 . However, if not, then E1 does
not contain all even cycle arguments of E due to Proposi-
tion 5.3. Hence (E1, E \ E1) is the desired scheme.

(⇐) Let (E1, E2) be such a successful scheme. E2 is
defended against all its attackers due to Lemma 4.4 and E1 is
defended since the explanation scheme is successful. Hence
E1 ∪ E2 is admissible.

6 Choices and Explanations
In this section we make use of the theoretical investigation we
performed so far and consider a novel notion of explanations
for a set X of arguments which builds upon our notion of
explanation schemes. In a nutshell, we formalize that the
non-determinism in our extension is the part that should be
explained since iterating the grounded extensions does not
yield unexpected results. We also compare the notion we
obtain with two recently introduced ones from (Alfano et
al. 2020) as well as (Ulbricht and Wallner 2021). The latter
paper also proposed some desirable criteria for explanations
in order to compare them on an abstract level. We extend this
list and perform a comparison of the three notions, revealing
that they all provide different points of view.

Let us now turn to the notion of an explanation. Our goal
is to formalize the intuition that an explanation for X ⊆ A
is a set S of arguments justifying acceptance of the set X in
the given AF F = (A,R). Since there might exist multiple
explanations for X , we consider sets S ⊆ 2A with S ∈ S iff
S is an explanation.
Definition 6.1. Let F = (A,R) be an AF, σ any semantics
and X ⊆ A. An explanation strategy for X in F w.r.t. σ is a
set S ⊆ 2A. A set S ∈ S is called an explanation.

Note that we do not impose any properties on explanations
other than being sets of arguments. The reason is that in
principle, any subset of 2A should be a possible strategy.
Whether or not it is a reasonable one shall be decided by
inspecting the desirable criteria we develop below.

The most natural kind of explanations are extensions.
Example 6.2. For an AF F = (A,R), a semantics σ, and
X ⊆ A the set S = {E ∈ σ(F ) | X ⊆ E} is an explanation
strategy for X w.r.t. σ. Then, each E ∈ σ(F ) satisfying
X ⊆ E is an explanation.

Motivated by the observation that computing the grounded
extension is deterministic, an explanation scheme induces an
explanation as follows.
Definition 6.3. Let F = (A,R) be an AF. Let X ⊆ A. If
(E0, E1, E2) is a successful explanation scheme for X , then
E1 is called an scheme-based explanation for X .

Note that our notion of an explanation is independent of
the considered semantics.
Example 6.4. Recall Example 3.1. As we have now formally
established, {d1} is a minimal scheme-based explanation for
{f} in the given AF F .

In order to broaden our investigation, let us also consider
two other recently introduced definitions of explanations
from the literature. First, we define strong explanations (Ul-
bricht and Wallner 2021, Definition 3.9). The idea here is
as follows: Given a knowledge base K of a monotonic logic
and some φ entailed by K, it is common to view a minimal
subset of K entailing φ as the reason for φ being entailed.
This approach does not make sense for non-monotonic logics
though and hence the following adjustment is proposed in
this recent paper:
Definition 6.5. Let F = (A,R) be an AF, X ⊆ A a set of
arguments and σ any semantics. A set S ⊆ A is called a
(minimal) strong σ-explanation for X if (it is minimal s.t.)
for each AF F ′ = F ↓A′ with S ⊆ A′ ⊆ A, there is some
E′ ∈ σ(F ′) with X ⊆ E′.

That is, instead of considering only one subframework of
F s.t. X occurs in an extension, the condition is refined in
order to impose a monotonic behavior.

Our approach is similar in its spirit to (Alfano et al. 2020,
Definition 4). For this, recall that a strongly connected com-
ponent (SCC) of an AF is a set S ⊆ A s.t. in the subframe-
work F ↓S , for each two arguments a, b ∈ S there is some
(possibly empty) path from a to b in the directed graph F↓S ;
an SCC S is called initial if the arguments in S are not at-
tacked by any argument occurring in some other SSC. The
idea in (Alfano et al. 2020) is to recursively consider the
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grounded extension of a the current AF and then perform
some choice in an initial SCC in order to continue the iter-
ation. The authors simply speak of “explanations”, we will
call them recursion-based explanations here in order to avoid
the generic term in presence of other notions.
Definition 6.6. Let F = (A,R) be an AF and let σ be any
semantics. Let G be the grounded extension of F . For some
a ∈ A, let a− = {b ∈ A | (b, a) ∈ R}. We call a sequence
S = (a1, . . . , an) a recursion-based extension explanation
for E w.r.t. F if either n = 0 and E = G or
• a1 belongs to some initial SCC of FG,
• (a2, . . . , an) is an explanation for E \G w.r.t the AF FG

without incoming attacks of a1, i.e.
(
FG
)
↓A\a−1 .

Given X ⊆ A, the set {a1, . . . , an} is a recursion-based
explanation for X if (there is some order s.t.) the sequence
(a1, . . . , an) is a recursion-based extension explanation for
some E with X ⊆ E.

Let us perform a quick comparison of the three notions.
As the following example shows, they are incomparable in
general.
Example 6.7. Consider the following AF taken from (Ul-
bricht and Wallner 2021):

edcbaF :

With reasonable effort we verify that S = {a, c, e} is a strong
explanation for X = {e}, but the notions of scheme-based
and recursion-based explanations agree on the empty ex-
planation since the given AF is acyclic. Now consider a
modification of the AF from Example 4.6, called G here:

a

b

c1

c2

d1

d2

eG :

We have the scheme-based explanation E1 = {c1, d2} for
{e}, but (c1, d2) is no recursion-based explanation since d2
does not occur in an SCC of the reduct G{c1}. By consider-
ation of the subframework induced by the arguments in G
excluding a we see that this is no strong explanation, either.
Finally, let H be the following AF:

a

b

d1

d2

cH :

e f

We have that S = (b, d1) is a recursion-based explanation
for X = {b} since it induces the extension E = {b, d1}.
However, since b /∈ Ev(F ), {b, d1} is no scheme-based
explanation. Considering the subframework without f shows
that {b, d1} is no strong explanation, either.

In the following, we want to compare the properties of
our explanation notions on an abstract level. To this end we
consider criteria proposed in (Ulbricht and Wallner 2021)
and we develop some further general desirable properties an
explanation should respect.

Let us start with the ones that have already been consid-
ered.

σ-existence If X ⊆ E for some E ∈ σ(F ) then S 6= ∅.
σ-basic S ∈ S implies X ⊆ E ∪ S for some E ∈ σ(FS).

Monotonicity If S ∈ S , then S′ ∈ S for S ⊆ S′ ⊆ A.

CF If S ∈ S , then S ∈ cf (F ).

Defense If S ∈ S , then S defends itself in F .

Independence If S is an explanation in F and a /∈ S, then
S is an explanation in F \ {a}.

The σ-existence property simply ensures that there is an
explanation for X iff X is accepted w.r.t. σ. The second
property, σ-basic, formalizes the intuition that the reduct FS

can be interpreted as setting the arguments in S to true and
inspecting the remaining AF. In this case, an explanation
S can only be considered successful if X is then rendered
acceptable. Monotonicity formalizes the idea that whenever
S suffices to explain X , then so should every superset of S.
This somewhat contradicts the idea behind CF and Defense,
stating that an explanation should be an acceptable point of
view on its own. Finally, independence requires that an expla-
nation does not rely on other arguments than the explanation
itself.

Extending basic to the other common reasoning mode, we
also consider a strengthened version where skeptical accep-
tance is required. We exclude σ = ad here.

σ-skeptical S ∈ S implies X ⊆ E ∪ S for each extension
E ∈ σ(FS).

As a weaker version of σ-skeptical we consider the following
property where skeptical acceptance of X is assumed.

Skeptical Acceptance If X is skeptically accepted w.r.t. σ
and S is an explanation for X , then X ⊆ S ∪ E for each
E ∈ σ(FS).

The last property we are going to consider formalizes a com-
patibility requirement for notions of explanations; as long as
they are not conflicting, they can be merged to create novel
explanations.

Compatibility If S and S′ are explanations for X and X ′,
respectively, with S ∪ S′ ∈ cf (F ), then S ∪ S′ is an
explanation for X ∪X ′.

The following theorem summarizes which properties are sat-
isfied and which not. The high level observation is that
all proposed notions provide different points of view. We
want to mention that dis-satisfaction of some of these prop-
erties does not always mean that the corresponding notion
behaves poorly. For example scheme- and recursion-based
explanations do not satisfy independence since removing an
argument might disrupt some even cycle or SCC, respec-
tively. Moreover, the three notions are not designed to defend
themselves, but to facilitate a certain target set.
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stategy exten-
sion

strong
expl.

scheme
expl.

recurs.
expl.

σ-existence X X X X
σ-basic X X X X

Monotonicity × X × ×
CF X × X X

Defense X × × ×
Independence {ad , stb} X × ×
σ-skeptical X {gr} X X
Skept. Acc. X {gr} X X

Compatibility X X X ×

Table 1: Summary of properties of explanation strategies for σ ∈
{ad , co, gr , stb, pr}. Results highlighted in gray are taken from
(Ulbricht and Wallner 2021)

Theorem 6.8. Satisfaction of the properties discussed above
is as depicted in Table 1.

Sketch of Proof. (Dis-)satisfaction of the properties is mostly
due to rather simple considerations or counterexamples re-
garding the explanation notions. Note that scheme-based and
recursion-based explanations do not satisfy Independence
since removing an argument might disrupt an even cycle or
SCC, respectively. For the same reason, recursion-based ex-
planation do not satisfy Compatibility. Besides compatibility,
the most interesting case is σ-skeptical. Regarding scheme-
based and recursion-based explanations we note that FS is
s.t. X ⊆ E ∪ S for the grounded extension E of FS . Hence
the claim holds for any semantics under consideration; more-
over, this also shows satisfaction of Skeptical Acceptance.
Extensions satisfy σ-skeptical since X ⊆ S must already
hold.

We want to state satisfaction of Compatibility by scheme-
based explanations as a result on its own. The reason is that
this observation will be very important later on and we hence
want to state it explicitly here. The proof of this assertion can
be found in the supplementary material.

Theorem 6.9. If E1 and E′1 are successful explanations for
X andX ′, respectively, withE1∪E′1 ∈ cf (F ), thenE1∪E′1
is successful explanation for X ∪X ′.

7 Computational Complexity
In this section we examine the computational complexity of
natural decision problems induced by our notion of scheme-
based explanations. From a computational point of view, we
are interested in whether we are given a minimal subset s.t. a
certain extension is induced.

Definition 7.1. Let F = (A,R) be an AF. Let X ⊆ A. If
E1 is minimal s.t. (E0, E1, E2) is a successful explanation
scheme for X , then E1 is called a minimal scheme-based
explanation for X .

On the contrary, looking for preferred and stable extensions
in particular, we might consider maximal sets E1 s.t. E1 ⊆
Ev(F ) is conflict-free.

Definition 7.2. An explanation scheme (E0, E1, E2) is max-
imal if there is no E′1 with E1 ( E′1 s.t. E′1 induces an
explanation scheme.

Having formally established these notions, we consider
the following problems: i) verifying that a given set is a (min-
imal) explanation for X , ii) checking whether there is some
explanation for X , and motivated by the fact that schemes
may or may not be successful we also discuss the complexity
of deciding whether iii) all explanation schemes are success-
ful and iv) all maximal schemes are.

VER-EXPL
Input: (F , E1, X) where F = (A,R) and E1, X ⊆ A
Output: TRUE iff E1 is an explanation for X in F

VER-MIN-EXPL
Input: (F , E1, X) where F = (A,R) and E1, X ⊆ A
Output: TRUE iff E1 is a minimal explanation for X in F

EXIST-EXPL
Input: (F , X) where F = (A,R) is an AF and X ⊆ A
Output: TRUE iff there is an explanation E1 for X

ALL-SAFE
Input: An AF F
Output: TRUE iff all schemes are successful

MAX-SAFE
Input: An AF F
Output: TRUE iff all maximal schemes are successful

First we want to mention that due to Theorem 4.21, deciding
whether there exists a scheme-based explanation for X is
equivalent to deciding whether there is a complete extension
containing X . Hence:

Theorem 7.3. The problem EXIST-EXPL is NP-complete.

Verifying an explanation only requires computing the
reduct and grounded extension of a given AF. This is of
course a tractable task.

Theorem 7.4. The problem VER-EXPL can be solved in P.

Additionally verifying minimality requires an algorithm
which successively removes arguments to search for a smaller
successful scheme for a given set X . This can still be done
in P.

Theorem 7.5. The problem VER-MIN-EXPL can be solved
in P.

We refer the reader to the supplementary material for a
formal proof of this assertion. Although checking whether all
explanation schemes are successful seems to be a demanding
task, we can utilize Theorem 6.9 to significantly reduce our
search space. The following lemma formalizes this observa-
tion.

Lemma 7.6. If F = (A,R) is an AF and there is any un-
successful explanation scheme (E0, E1, E2) with conflict-
free E1, then there is an unsuccessful one of the form
(E0, {e1}, E2({e1})), i.e. it is induced by a singleton.

Proof. Due to Theorem 6.9 applied to X = X ′ = ∅, if
all possible schemes of the form (E0, {e1}, E2({e1})) are
successful, then by induction, all schemes are.
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Hence the following tractability result can be shown.
Theorem 7.7. The problem ALL-SAFE can be solved in
polynomial time.

Proof. By Lemma 7.6 it suffices to iterate over the linearly
many e1 ∈ Ev(FE0) after computing the grounded extension
E0 of F . For each e1 another iteration of computing the
grounded extension has to be performed, all of which can be
done in P.

However, checking only the maximal ones is intractable
since we can not utilize the shortcut from Lemma 7.6 any-
more. To prove this, we adapt the standard translation
(Dvorák and Dunne 2018, Reduction 3.6) in a straightfor-
ward fashion. As an aside, we want to mention that within
the standard translation, an explanation for ϕ corresponds
exactly to a satisfying assignment of the given formula. Thus,
our notion of explanations yields a very natural set of argu-
ments here.
Theorem 7.8. The problem MAX-SAFE is coNP-complete.

Proof. For hardness, let us assume we are given a formula
Φ = ∃Xφ(X) with φ = {C1, . . . , Cr} in CNF over vari-
ables in X = {x1, . . . , xn}. We adapt the well-known stan-
dard translation (see e.g. (Dvorák and Dunne 2018, Reduc-
tion 3.6)): We let (cf. Figure 1)

A ={ϕ} ∪ {>} ∪ {>′} ∪ {c | c ∈ φ} ∪ {x, x̄ | x ∈ X}

and the set R of attacks is given via

R ={(ϕ,>), (>,>′), (>′,>), (Ci, ϕ) | i = 1, . . . , r}∪
{(x,Ci) | x ∈ Ci, i = 1, . . . , r}∪
{(x̄, Ci) | ¬x ∈ Ci, i = 1, . . . , r}∪
{(xj , x̄j), (x̄j , xj) | j = 1, . . . , n}.

We claim that there is a maximal scheme which is unsuccess-
ful iff Φ is true.

(⇒) Assume Φ is true. Let ω : X → {0, 1} be a satisfying
assignment for φ. Let

Xω = {xi | ω(xi) = 1} ∪ {x̄i | ω(xi) = 0}

be the corresponding canonical set of X arguments and con-
sider the set E1 = Xω ∪ {>}. Trivially, all of them occur
in an even cycle. Let us now compute gr(FE1). Due to ω
being a satisfying assignment, standard considerations yield
ϕ ∈ ΓFE1 (∅). Hence we found an unsuccessful scheme due
to ϕ attacking >.

(⇐) Now assume Φ is false. Clearly, for any maximal
cf-scheme (E0, E1, E2), the set E1 is of the form

either E1 = Xω ∪ {>} or E1 = Xω ∪ {>′}

with Xω corresponding to an assignment as above. Since the
set Xω ∪ {>′} defends itself, there is nothing to be shown.
So assume we are given E1 = Xω ∪ {>}. Since Φ is false,
ω is no satisfying assignment and hence there is some ci
which is not attacked by Xω. By maximality of E1, ci is
even defended by Xω and thus, ci ∈ ΓFE1 (∅) and therefore
ϕ is attacked by E1 ∪ E2(E1) implying > is defended, i.e.
the scheme is successful.

ϕ >

>′
c1 c2 c3

x1 x̄1 x2 x̄2 x3 x̄3

Figure 1: Illustration of the AF F from Theorem 7.8, applied to φ
with clauses {{x1, x2, x3}, {x̄2, x̄3}, {x̄1, x̄2}}.

Summarizing our complexity results, the overall picture is
that most of the arising decision problems regarding our ex-
planation schemes are either equivalent to standard reasoning
problems for AFs or mostly tractable. The only exception is
when insisting on the maximal schemes.

8 Conclusion and Future Work
In this paper we developed a notion of explanations for AFs
based on the observation that the non-determinism in Dung’s
standard semantics can be traced back to the even cycles
occurring in an AF. We formalized this observation and com-
pared different notions of so-called explanation schemes to
delve into the structure of complete extensions. Furthermore,
we showed that a natural notion of explanations induced by
these results is well-behaving w.r.t. reasonable criteria we pro-
posed. Finally, we investigated the computational complexity
of related decision problems.

While other works on explanations view AFs as tool
to explain decisions of AI systems (Zeng et al. 2018;
Cocarascu, Cyras, and Toni 2018; Rago et al. 2020), the
present paper focused on the inner structure of AFs them-
selves. The closest to our work are probably (a) the explana-
tion notion in the paper (Alfano et al. 2020) which is similar
in spirit to our notion, but relies on a recursive definition and
the SCCs of the given AF instead of pinpointing the even cy-
cle arguments and (b) two recent publications on explaining
(non-)acceptability (Saribatur, Wallner, and Woltran 2020;
Ulbricht and Wallner 2021), where the authors take any
subframework of a given AF into consideration, moti-
vated by recent work on inconsistency in AFs (Brewka,
Thimm, and Ulbricht 2019; Baumann and Ulbricht 2018).
In comparison, our approach focuses solely on the given
AF at hand and thus does not insist on certain properties
of subframeworks. We utilize the reduct however, which
proved to be an efficient tool to examine the interaction be-
tween arguments (Baumann, Brewka, and Ulbricht 2020b;
2020a).

The paper induces several future work directions. We be-
lieve the most exciting ones are: i) algorithm design and
implementation of our approach which allow to cope with
acceptability in terms of complete semantics in static as well
as dynamic environments (Gaggl et al. 2020), ii) an in-depth
comparison to other notions of explanations, and iii) investi-
gate whether this decomposition of extensions works analo-
gously for other related formalisms as well, e.g. Answer Set
Programming or Reiter’s Default Logic.
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