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Abstract

Trace Alignment is a prominent problem in Declarative
Process Mining, which consists in identifying a minimal
set of modifications that a log trace (produced by a system
under execution) requires in order to be made compliant
with a temporal specification. In its simplest form, log
traces are sequences of events from a finite alphabet and
specifications are written in DECLARE, a strict sublanguage
of linear-time temporal logic over finite traces (LTLf ). The
best approach for trace alignment has been developed in AI,
using cost-optimal planning, and handles the whole LTLf . In
this paper, we study the timed version of trace alignment,
where events are paired with timestamps and specifications
are provided in metric temporal logic over finite traces
(MTLf ), essentially a superlanguage of LTLf . Due to the
infiniteness of timestamps, this variant is substantially more
challenging than the basic version, as the structures involved
in the search are (uncountably) infinite-state, and calls for a
more sophisticated machinery based on alternating (timed)
automata, as opposed to the standard finite-state automata
sufficient for the untimed version. The main contribution of
the paper is a provably correct, effective technique for Timed
Trace Alignment that takes advantage of results on MTLf
decidability as well as on reachability for well-structured
transition systems.

1 Introduction
Trace alignment (Aalst, van der 2013) is a prominent prob-
lem in Declarative Process Mining, which consists in mini-
mally modifying, or repairing, a log trace to make it compli-
ant with an input temporal specification. In its simplest for-
mulation, traces are finite sequences of events, correspond-
ing to the logs stored by a system under execution, and spec-
ifications capture properties that involve the mutual ordering
of events, specified using the DECLARE language (van der
Aalst, Pesic, and Schonenberg 2009), which is a fragment of
the Linear-time Temporal Logic interpreted over finite traces
LTLf (De Giacomo and Vardi 2013).

While the Business Process Management (BPM) commu-
nity has devoted many efforts to this problem –see, e.g.,
promtools.org, (de Leoni, Maggi, and van der Aalst 2012),
and (de Leoni, Maggi, and van der Aalst 2015), the best
solution technique currently available comes from AI (De
Giacomo et al. 2017) and is based on an automata-theoretic
approach that takes advantage of the cost-optimal planning

technology, e.g., (Helmert 2006; Torralba et al. 2014) to effi-
ciently perform the search. Notably, such a technique is able
to deal with any specification expressed in LTLf , not only
those allowed by DECLARE (which are defined in terms of
LTLf ), a commonly adopted language in the BPM context.

A more sophisticated variant of the problem is timed trace
alignment. In this variant, each event in a log trace is paired
with a timestamp and the specifications can be expressed
in a variety of forms, from pre-defined patterns (Lanz, We-
ber, and Reichert 2014), to formulas of more structured
logics, such as the multi-perspective version of DECLARE,
i.e., MP-DECLARE (Burattin, Maggi, and Sperduti 2016).
MP-DECLARE is a fragment of Metric First-order Tem-
poral Logic (Chomicki 1995) (MFOTL), a language that
combines First-order Logic (FOL) and Metric Temporal
Logic (Koymans 1990), both interpreted over finite traces,
to express properties that concern event attributes and times-
tamps. Interestingly, for the timed version of trace align-
ment with specifications expressed in a rich language such
as MP-DECLARE, a solution technique is not available yet,
not even for the case where propositional formulas only are
allowed in place of FO. Even more, it is not even known
whether the existence of a solution is decidable.

In this paper, we study the timed version of trace align-
ment, with specifications expressed in metric temporal
logic over finite traces (MTLf ), which is essentially a su-
perlanguage of LTLf . Importantly, MTLf is a strictly
more expressive language than the propositional version of
MP-DECLARE thus, from the temporal perspective, we are
addressing the problem in its entire generality. In this set-
ting, trace alignment requires to repair a trace not only by
adding or removing events from a finite alphabet but, cru-
cially, by also adding timestamps from the infinite, uncount-
able, real space. This results in a substantially more chal-
lenging setting than that of the basic variant (De Giacomo
et al. 2017), as the presence of time makes the structures
involved in the search (uncountably) infinite-state, which
requires a more sophisticated technical machinery, based
on alternating timed automata, as opposed to the standard
finite-state automata sufficient for the untimed version.

The contribution of the paper is threefold. Firstly, it pro-
poses an automata-based formalization of timed trace align-
ment which reduces the problem of finding a minimal-cost
solution (in terms of changes made to the input trace) to the
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search for an accepting path in an alternating timed automa-
ton. Secondly, based on the above formulation, it shows that
the problem is solvable. Thirdly, by proving solvability in
a constructive way, the work devises the first technique for
actually computing a solution in the timed setting.

Technically, to achieve these results, we build on two
works, namely (Ouaknine and Worrell 2007) and (Finkel
and Schnoebelen 2001). The former proves decidability of
MTLf by reducing the problem to non-emptiness of alter-
nating timed automata and showing that this corresponds to
the search for an accepting path in a well-structured tran-
sition system, while the latter provides the theoretical re-
sults on such transition systems to make the search effec-
tive. Broadly speaking, we generalize the approach de-
scribed in (Ouaknine and Worrell 2007), which is aimed at
showing the existence of a solution, to actually perform a
search in the space of the solutions, and take advantage of
the results from (Finkel and Schnoebelen 2001) to obtain
termination of our technique.

We observe that, while the obtained technique is quite
demanding from the complexity point of view, it solves
the problem in its entire generality, as far as temporal as-
pects only are concerned, thus can serve as a reference for
practical approaches that typically deal with less expressive
fragments of MTLf , such as the propositional fragment of
MP-DECLARE.

2 Metric Temporal Logic and Alternating
Timed Automata

In this section, we report (slightly modified) notions and re-
sults from (Ouaknine and Worrell 2007), which we need to
introduce the problem and establish our results. In particu-
lar, we review Metric Temporal Logic over finite words and
its relationship with alternating timed automata.

2.1 Metric Temporal Logic
We use Metric Temporal Logic over finite words (MTLf ) un-
der the so-called event-based semantics where the temporal
connectives quantify over a countable (finite, in this paper)
set of positions in a (finite) timed word.

Let Σ be a finite alphabet of events. The syntax of MTLf
is as follows:

ϕ ::= true | e | ϕ ∧ ϕ | ¬ϕ | XI ϕ | ϕUI ϕ,

where: e ∈ P and I ⊆ R≥0 can be an open, closed or
semi-open interval with endpoints in N∪{∞}. The classical
abbreviations of LTLf can be suitably adapted to the tempo-
ral variant: (release) ψ1 RI ψ2

.
= ¬(¬ψ1 UI ¬ψ2) (eventu-

ally) FI
.
= trueUI ϕ and (always) GI ϕ

.
= ¬FI ¬ϕ. In

ψ1 U[0,∞] ψ2, we omit [0,∞] and simply write ψ1 Uψ2.
MTLf formulas are interpreted over finite timed words. A

(finite) timed word over an event alphabet Σ is a finite se-
quence ρ = (σ1, τ1) · · · (σ`, τ`), where: σi ∈ Σ; τi ∈ R≥0;
and τi ≤ τi+1 for 1 ≤ i < ` (monotonicity). A pair
(σ, τ) ∈ Σ × R≥0 is a timed event; sometimes, to mark the
distinction between a timed event and a simple event σ ∈ Σ,
we refer to the latter as an untimed event; the value τ is a
timestamp. By |ρ| we denote the length of ρ, i.e., |ρ| = `.

The semantics of MTLf is defined based on an MTLf for-
mula ϕ, a finite timed word ρ, and a position i s.t. 1 ≤ i ≤
|ρ|, as follows:

• (ρ, i) |= true;

• (ρ, i) |= e iff σi = e;

• (ρ, i) |= ϕ1 ∧ ϕ2 iff (ρ, i) |= ϕ1 and (ρ, i) |= ϕ2;

• (ρ, i) |= ¬ϕ iff (ρ, i) 6|= ϕ;

• (ρ, i) |= XI ϕ iff i < |ρ|, τi+1−τi∈I , and (ρ, i+1) |= ϕ;

• (ρ, i) |= ϕ1 UI ϕ2 iff τj − τi∈I , (ρ, j) |= ϕ2, for some j
s.t. i ≤ j ≤ |ρ|, and (ρ, k) |= ϕ1 for all k s.t. i ≤ k < j.

A timed word ρ is said to satisfy an MTLf formula ϕ, written
ρ |= ϕ, iff (ρ, 1) |= ϕ.

Intuitively, the logic can be seen as a form of LTLf where
the temporal operators are required to be satisfied within a
temporal frame defined by the associated interval I . For in-
stance, formulae X[2,4] e and eU[2,4] f can be read respec-
tively as: “next event is e and occurs within 2 and 4 (time
units from now)” and “ within 2 and 4, f occurs and be-
fore that e continuously holds”. We stress that interval end-
points must be integer. It is immediate to see that, by setting
I = [0,∞), MTLf reduces to LTLf .

Example 1. MTLf extends the properties expressible in
LTLf by adding time constraints. For example, ϕ = G(a→
F≤1 b)

1 expresses the classical request/grant requirement
but constrains every grant event to occur within one time
unit from every occurrence of a request event.

Consider the trace ρ1 = (c, 0.5)(a, 1.5)(b, 2.49)(d, 5).
We have ρ1 |= ϕ, as every occurrence of event a is fol-
lowed by an occurrence of b within one time unit. On the
contrary, for trace ρ2 = (c, 0.5)(a, 1.5)(b, 2.51)(d, 5) we
have ρ2 6|= ϕ, as the only occurrence of a is not met by any
event b within one time unit.

2.2 1-clock Alternating Timed Automata
Analogously to LTLf , for every MTLf formula ϕ, there ex-
ists an automaton Aϕ that accepts exactly all the words that
satisfy ϕ. In this setting, Aϕ is not a standard (alternating)
automaton but a 1-clock alternating timed automaton. Intu-
itively, 1ATA’s are finite-state alternating automata equipped
with a clock that keeps track of the time elapsed since its last
reset, and whose transitions, which may reset the clock, de-
pend on clock conditions.

Formally, a 1-clock alternating timed automaton (1ATA)
is a tuple A = (Σ, L, l0, F, δ) where: Σ is a finite event al-
phabet; L is a finite set of locations; l0 ∈ L is the initial lo-
cation; F ⊆ L is the set of final locations; δ : L×Σ 7→ Φ(L)
is the transition function, with Φ(L) the following language
of formulas φ, defined over the set of locations L and the
(implicit) clock x:

φ = true | false | φ ∧ φ | φ ∨ φ | l | x ./ c | x.φ,

where c ∈ N, ./∈ {<,≤,=,≥, >}, and l ∈ L.

1For simplicity, we write [0, z] as ≤ z, and similarly for the
other comparisons.
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Intuitively, 1ATA’s can be thought of as timed, multi-
headed, nondeterministic automata. By timed we mean that
a clock variable is present which stores the time elapsed
since the last clock reset and locations are paired with clock
values, forming pairs called states; by multi-headed, we
mean that the automaton can be in a set, called configura-
tion, of finitely (though unboundedly) many states at once;
by nondeterministic, we mean that the automaton can move
from one to (possibly infinitely) many configurations at each
step. State-transitions, which induce configuration transi-
tions, are distinguished into universal and existential, with
the term alternating expressing the fact that in the automa-
ton both classes coexist (and not that they strictly alternate).
A universal transition defines a move from one to many
mandatory states, as if taken in conjunction, while an exis-
tential transition defines a move from one to many possible
states, as if taken in disjunction. Configuration transitions
model either time flow or event occurrences. The former in-
crease clock values while leaving locations unchanged, the
latter may change location and reset the clock. Configura-
tion transitions are defined based on a minimal-model se-
mantics of Φ(L), which we report next.

Consider a 1ATA A = (Σ, L, l0, F, δ). A state of A is
a pair (l, v) ∈ L × V , with V = [0,max] ∪ >, max the
maximum constant mentioned in δ, and > a special symbol
modeling any value v > max. Let Q = L× V be the set of
all possible states. Formulae φ ∈ Φ(L) are interpreted over
sets of states M ⊆ Q and clock values v ∈ V , as follows:
• (M,v) |= true;
• (M,v) 6|= false;
• (M,v) |= φ1 ∧ φ2 iff (M, v) |= φ1 and (M, v) |= φ2;
• (M,v) |= φ1 ∨ φ2 iff (M, v) |= φ1 or (M, v) |= φ2;
• (M,v) |= l iff (l, v) ∈M ;
• (M,v) |= x ./ c iff v ./ c;
• (M,v) |= x.φ iff (M, 0) |= φ.
M ⊆ Q is a model of φ ∈ Φ(L) wrt v, if (M,v) |= φ; M
is a minimal model of φ wrt v if it is minimal wrt (strict) set
inclusion, i.e., for no other M ′ ⊂M , we have (M ′, v) |= φ.

We can now introduce the labelled transition system
(LTS) TA induced by A, which models how the configu-
rations of A evolve as timed events occur.

The induced LTS TA of a 1ATA A = (Σ, L, l0, F, δ) is
the tuple TA = (Σ,K,C0, A, ,→), where:
• Σ is the same alphabet as the one of A;
• K = 2Q, is the set of possible configurations;
• C0 = {(l0, 0)} ∈ K is the initial configuration;
• A = {C ∈ K | (l, v) ∈ C ⇒ l ∈ F} is the set of

accepting configurations;

•  ⊆ K×R≥0×K is the delay transition relation s.t.C d
 

C ′ iff C ′ = C + d
.
= {(l, v + d) | (l, v) ∈ C};

• →⊆ K × Σ × K is the event (instantaneous) transi-
tion relation s.t. C e→ C ′ iff C ′ =

⋃
i∈IMi, with

C = {(li, vi)}i∈I and Mi a minimal model of δ(li, e)
wrt to vi.

Intuitively, delay transitions account for the time elapsed be-
tween consecutive events and event transitions account for
the location transitions triggered by timed events. Observe
that event transitions can reset clocks but not assign them
to arbitrary values. Informally, we can think of each mini-
mal model Mi ⊆ C ′ as the set of successors of state (li, vi)
under event e, all of which are entered after the transition.

Runs ofA are defined based on TA. A run ofA on a timed
word ρ = (σ1, τ1) · · · (σ`, τ`) is a sequence

% = C0
d1 C1

σ1→ · · · d` C2`−1
σ`→ C2`,

where C0 is the initial configuration and di = τi − τi−1, for
i = 1, . . . , `, with τ0 = 0, by convention. We refer to % also
as a run of TA, and say that % is a run of TA on ρ. The length
of a run % as above is |%| = `.

Notice that, as a result ofA’s existential nondeterminism,
a timed word ρ can give raise to many runs of A, while
universal nondeterminism is responsible for the presence of
many states in each configuration. A run is accepting if so
is its last configuration C2`, and a timed word ρ is accepted
by A (equivalently, TA), if there exists a run of A (eq., TA)
on ρ that is accepting. The language of finite timed words
accepted by A is denoted by Lf (A).
Example 2. (Ouaknine and Worrell 2007) propose a gen-
eral construction procedure for the 1ATA Aϕ associated
with an MTLf formula ϕ. The construction is omitted here.
We show, however, its application on the formula ϕ of Ex-
ample 1. First, ϕ is rewritten in negation normal form:

ϕ = falseR(¬a ∨ (trueU≤1 b))

Then, the automaton Aϕ = (Σ, L, l0, F, δ) is as follows:
• Σ = {a, b};
• L = {l0, l1, l2,¬a, b, }; where

– l0 = ϕinit,
– l1 = falseR(¬a ∨ (trueU≤1 b), and
– l2 = trueU≤1 b;

• F = {l0, l1};
• The transition function δ is defined as follows: 2

– δ(l0, σ) = x.(δ(l1, σ));
– δ(l1, σ) = (x.(δ(¬a, σ) ∨ δ(l2))) ∧ l1;
– δ(¬a ∨ l2, σ) = δ(¬a, σ) ∨ δ(l2, σ);
– δ(l2, σ) = (δ(b, σ) ∧ x ≤ 1) ∨ (x.δ(true, σ) ∧ l2);

– δ(b, σ) =

{
true if b = σ

false o/w

– δ(¬a, σ) =

{
false if a = σ

true o/w
The construction essentially follows the syntactic tree of the
formula, like in the case of alternating automata for LTLf ,
while adding the time constraints occurring in temporal op-
erators to the transition function.

Consider the execution of this automaton, shown in Fig. 1,
on the word ρ1 = (c, 0.5)(a, 1.5)(b, 2.49)(d, 5) of Exam-
ple 1. Notice that event a generates the configuration with

2We define only those transitions that can actually occur in
some run over a timed word.
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{(l0, 0)} 0.5
 {(l0, 0.5)} c→

{(l1, 0.5)} 1
 {(l1, 1.5)} a→

{(l1, 1.5), (l2, 0)} 0.99
 {(l1, 2.49), (l2, 0.99)} b→

{(l1, 2.49)} 2.51
 {(l1, 5)} d→

{(l1, 5)}

Figure 1: Execution of the automaton Aϕ over the trace ρ1.

location l2, which is then removed from the configuration by
b, only if its associated clock has value less or equal than 1.

(Ouaknine and Worrell 2007) shows that emptiness of A,
i.e., the problem of checking whether A contains some ac-
cepting run, is decidable, thus showing that MTLf (satisfi-
ability) is decidable. The main challenge in obtaining this
result has to do not only with the fact that, by the presence
of real values, TA contains infinitely many configurations,
but also, and more critically, with the fact that one cannot
straightforwardly derive a finite structure abstracting TA to
perform the check. This is overcome by resorting to the the-
ory of well-structured transition systems (Finkel and Sch-
noebelen 2001), which offers a technique to solve, essen-
tially, a variant of reachability. In this paper, we adapt that
technique to deal with the more general problem of comput-
ing a finite set of accepting runs, that will be needed in order
to solve the timed trace alignment problem.

3 Timed Trace Alignment
In this section, we generalize the framework for trace align-
ment introduced in (De Giacomo et al. 2017) to the case
where events are timed, i.e., have an associated timestamp.

3.1 The Problem
We model log traces as finite timed words, and specifica-
tions as MTLf formulas. This is consistent with the standard
setting in BPM where specifications are expressed in the
propositional variant of MP-DECLARE (Burattin, Maggi,
and Sperduti 2016), which is a fragment of MTLf .

Since log traces are obtained as logs of actual systems
under execution, a very natural assumption is that they have
only rational timestamps (as they have finite precision, thus
cannot be irrational). This is a very common assumption
not only in the context of trace alignment but, in general,
all practical settings, such as in the BPM context (Burattin,
Maggi, and Sperduti 2016).

We consider fixed the alphabet Σ of events. Given a
log trace ρ = (σ1, τ1) · · · (σ`, τ`), we consider three types
of atomic operations applicable to timed events in ρ: skip,
i.e., the timed event is left unchanged; delete, i.e., a timed
event is deleted from its position; and add, i.e., a new timed
event is added at a certain position (by preserving times-
tamp monotonicity). We call repair any modification of a
trace, through add or delete operations. Obviously, through
repairs one can produce new log traces ρ′, in fact all pos-
sible ones. We focus on those modifications that preserve
timestamp monotonicity, i.e., s.t. ρ′ is again a timed word.

Let cost(ρ, ρ′) be the function that takes as input two log
traces ρ and ρ′ and returns the minimal number of repairs
needed to transform ρ into ρ′.
Definition 1 (Trace alignment). An instance of trace align-
ment is a pair I = (ρ, ϕ) where ρ is a log trace and ϕ
an MTLf formula, both over the same event alphabet Σ. A
solution to I is a trace ρ′ that minimizes cost(ρ, ρ′) and
s.t. ρ′ |= ϕ.
Example 3. Consider the MTLf formula ϕ and the traces
ρ1 and ρ2 of Ex. 1. The pairs I1 = (ρ1, ϕ) and I2 =
(ρ2, ϕ) are instances of timed trace alignment. Since
ρ1 |= ϕ, the minimal cost solution for I1 is ρ1 itself,
as ρ1 |= ϕ and cost(ρ1, ρ1) = 0. As to I2, two op-
timal solutions are ρ̂2 = (c, 0.5)(b, 2.51)(d, 5), which
is obtained from ρ2 by removing (a, 1.5), and ρ̂′2 =
(c, 0.5)(a, 1.5)(b, 1.505)(b, 2.51)(d, 5), obtained by adding
(b, 1.505).

It can be seen that, given an instance I = (ρ, ϕ), if we
upscale all the timestamps in ρ and the values mentioned
in ϕ by the same integer factor, we obtain a new instance
I ′ = (ρ′, ϕ′) s.t. every solution ρ̂′ to I ′ (which may contain
non-integer timestamps) can be scaled back into one solu-
tion ρ̂ to I and viceversa. This guarantees that no solution is
lost if we first solve I ′ and then scale the obtained solution
back. In particular, because ρ contains only rational times-
tamps, we can choose the (integer) scale factor in such a
way that the timestamps in ρ′ are all integer, thus obtaining
an instance I ′ that mentions only integer values (ϕ′ men-
tions only integer values because so does ϕ). We can thus
assume, without loss of generality, that every instance I of
Trace Alignment mentions only integer values (if it does not,
we suitably upscale the instance, then solve it, and finally
downscale the obtained solution).
Example 4. Consider the instance I2 = (ρ2, ϕ) of Ex. 3,
where ρ2 = (c, 0.5)(a, 1.5)(b, 2.51)(d, 5) and ϕ = G(a →
F≤1 b). By scaling the values in ρ2 and ϕ by a factor of
100, we obtain the instance I ′2 = (ρ′2, ϕ

′), where ρ′2 =
(c, 50)(a, 150)(b, 251)(d, 500) and ϕ′ = G(a→ F≤100 b).

An (optimal) solution to I ′2 is ρ̂′2 =
(c, 50)(a, 150)(b, 150.5)(b, 251)(d, 500) (which con-
tains non-integer timestamps) and an (optimal) solution to
I2 can be obtained by scaling it back by a factor of 1/100:

ρ̂2 = (c, 0.5)(a, 1.5)(b, 1.505)(b, 2.51)(d, 5).

We observe that since MTLf is decidable (Ouaknine and
Worrell 2007), so is checking whether, given ϕ, a solution
exists. However, in this paper, we are interested in finding an
optimal trace that solves the problem, not just establishing
its existence. For this, we need to review the framework
used for obtaining decidability and then exploit it to obtain
our results.

3.2 An Automata-based Approach for Timed
Trace Alignment

Timed trace alignment can be reduced to the problem of
finding an accepting run in a suitable 1ATA obtained as the
cross-product of two further 1ATA’s, the augmented trace
automaton and the augmented constraint automaton.
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Definition 2 (Trace Automaton). Given a log trace ρ =
(σ1, τ1) · · · (σ`, τ`) over Σ, the trace automaton of ρ is the
1ATA Aρ = (Σρ, Lρ, lρ0, Fρ, δρ), s.t.:

• Σρ = Σ;
• Lρ = {l0, l1, . . . , l`};
• lρ0 = l0;
• Fρ = {l`};
• δρ is s.t. δρ(li, σi+1) = li+1∧x = τi+1, for i = 0, . . . , `−

1, and is undefined otherwise.

Intuitively, Aρ is a 1ATA that accepts exactly ρ, i.e.,
L(Aρ) = {ρ}. We recall that timestamps are integer, thus
the formulae from Φ(L) returned by δ can check that times-
tamps have a specific (integer) value. This would not be
possible if timestamps were not integer, as Φ(L) formulae
can compare clocks only against integers.

Example 5. Consider the (scaled) trace ρ2 of Ex. 4. The
corresponding trace automaton Aρ2 is depicted in Fig. 2.
Observe that every transition is triggered only when the cor-
rect event appears at its corresponding timestamp. It is easy
to see that the automaton accepts only the trace ρ2. More-
over, observe that such 1ATA is deterministic, in the sense
that every reachable configuration has a single successor.

l0 l1 l2 l3 l4

c ∧ x = 50 a ∧ x = 150 b ∧ x = 251 d ∧ x = 500

Figure 2: The trace automaton Aρ2 for the trace ρ2.

We then augment Aρ in such a way that it accepts all the
traces obtainable from ρ by applying some repairs. We rep-
resent repairs by means of fresh untimed events added to Σ.

Definition 3 (Augmented Trace Automaton). Given a log
trace ρ, consider its corresponding trace automaton Aρ =
(Σρ, Lρ, lρ0, Fρ, δρ). The augmented trace automaton of ρ
is the 1ATA A+

ρ = (Σ+
ρ , L

+
ρ , l

+
ρ0, F

+
ρ , δ

+
ρ ), where:

• Σ+
ρ = Σ∪{del}∪

⋃
σ∈Σ{addσ}, with del and each addσ

fresh events;
• L+

ρ = Lρ = {l0, l1, . . . , l`};
• l+ρ0 = lρ0 = l0;

• F+
ρ = Fρ = {l`};

• δ+
ρ is s.t.:

– δ+
ρ (li, σi+1) = δρ(li, σi+1), for i = 0, . . . , `− 1;

– δ+
ρ (li, del) = δρ(li, σi+1), for i = 0, . . . , `− 1;

– δ+
ρ (l, addσ) = l, for all σ ∈ Σ;

– δ+
ρ is undefined otherwise.

Intuitively, the automaton A+
ρ accepts sequences of

atomic operations applied to ρ. A skip operation occurs
when the very same timed event occurring in ρ is read, in
which case the transition simply copycats that of the trace
automaton (on same location and timed event). When del is
read, the automaton moves to the next state as if the deleted
event had been read; as a consequence, the accepted word

will contain the symbol del instead of the deleted one. Ob-
serve that the timestamp of the timed event containing del
must be the same as that of the deleted timed event; in this
way, each occurrence of del in the accepted word can be as-
sociated with the timed event deleted from ρ. Finally, when
add occurs, the automaton reads the event and loops on its
current state; as a consequence, the accepted word may con-
tain arbitrary many occurrences of add.

Observe that the words ρ+ read by A+
ρ are not proper log

traces, as some events they contain are not from Σ; rather,
they are sequences of atomic operations applied to ρ. How-
ever, one can easily obtain the corresponding repaired trace
ρ̂ by simply removing all the timed events containing del
and replacing each timed event (addσ, τ) with (σ, τ). For
this reason, with a slight abuse of notation, we use traces
containing repairs such as ρ+ as (their corresponding) log
traces.

Example 6. Consider again the trace automaton Aρ2 of
Ex. 5. The augmentation is obtained by including transi-
tions on add and del as shown in Fig. 3. Every transition
from li to li+1 in the trace automaton, with i ∈ {0, 1, 2, 3},
is paired with a new transition labeled by del, denoting that
the automaton moves to the successor locations on delete
operations. Moreover, for every location li, a loopy transi-
tion on addσ is added per untimed event σ ∈ Σ, denoting
that a new event has been included in the trace.

l0 l1 l2 l3 l4

add?
c ∧ x = 50

del

add?
a ∧ x = 150

del

add?
b ∧ x = 251

del

add?
d ∧ x = 500

del

add?

Figure 3: The augmented trace automaton A+
ρ2 for the trace ρ2.

The other 1ATA we define is the augmented constraint
automaton. Given an MTLf formula ϕ, let Aϕ =
(Σϕ, Lϕ, lϕ0, Fϕ, δϕ) be a 1ATA accepting all and only the
log traces ρ s.t. ρ |= ϕ. We call Aϕ the constraint automa-
ton. We now augment the constraint automaton to obtain a
new automaton accepting all and only the timed words ob-
tained by repairing ρ.

Definition 4 (Augmented Constraint Automaton). Given an
MTLf formula ϕ, consider its corresponding 1ATA Aϕ =
(Σϕ, Lϕ, lϕ0, Fϕ, δϕ). The augmented constraint automaton
of I‘ is the 1ATA A+

ϕ = (Σ+
ϕ , L

+
ϕ , l

+
ϕ0, F

+
ϕ , δ

+
ϕ ), where:

• Σ+
ϕ = Σ∪{del}∪

⋃
σ∈Σ{addσ} is the same input alpha-

bet as that of the augmented trace automaton;
• L+

ϕ = Lϕ;

• l+ϕ0 = lϕ0;

• F+
ϕ = Fϕ;

• δ+
ϕ is s.t.:

– for all σ ∈ Σϕ and l ∈ Lϕ, we have that δ+
ϕ (l, σ) =

δϕ(l, σ), and δ+
ϕ (l, addσ) = δϕ(l, σ);

– δ+
ϕ (l, del) = l;

– δ+
ϕ is undefined otherwise.
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Intuitively, the augmentation A+
ϕ copycats the execution

of Aϕ when it reads either an original symbol σ or the cor-
responding addition addσ .
Example 7. Consider the MTL formula ϕ of Ex. 1 and the
corresponding 1ATA Aϕ shown in Ex. 2. The transition
function of the augmented constraint automaton A+

ϕ is then
defined as:

• δ+
ϕ (li, σ) = δ+

ϕ (li, addσ) = δ(li, σ) (i = 0, 1, 2);
• δ+

ϕ (¬a, σ) = δ+
ϕ (¬a, addσ) = δ(¬a, σ);

• δ+
ϕ (b, σ) = δ+

ϕ (b, addσ) = δ(b, σ);
• δ+

ϕ (l, del) = l, for every l ∈ L+
ϕ

where δ is the transition function of the automaton Aϕ.
The relevance of the above defined (augmented) automata

A+
ρ and A+

ϕ wrt (timed) trace alignment resides in the fact
that they can be suitably combined in a further automaton,
namely the product automaton, which can be used to find a
solution to the problem, if any.
Definition 5 (Product automaton). Given two 1ATA’s Ai =
(Σ, Li, li0, Fi, δi) (i = 1, 2) over the same input alphabet Σ,
with disjoint sets of location L1 and L2 the product of A1

andA2 is the 1ATAA1⊗A2 = (Σ, L1 ∪L2 ∪{l0}, l0, F1 ∪
F2, δ), where l0 is a fresh location not in L1 or L2 and δ is
s.t.:
• δ(l0, σ) = δ1(l10, σ) ∧ δ2(l20, σ);
• δ(l, σ) = δi(l, σ), if l ∈ Li (recall that L1 ∩ L2 = ∅).

The so-defined automaton is s.t. L(A1⊗A2) = L(A1)∩
L(A2), i.e., it accepts all and only those words accepted by
both A1 and A2.

Let ρ be a timed log trace and ϕ an MTLf formula, both
over Σ. Consider the corresponding (augmented) trace and
constraint automata A+

ρ and A+
ϕ , and their product Aρ,ϕ =

A+
ρ ⊗ A+

ϕ . The following result says that L(Aρ,ϕ) is the
solution space of the instance (ρ, ϕ).
Theorem 1. The product automaton Aρ,ϕ accepts all and
only those repairs ρ+ of ρ such that ρ̂ |= ϕ, where ρ̂ is
obtained from ρ+ by removing the occurrences of (del, τ)
and replacing the occurrences of (addσ, τ) with (σ, τ).
Example 8. Consider the instance I ′2 = (ρ′2, ϕ

′) of
Ex. 4, where: ρ′2 = (c, 50)(a, 150)(b, 251)(d, 500) and
ϕ′ = G(a → F≤100 b). Let A+

ρ′2
be the aug-

mented trace automaton of ρ′2, A+
ϕ′ the augmented con-

straint automaton of ϕ′, and Aρ′2,ϕ′ = A+
ρ′2
⊗ A+

ϕ′

the corresponding product automaton. The word ρ̂′2 =
(c, 50)(a, 150)(addb, 150.5)(b, 251)(d, 500) is accepted by
both A+

ρ′2
and A+

ϕ′ , hence Aρ′2,ϕ′ . Observe that while, as it
can be checked, ρ̂′2 is an optimal solution, this is not the case
in general for all the words accepted by Aρ′2,ϕ′ . Indeed, the
word ρ̂′′2 = (c, 50)(a, 150)(addb, 150.5)(del, 251)(d, 500) is
also accepted by Aρ′2,ϕ′ but is not an optimal solution.

Therefore, we can limit the search for the optimal solution
only to the words accepted by Aρ,ϕ, which can be obtained,
more specifically, starting from the runs of the LTS Tρ,ϕ in-
duced by Aρ,ϕ. Clearly, it is not obvious how the search

should be performed, as Tρ,ϕ is in general infinite-state, with
uncountably many nodes and transitions, a feature that con-
stitutes a major obstacle in approaching the problem.

4 Solving Timed Trace Alignment
Ideally, in order to find an optimal solution to timed trace
alignment, one should explore the set of accepting runs of
the LTS Tρ,ϕ induced by Aρ,ϕ, and then select the corre-
sponding accepted word, if any, containing a minimal num-
ber of repairs. Obviously, by Tρ,ϕ’s infiniteness, a brute-
force approach is not viable. In this section we show that
the search can be effectively performed on a finite fragment
of Tρ,ϕ. This is done by suitably adapting the construction
presented in (Ouaknine and Worrell 2007) to the present set-
ting.

4.1 The Induced Rational LTS
Consider a 1ATA A = (Σ, L, l0, F, δ), take a correspond-
ing state (l, v), and assume that the clock value v is not
integer, i.e., bvc < v < dve. For an event e ∈ Σ, con-
sider the transition φ = δ(l, e) and let (l′, v′) be a state
in the minimal model M of δ(l, e) wrt v. In other words,
(l′, v′) is a “successor” of (l, v) under e. Now, change the
clock value v by an arbitrary (positive or negative) quantity
ε s.t. bvc < v + ε < dve and consider the state (l, v + ε).
By the semantics of Φ(L), it follows that if v′ 6= 0 the state
(l′, v′+ε) is a successor (under e) of (l, v+ε), and if v′ = 0,
then (l′, 0) is a successor. This occurs because clock condi-
tions in φ can compare v only against integer constants, thus
are insensitive to changes in v that are small enough to keep
v in the interval (bvc, dve). Clearly, this is not true for an
integer v, as arbitrary small changes can be (potentially) de-
tected by clock conditions in φ. Notice that if (l′, v′) is an
accepting state then so is (l′, w), for any w, as being accept-
ing for a state depends only on the location.

The intuition above essentially says that location transi-
tions outgoing from a state (l, v) are invariant wrt delays that
maintain v ∈ (bvc, dve). Thus, since when looking for an
accepting run we are ultimately interested in the evolution
of locations, and because time steps do not affect locations
directly, we can focus only on those time steps that move a
clock from an interval to the next one. This is formalized
below and lifted from states to configurations.

Partition the interval V = [0,max] ∪ {>} (recall that
max is the maximum constant mentioned inA and> stands
for any value in (max,∞)) into so-called clock regions:
r0 = {0}, r1 = (0, 1), . . . , r2i = {i}, r2i+1 = (i, i +
1), . . . , r2max+1 = {>}. For a clock value v, let r(v) = ri
iff v ∈ ri.

Now, consider the LTS WA = (Σ ∪ {ε},K,C0, A,→),
where:

• K ⊆ 2Q, is the set of possible configurations, with Q the
set of possible A-states;

• C0 = {(l0, 0)} ∈ K is the initial configuration;

• A = {C ∈ K | (l, v) ∈ C ⇒ l ∈ F} is the set of
accepting configurations;

• → ⊆ K × Σ ∪ {ε} ×K is the transition relation s.t.:
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– C
ε→ C ′ iff either C = C ′ = ∅ or C ′ = C + d, with:

1. d = (1 − µ)/2 and µ the maximum fractional part
among all the clock values occurring in C (0 for >),
if there exists some state (l, v) ∈ C with an integer
v ∈ [0,max];

2. d = (1− µ) otherwise.

– C
a→ C ′, with a ∈ Σ, if C a→ C ′ as in the LTS TA

induced by A.
Essentially, the delay d in the ε-transitions is chosen in such
a way that, after the transition, only the clock values that, in
the current configuration, are closest to their next region en-
ter it. If there is no “next region”, i.e., all clocks are beyond
max, the default value d = 1 is used. Obviously, all clocks
uniformly increase their value by d.

Since event transitions are a subset of TA’s, we can think
of WA as an LTS obtained from TA by considering only
selected time steps, in particular those that make the clock
values of each state move to their next region as discussed
above (equivalently, despite the formal difference due to the
fact that TA has two transition relations whileWA one only,

we can see WA as a fragment of TA). Let ε∗→ denote the
reflexive transitive closure of ε→ in WA. We have the fol-
lowing result.

Theorem 2. If % = C0
ε∗→ C1

σ1→ · · · ε
∗

→ C2`−1
σ`→ C2` is

a run ofWA then %′ = C0
d1 C1

σ1→ · · · d` C2`−1
σ`→ C2`

is a run of TA, where, for i = 0, . . . , ` − 1, each di is the
(rational) delay s.t. C2i+1 = C2i + di+1.

Proof. Immediate consequence ofWA’s definition.

In other words,WA-runs can be rewritten as runs of TA,
and thus as A-runs.

Given a timed word ρ = (σ1, τ1), . . . , (σ`, τ`), a WA-

run % = C0
ε∗→ C1

σ1→ · · · ε∗→ C2`−1
σ`→ C2` is said to

be a run of WA on ρ, if the delay associated with the i-
th ε-transition is di = τi − τi−1 (τ0 = 0 by convention),
formally, if C2i+1 = C2i+ (τi+1− τi), for i = 0, . . . , `−1.
The notions of accepting run and accepted word extend to
WA in the obvious way.

Notice that, by the definition of WA, all clock values of
WA-states are rational; for this reason, WA-configurations
are called rational configurations, andWA the rational LTS
induced by A. By this and the fact that every state admits
only a finite number of successors, namely one under ε and
finitely many under the events, it follows thatWA contains
only countably many states, as opposed to the uncountably
many of TA due to the infinitely many delays it allows for.
As a consequence, since given a configuration C, its succes-
sors C ′ s.t. C σ→ C ′ on all events σ are computable (through
the transition function ofA), we have thatWA can be effec-
tively constructed, up to a fixed depth.
Theorem 3. The induced rational LTSWA of a 1ATA A is
computable up to a given depth.

The relationship of interest between TA and WA can be
established by introducing the following equivalence rela-
tion among configurations. Let ≡ ⊆ 2Q × 2Q be the equiv-

alence relation between configurations s.t. C ≡ C ′ iff there
exists a bijection f : C 7→ C ′ between the states in C and
C ′ s.t.: (i) if f(l, v) = f(l′, v′) then l = l′ and v, v′ ∈ ri, for
some i; and (ii) if f(l, v) = f(l, v′) and f(g, w) = f(g, w′)
then frac(v) ≤ frac(v′) implies frac(w) ≤ frac(w′),
where frac(·) is the function that returns the fractional part
of a number. Intuitively, two configurations are equivalent
iff they contain exactly the same state, modulo modifications
that preserve: (i) locations and clock regions, and (ii) the
relative order of their clock values wrt the distance from the
respective previous regions. Notice that equivalent configu-
rations are either both accepting or none.

We have the following crucial result.

Theorem 4. Given a 1ATA A, the LTS TA induced by A
admits a run % = C0

d1 C1
σ1→ · · · d` C2`−1

σ`→ C2`, iff the

rational LTS WA induced by A admits a run %′ = C0
ε∗→

C ′1
σ1→ · · · ε

∗

→ C ′2`−1
σ`→ C ′2`, s.t. Ci ≡ C ′i, for i = 0, . . . , 2`.

Proof. The If-part is an immediate consequence of Thm. 2.
The Only-if part is in the proof of Prop. 4.9 of (Ouaknine and
Worrell 2007), which states that a configuration C is reach-
able (from C0) in TA only if a configuration C ′ s.t. C ′ ≡ C
is reachable in WA. The proof shows how to construct
a WA-run that reaches C ′ from a TA-run that reaches C.
When applied to %, the construction produces %′.

The result above implies that we can search for an accept-
ing run of TA by performing the search inWA.

4.2 Searching over the Induced Rational LTS
In this section, we take advantage of the results above to
search for an optimal solution to timed trace alignment in the
rational LTS. We start by deriving useful bounds on length
and cost of all optimal solution traces.

Theorem 5. Let I = (ρ, ϕ) be an instance of timed trace
alignment and ρ′ a minimal-length trace accepted by Aϕ,
with |ρ′| = m. If ρ̂∗ is an optimal solution to I then:

• cost(ρ, ρ̂∗) ≤ |ρ|+m, and
• |ρ| ≤ |ρ̂∗| ≤ 2|ρ|+m.

Proof. Let ρ = (σ1, τ1) · · · (σ`, τ`) and ρ′ =
(σ′1, τ

′
1) · · · (σ′m, τ ′m). Consider the ordered sequence

τ ′′1 ≤ . . . ≤ τ ′′`+m obtained from the union of the times-
tamps in ρ and ρ′ 3. Let ρ̂ be the trace obtained by shuffling
del and add operations in such a way as to transform ρ into
ρ′, i.e.:

ρ̂ = (op1, τ
′′
1 ) · · · (op`+m, τ ′′`+m)

with

opi =

{
addσj

, if τ ′′i = τ ′j
del, otherwise

Obviously, ρ̂ is a (possibly non-optimal) solution to I, as
so is ρ′, with cost cost(ρ, ρ̂) = |ρ| + m, due to the fact that

3We assume, without loss of generality, that all timestamps are
different.
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both del and add repairs have unitary cost. Consequently,
for an optimal solution ρ̂∗ we have cost(ρ, ρ̂∗) ≤ |ρ|+m.

Regarding the length of ρ̂∗, observe that, by Thm. 1, ρ̂∗
must be accepted by the product automaton Aρ,ϕ, thus by
the augmented trace automaton A+

ρ , which is immediate to
see that requires |ρ̂∗| ≥ |ρ|. Moreover, since skip repairs
have null cost, their inclusion in a solution does not affect
the solution’s cost, but only its length. Thus, since there can
be at most |ρ| skips, it follows that cost(ρ, ρ̂∗) ≥ |ρ̂∗| − |ρ|.
By combining the two bounds on cost(ρ, ρ̂∗), we obtain

|ρ̂∗| − |ρ| ≤ cost(ρ, ρ̂∗) ≤ |ρ|+m,

which implies |ρ̂∗|−|ρ| ≤ |ρ|+m, thus |ρ̂∗| ≤ 2|ρ|+m.

Thus, there exists an upper bound on the length of the
optimal solutions. We now address the crucial point of its
computation and then show how it can be used to find an
optimal solution to timed trace alignment.

(Ouaknine and Worrell 2007) showed that the existence
of an accepting run in a 1ATA A can be checked by travers-
ing its induced rational LTSWA, searching for an accepting
configuration. SinceWA is in general infinite, the traversal
is carried out subject to a termination criterion, which is de-
rived by resorting to the theory of well-structured transition
systems.
Definition 6 (Downward well-structured transition system).
A downward well-structured transition system is a finite-
branching transition system T = (Q,�,→) equipped with
a relation � ⊆ Q×Q between states, s.t.:
• � is a well-quasi-ordering, i.e., a reflexive and transitive

relation s.t. for every infinite sequence q1, q2, . . ., there
exist two indices i < j with qi � qj;

• � is downward compatible with→, that is, for all q′1 � q1

and transition q1 → q2, there exists a sequence q′1 →
· · · → q′2 s.t. q′2 � q2.
For this class of transition systems, under the assumption

that � is decidable and that the successors of every state
are computable, reachability of a set of states V ⊆ Q from
some initial state q0 is decidable (Finkel and Schnoebelen
2001); in particular, a reachable state in V can be sought
by traversing the states of T starting from q0, moving to the
next state according to→, and terminating the search along
a branch whenever a state q is reached s.t., for a previously
visited state q′, it holds that q′ � q.

Since it can be proven that the rational LTSWA induced
by a 1ATA A is indeed a downward well-structured transi-
tion system, where containment between configurations⊆ is
the well-quasi-order �, it follows that reachability of an ac-
cepting TA-configuration is decidable (Ouaknine and Wor-
rell 2007). By combining these results, we easily obtain the
following.
Theorem 6. The set of minimal-length words accepted by a
1ATA A is computable.

Proof. Consequence of the fact that WA is a downward
well-structured transition system, Thm. 5 of (Finkel and
Schnoebelen 2001), and Thm. 4. The search can be per-
formed by traversing WA in a breadth-first fashion, termi-
nating the search along a branch –i.e., closing the branch–

as soon as a configuration C is reached which includes some
previously visited configuration C ′, i.e., C ′ ⊆ C. The
search terminates either at the first level containing an ac-
cepting configuration, in which case all the accepting runs
up to that level are collected, or when all branches are
closed, meaning that no accepting run exists. Termination
in the latter case is guaranteed by Thm. 5 of (Finkel and
Schnoebelen 2001). The fact that the collected runs are
minimal-length TA accepting runs is a consequence of the
above construction and Thm. 4. From the collected ac-
cepting runs, it is immediate to obtain the corresponding
words.

This result yields the following.

Corollary 1. The length m of a shortest word accepted by
a 1ATA A is computable.

Proof. The value m can be easily obtained by executing the
search procedure described in Thm. 6, storing the current
depth m, and terminating as soon as an accepting run, if
any, is found. If no accepting run is found, m can be set to
a special value, e.g., negative, to indicate that the solution
L(A) is empty.

Now, consider a timed-trace-alignment instance I =
(ρ, ϕ). Take the product automaton Aρ,ϕ = A+

ρ ⊗ A+
ϕ , its

induced LTS Tρ,ϕ, and the induced rational LTSWρ,ϕ. The
next result implies that an optimal solution to I = (ρ, ϕ)
can be searched for onWρ,ϕ instead of on Tρ,ϕ.

Theorem 7. If there exists a solution ρ̂ to a timed-trace-
alignment instance I = (ρ, ϕ) then there exists a solution ρ̂′
with cost(ρ, ρ̂) = cost(ρ, ρ̂′) that is accepted by the induced
rational LTSWρ,ϕ of Aρ,ϕ.

Proof. Let ρ = (σ1, τ1) · · · (σ`, τ`) and ρ̂ =
(σ̂1, τ̂1) · · · (σ̂`, τ̂m). Define n as the number of timed
events occurring in both ρ and ρ̂, i.e., s.t. (σ̂i, τ̂i) = (σi, τi).
Obviously, cost(ρ, ρ̂) = |ρ̂|−n. We next show the existence
of a trace ρ̂′ s.t. |ρ̂′| = |ρ̂| which contains n timed events
that match those of ρ.

Since ρ̂ is a solution to I, by Thm. 1, ρ̂ ∈ L(Aρ,ϕ). Let

%̂ = C0
d1 C1

σ̂1→ · · · dm C2m−1
σ̂m→ C2m, with di =

τ̂i− τ̂i−1, (i = 1, . . . ,m, recall that τ̂0 = 0), be an accepting
run of Tρ,ϕ on ρ̂. By Thm. 4, Wρ,ϕ admits a trace %′ =

C0
ε∗→ C ′1

σ̂1→ · · · ε
∗

→ C ′2m−1
σ̂m→ C ′2m, s.t. Ci ≡ C ′i. Since

C2m ≡ C ′2m, %′ is accepting. Then, by Thm. 2, there exists

an accepting run of Tρ,ϕ, i.e., %̂′ = C0
d′1→ C ′1

σ̂1→ · · · d
′
m→

C ′2m−1
σ̂m→ C ′2m.

Let ρ̂′ = (σ̂′1, τ̂
′
1) · · · (σ̂′m, τ̂ ′m) be the log trace that in-

duces %̂′ (formally, %̂′ is a run of Tρ,ϕ on ρ̂′). Since %̂′ is
accepting, ρ̂′ ∈ L(Aρ,ϕ). Observe that |ρ̂| = |ρ̂′| and that
while σ̂i = σ̂′i (i = 1, . . . ,m), the corresponding times-
tamps τ̂i and τ̂ ′i may, in general, differ. In fact, since ρ̂ is
accepted by Aρ,ϕ, thus by A+

ρ , every timed event (σ̂i, τ̂i)
where σ̂i is neither an add nor a del must be s.t. (σ̂i, τ̂i) =
(σj , τj), for some j. This holds analogously for ρ̂′. As a
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consequence, ρ̂ and ρ̂′ have the same number n of timed
events occurring also in ρ, thus, by what discussed above:

cost(ρ, ρ̂) = |ρ̂| − n = |ρ̂′| − n = cost(ρ, ρ̂′).

We thus obtain our main result.
Theorem 8. The following holds for an instance I = (ρ, ϕ)
of timed trace alignment:

• checking whether I admits a solution is decidable;
• if I admits a solution then an optimal solution is com-

putable.

Proof. By applying Corollary 1 (and Thm. 6) to the aug-
mented trace automaton A+

ϕ , we can compute the length m
of a shortest trace accepted by A+

ϕ . If m < 0 then I admits
no solution.

Otherwise, if m ≥ 0, we construct the fragment Ŵρ,ϕ

of Wρ,ϕ, up to depth 2|ρ| + m, with ε-transitions not con-
tributing to the depth (we are counting the timed events).
By Thm. 3, we have that Ŵρ,ϕ is computable. Then, we
compute the set Γ̂ of accepting runs % of Ŵρ,ϕ such that
|ρ| ≤ |%| ≤ 2|ρ| + m. By Thm. 2, the runs in Γ̂ can be
rewritten as accepting runs of Tρ,ϕ. Call Γ the resulting set
of Tρ,ϕ-runs and let Ψ be the set of traces that induce the runs
in Γ. Since Γ contains only accepting runs, all the traces in
Ψ are solutions. In addition, by Thm. 5, Ψ contains the op-
timal solutions. But then, since Ψ is finite and cost(ρ, ρ̂)
is computable, we can find the minimum-cost trace ρ̂ in Ψ,
which is the optimal solution.

Consider again the instance I2 = (ϕ, ρ2) of Ex. 3
and the corresponding induced rational LTS. The opti-
mal solutions ρ̂2 = (c, 0.5)(b, 2.51)(d, 5) and ρ̂′2 =
(c, 0.5)(a, 1.5)(b, 1.505)(b, 2.51)(d, 5) can be obtained by
applying the technique described in Thm. 8.

5 Discussion about Complexity
The central result of this work is the computability theo-
rem, i.e., Thm. 8 and, more in general, the whole approach,
which constitutes a general theoretical reference for future
techniques and concrete implementations. In this section,
we analyze the complexity of the proposed technique and
briefly discuss some practical implications.

The procedure described in Thm. 8 operates as follows.
Firstly, it performs a search on the induced LTS of the aug-
mented constraint automaton A+

ϕ to compute the length m
of the shortest solution; secondly, it traverses a fragment of
the LTS induced by the product automatonAρ,ϕ to compute
an over-approximation Ψ of the set of optimal solutions; and
finally, it extracts the minimal-cost solution among those in
Ψ. As explained, the traversals are performed on finite frag-
ments of the two LTSs.

Clearly, MTLf satisfiability is reducible to our technique,
as a formula ϕ is satisfiable iff an instance I = (ρ, ϕ) ad-
mits a solution, no matter which trace ρ is provided in input.
We know that MTLf satisfiability has non-primitive recur-
sive complexity (Ouaknine and Worrell 2007), meaning that

no algorithm exists for solving the problem with a running
time expressible as a primitive-recursive function of the in-
put size. Thus, since the class of problems with primitive
recursive complexity strictly includes the class of problems
with elementary complexity, it follows that our technique
has non-elementary complexity.

Obviously, the obtained bound constitutes a major limi-
tation to practical applicability of the approach. Nonethe-
less, it must be noted that, in the BPM context, constraint
specifications are usually obtained as conjunction of simple
requirements written according to specific pre-defined tem-
plates. This is the case, e.g., of MP-DECLARE (Burattin,
Maggi, and Sperduti 2016), whose propositional version, the
one of interest in this case, is a proper fragment of MTLf .
The use of simple templates might, on the one hand, pre-
vent the “worst-case” from occurring frequently, thus miti-
gating, itself, the impact on complexity. An example of this
effect is offered by MONA (Henriksen et al. 1995): a tool
for the translation of Monadic Second-order Logic specifi-
cations into DFAs, which, despite adopting a technique with
non-elementary complexity, shows practical results that out-
perform approaches with better theoretical bounds (Zhu et
al. 2017). In this respect, it would be interesting to identify,
among the most common patters used in the BPM commu-
nity, those that show best practical performance. Moreover,
our work can also be used for isolating further well-behaved
classes by exploiting insights on timestamps that are easier
or difficult to deal with. On the other hand, specific tech-
niques could be devised for the set of templates of interest
only, thus avoiding the complexity due to the generality of
the whole MTLf .

6 Conclusions
In this paper, we have shown that checking whether an in-
stance of timed trace alignment –an emerging open problem
in Declarative Process Mining– admits a solution is decid-
able and that, in the affirmative case, an optimal solution
is effectively computable. To do so, we have formalized
the problem as the search for an accepting path in an al-
ternating timed automaton and, by taking advantage of and
generalizing previous results on the decidability of MTLf ,
we have devised a constructive technique to actually com-
pute an optimal solution. The resulting technique is the first
solution to timed trace alignment, with specifications ex-
pressed in MTLf , which is the logic underlying propositional
MP-DECLARE, a commonly used language in BPM.

While, in the general case, demanding from a computa-
tional point of view, we can expect that specifications of
practical interest are seldom representative of the worst-
case, thus mitigating the computational cost in practical
cases. In this respect, an interesting future work is that of de-
vising a technique specifically tailored for the propositional
fragment of MP-DECLARE and actually testing its imple-
mentation, possibly based on the planning technology, on
a dataset with log traces stemming from practical contexts.
Another, more theoretical, possible extension of this work is
that of studying the problem for full MP-DECLARE, i.e.,
when specifications involve a first-order representation of
the states, to express properties concerning event attributes.
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