
Strategic Reasoning in Automated Mechanism Design

Bastien Maubert1 , Munyque Mittelmann2 , Aniello Murano1 , Laurent Perrussel2
1Università degli Studi di Napoli “Federico II”, Italy

2IRIT, Université de Toulouse 1 Capitole, France
bastien.maubert@gmail.com, munyque.mittelmann@irit.fr,

nello.murano@gmail.com, laurent.perrussel@irit.fr

Abstract
Mechanism Design aims at defining mechanisms that satisfy
a predefined set of properties, and Auction Mechanisms are of
foremost importance. Core properties of mechanisms, such
as strategy-proofness or budget-balance, involve: (i) complex
strategic concepts such as Nash equilibria, (ii) quantitative as-
pects such as utilities, and often (iii) imperfect information,
with agents’ private valuations. We demonstrate that Strat-
egy Logic provides a formal framework fit to model mech-
anisms, express such properties, and verify them. To do so,
we consider a quantitative and epistemic variant of Strategy
Logic. We first show how to express the implementation of
social choice functions. Second, we show how fundamental
mechanism properties can be expressed as logical formulas,
and thus evaluated by model checking. Finally, we prove that
model checking for this particular variant of Strategy Logic
can be done in polynomial space.

1 Introduction
Mechanism Design (MD) aims at defining game-like sys-
tems whose equilibria satisfy some desired properties, usu-
ally expressed in terms of incentive, utility or social wel-
fare (Sandholm 2003). Some important types of mecha-
nisms studied are voting systems and auctions. Verifying
that a mechanism satisfies desired properties is usually done
by hand, which can be a very difficult and time-consuming
task for complex mechanisms and properties. For this rea-
son, in the recent years some works started to investigate
application of formal methods to the semi-automatic or au-
tomatic verification of some forms of mechanism design.

In the context of fully-automatic verification, “Logic for
Mechanism Design - A Manifesto” (Pauly and Wooldridge
2003) is of particular interest. In this work the authors ar-
gue that strategic logics developed for the formal verifica-
tion of multi-agent systems could be good candidates as for-
mal frameworks to reason about mechanisms. They consider
Alternating-time Temporal Logic (ATL) (Alur, Henzinger,
and Kupferman 2002) and show with two case-studies based
on voting systems that some relevant properties for the veri-
fication of such systems can be expressed in this logic. They
conclude with a research agenda in which they detail fea-
tures that are missing in ATL to make it really fit for mecha-
nism design verification:

“We need to incorporate more game-theoretic notions in
the logics we use. While the logics discussed are capable

of capturing some game theoretic notions, they are still too
close to their computer science origins. For example, play-
ers’ preferences, strategies, equilibrium notions, are all no-
tions which so far are inadequately represented both in the
underlying semantic models and in the logical languages
used. It is also still an open question whether we will eventu-
ally end up with one general-purpose logic which functions
as a standard, much the way first-order logic or modal logic
do in computer science.”

In the recent years much progress has been made in
the field of logics for strategic reasoning. Strategy Logic
(SL) (Chatterjee, Henzinger, and Piterman 2010; Mogavero
et al. 2014) was introduced. Unlike ATL, which it sub-
sumes, it allows for explicit manipulation of strategies, and
it can express important concepts in non-zero-sum games,
such as Nash equilibria. Its recent quantitative extension
SL[F] (Bouyer et al. 2019a) introduces values in models and
functions in the language, enabling the reasoning about key
game-theoretic concepts such as utilities and preferences.
Several works have also considered extensions of SL with
imperfect information, which is also an important feature in
many systems of interest in mechanism design such as vot-
ing or auction systems.

In this work we argue that Strategy Logic is a good can-
didate for a general-purpose logic for mechanism design.
To do so we focus on auction systems which, as argued
in (Pauly and Wooldridge 2003), “provide a good example
of mechanisms which are (a) sufficiently complex to demon-
strate the usefulness of formal verification, and (b) not too
complex to make formal verification infeasible”.

More precisely, we consider a new variant of Strategy
Logic with quantitative features, imperfect information and
epistemic operators, that we call SLK[F]. Because it is
enough for many auction scenarios, we focus on memory-
less strategies, that do not depend on the past but only on
the current state. We first show how mechanisms can be cast
as concurrent-game structures (Definition 5). We then show
how SLK[F] can express that a mechanism implements a
social choice function (Theorem 1), a fundamental concept
in mechanism design. This then allows us to express in
SLK[F] whether a mechanism satisfies desired properties.
We illustrate this with a number of important properties of-
ten required in auctions, or more generally in mechanism
design, that characterize the desired behaviour of the par-

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

487

ticipants or the chosen output of the mechanism: strategy
proofness (SP), individual rationality (IR), efficiency (EF),
budget-balance (BB) and Pareto optimality (PO) (Nisan et
al. 2007). SP expresses that each participant’s dominant
strategy is to truthfully report her preferences. IR means that
they have an incentive to participate in the mechanism, EF
says that the chosen outcome gives a high social welfare, BB
means that the mechanism satisfies monetary balance, and
PO means no agent can strictly improve her utility without
making at least one other agent decrease her utility. We then
consider epistemic aspects and show how, thanks to the epis-
temic operators in SLK[F], we can express properties relat-
ing agents’ revenues with their beliefs about other agents’
preferences. Verifying that a mechanism satisfies a property
then consists in model checking an SLK[F] formula, which
we show can be done in PSPACE for memoryless strategies
(and is thus a PSPACE-complete problem).

Organization We discuss relevant related work in Sec-
tion 2. In Section 3 we describe the Epistemic Quantitative
Strategy Logic SLK[F]. Next, in Section 4, we show how
an auction can be represented as a weighted concurrent game
structure and how classical concepts from MD are expressed
as SLK[F]-formulas. Section 5 establishes the complexity
of model checking, and Section 6 concludes and discusses
issues for future work.

2 Related Work
Different approaches to automating verification of auctions
are found in the literature. Some works from computer-
aided verification (Caminati et al. 2015; Barthe et al. 2016;
Kerber, Lange, and Rowat 2016) express mechanisms in
high-level specification languages, which can express rich
features including probabilistic aspects. The drawback of
this high expressivity is that, in contrast with model check-
ing, verification is then not fully automatic, but only as-
sisted by a reasoner such as Isabelle or Coq. Troquard et
al. (2011) show how to reason about voting rules prop-
erties such as strategy-proofness in a formalism that al-
lows fully automatic verification. However, the logic they
use can only model one-shot mechanisms and thus does
not capture multi-stage auctions such as Dutch Auctions.
The works closest to ours are (Pauly and Wooldridge 2003;
Wooldridge et al. 2007) which, as we already discussed,
advocate the use of strategic logics to reason about (pos-
sibly multi-stage) mechanisms by considering Alternating-
time Temporal Logic (ATL) (Alur, Henzinger, and Kupfer-
man 2002). They discuss that ATL lacks the ability to reason
about quantitative aspects such as preferences, and game-
theoretic concepts such as equilibria. The first order ex-
tension of ATL (Belardinelli and Lomuscio 2016) allows
one to capture some quantitative aspects, and the authors
demonstrate how an English auction may be represented,
and strategic properties such as manipulation and collusion
verified. However, key strategic concepts such as dominance
can not be expressed in the logic.

Our logic SLK[F] is rooted in a rich line of work on log-
ics for strategic reasoning, starting with ATL (Alur, Hen-

zinger, and Kupferman 2002), the foundational language for
strategic reasoning in multi-agent systems. ATL has been ex-
tended in various directions, considering for instance strat-
egy contexts (Laroussinie and Markey 2015) or adding im-
perfect information and epistemic operators (Jamroga and
Bulling 2011). Strategy Logic (SL) (Chatterjee, Henzinger,
and Piterman 2010; Mogavero et al. 2014) was then pro-
posed which, by treating strategies as first-order variables,
can express complex game-theoretic concepts. SL has been
extended to handle imperfect information and knowledge
operators (Berthon et al. 2021; Belardinelli et al. 2020;
Maubert and Murano 2018), but none of these logics can ac-
count for quantitative aspects. Recently, SL[F] (Bouyer et
al. 2019a) was introduced as a quantitative extension of SL.
By introducing quantitative values in the models and func-
tions in the language, it enables the reasoning about all key
concepts involved in auctions: utilities, payments, goods and
quantities. In this work we merge both lines by combining
quantitative aspects and imperfect information in SLK[F].

Related to auction representation, let us stress (Yadav
and Thangarajah 2016) combining the Prometheus tool
(Padgham, Thangarajah, and Winikoff 2008) and specifica-
tion in ATL of an auction-based multi-agent system. An in-
teresting lesson concerns scalability which is shown as “rea-
sonable” via experimental results. Based on the Game De-
scription Language (Genesereth and Thielscher 2014), (Mit-
telmann and Perrussel 2020) proposes an Auction Descrip-
tion Language, which is general enough for representing nu-
merous kinds of auctions. However, there is no strategic or
epistemic dimension in the language as it focuses on auc-
tions rules and not on participant’s behavior.

3 Epistemic SL[F]
SL[F] (Bouyer et al. 2019a) introduces quantitative aspects
in SL, but it lacks the ability to handle imperfect informa-
tion inherent to the auction scenarios that we aim at model-
ing, where agents may ignore other agents’ preferences for
instance. We thus introduce SLK[F], which extends SL[F]
with imperfect information and knowledge operators. A no-
table difference is that while SL[F] considers all values to
be in [0,1], we slightly generalize the setting to allow for
negative values in [-1,0] as well. This allows us to naturally
capture, for instance, double-sided auctions, where sellers
are agents with negative types, allocations and payments,
while positive value are used for buyers.

For the remainder of the paper, we fix a set of atomic
propositions AP, a set of agents Ag and a set of strategy
variables Var, except when stated otherwise. We let n be the
number of agents in Ag.
Definition 1. Let F ⊆ {f : [−1, 1]m → [−1, 1] | m ∈ N}
be a set of functions over [−1, 1] of possibly different arities.
The syntax of SLK[F] is defined by the following grammar:

ϕ ::= p | ∃sa. ϕ | (a, sa)ϕ | Kaϕ | f(ϕ, ..., ϕ) | Xϕ | ϕUϕ

where p ∈ AP, sa ∈ Var, a ∈ Ag, and f ∈ F .
The intuitive reading of the operators is as follows: ∃sa. ϕ

means that there exists a strategy for agent a such that ϕ
holds; (a, sa)ϕ means that when strategy sa is assigned to

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

488

agent a, ϕ holds; Kaϕ means that agent a knows that ϕ
holds; X and U are the usual temporal operators “next” and
“until”. The meaning of f(ϕ1, ..., ϕn) depends on the func-
tion f . We use >, ∨, and ¬ to denote, respectively, func-
tion 1, function x, y 7→ max(x, y) and function x 7→ −x.
Remark 1. In (Bouyer et al. 2019a), values are meant to rep-
resent degrees of truth value in [0, 1] where 0 corresponds to
“false” and 1 corresponds to “true”, as in Fuzzy Logics. In
this setting, negation ¬ is the function x 7→ 1− x. Here we
consider instead values in [−1, 1]. This does not affect the
semantics of the logic, nor the model-checking problem, and
it allows us to consider negative quantities. For instance, a
positive value may denote that an agent is receiving some-
thing, while a negative value represents that she is giving
something. The main difference is that “false” now corre-
sponds to −1, and negation is function x 7→ −x.

A variable is free in formula ϕ if it is bound to an agent
without being quantified upon, and an agent a is free in ϕ if
ϕ contains a temporal operator (X or U) that is not in the
scope of any binding for a. The set of free variables and
agents in ϕ is written free(ϕ), and a formula ϕ is a sentence
if free(ϕ) = ∅.

The strategy quantifier ∃sa. ϕ quantifies on strategies for
agent a. Except in its original formulation (Chatterjee, Hen-
zinger, and Piterman 2010), variants of SL do not specify for
which agent a strategy is at the level of strategy quantifica-
tion, and this allows assigning the same strategy to different
agents. However in the imperfect-information setting, we
need to know with respect to which observation relation a
strategy should be uniform. In (Berthon et al. 2021) this is
done by parameterizing strategy quantifiers with observation
relations. Here we adopt a slightly less general but more in-
tuitive notation, by parameterizing directly with the agent
who will use the strategy. This is enough for our purposes,
because we will not need to share a same strategy between
different agents, and we consider that the observation rela-
tion for each agent is fixed, as reflected by the following
definition.
Definition 2. A weighted concurrent game structure
with imperfect information (wCGS) is a tuple G =
({Aca}a∈Ag, V, δ, `, Vι, {∼a}a∈Ag) where
• Aca is a finite set of actions for agent a;
• V is a finite set of positions;
• δ : V × (

∏
a∈Ag Aca)→ V is a transition function;

• ` : V × AP→ [−1, 1] is a weight function;
• Vι ⊆ V is a set of initial positions;
• ∼a ⊆ V × V is an equivalence relation called the obser-

vation relation of agent a.
For a collection of objects indexed by agents in Ag, we

may omit the index set and write, e.g., {∼a} for {∼a}a∈Ag.
We will also often write o for a tuple of objects (oa)a∈Ag,
one for each agent, and such tuples are called profiles. Given
a profile o and a ∈ Ag, we let oa be agent a’s component,
and o−a is (ob)b6=a. Similarly, we let Ag−a = Ag \ {a}.
Action profiles In a position v ∈ V , each player a chooses
an action ca ∈ Aca, and the game proceeds to position
δ(v, c) where c is the action profile (ca)a∈Ag.

Plays A play π = v0v1v2... is an infinite sequence of posi-
tions such that for every i ≥ 0 there exists an action profile c
such that δ(vi, c) = vi+1. We write πi = vi for the position
at index i in play π.

Strategies A (memoryless) strategy for agent a is a function
σ : V → Aca that maps each position to an action. A strat-
egy σ for agent a is uniform if, for all positions v, v′ such
that v ∼a v′, we have σ(v) = σ(v′). We let Stra be the
set of uniform strategies for agent a, and Str = ∪a∈AgStra.
Because there are finitely many positions, Str is finite.

Assignments An assignment A : Ag ∪ Var→ Str is a func-
tion from players and variables to strategies. For an assign-
ment A, an agent a and a strategy σ for a, A[a 7→ σ] is the
assignment that maps a to σ and is otherwise equal to A,
and A[s 7→ σ] is defined similarly, where s is a variable.

Outcomes For an assignment A and a position v, we let
Out(A, v) be the unique play that starts in v and follows the
strategies assigned by A. Formally, Out(A, v) is the play
v0v1... such that v0 = v and for all i ≥ 0, vi+1 = δ(vi, c)
where for all a ∈ Ag, ca = A(a)(v0...vi).
Definition 3. Let G = ({Aca}a∈Ag, V, δ, `, Vι, {∼a}a∈Ag)
be a wCGS, and A an assignment. The satisfaction value
JϕKGA(v) ∈ [−1, 1] of an SL[F] formula ϕ in a position v is
defined as follows, where π denotes Out(v,A):

JpKGA(v) = `(v, p)

J∃sa. ϕKGA(v) = max
σ∈Stra

JϕKGA[sa 7→σ](v)

J(a, sa)ϕKGA(v) = JϕKGA[a 7→A(sa)]
(v)

JKaϕKGA(v) = min
v′∼av

JϕKGA(v′)

Jf(ϕ1,..., ϕm)KGA(v) = f(Jϕ1KGA(v), ..., JϕmKGA(v))

JXϕKGA(v) = JϕKGA(π1)

Jϕ1Uϕ2KGA(v) = sup
i≥0

min

(
Jϕ2KGA(πi), min

0≤j<i
Jϕ1KGA(πj)

)
If ϕ is a sentence, its satisfaction value does not depend

on the assignment, and we write JϕKG(v) for JϕKGA(v) where
A is any assignment. We also let JϕKG = minv∈VιJϕKG(v).

We can define the following classic abbreviations:
⊥:= ¬>, ϕ ∧ ϕ′ := ¬(¬ϕ ∨ ¬ϕ′), ϕ→ ϕ′ := ¬ϕ ∨ ϕ′,
Fψ := >Uψ, Gψ := ¬F¬ψ and ∀s. ϕ := ¬∃s.¬ϕ, and
check that they correspond to the intuition. For instance, ∧
corresponds to min, Fψ computes the maximum of the sat-
isfaction value of ψ over all future points in time, Gψ com-
putes the minimum of these values, and ∀s. ϕ minimizes the
value of ϕ over all possible strategies s.
Remark 2. In the particular case where atomic propositions
only take values in {−1, 1} and F consists of the func-
tions x 7→ −x (negation) and x, y 7→ max(x, y) (disjunc-
tion), SLK[F] corresponds to usual Boolean-valued SLK
with memoryless agents.

4 Reasoning about Auction Mechanisms
We now show how SLK[F] can be used to express all im-
portant concepts and properties from mechanism design.

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

489

4.1 Social Choice Functions
We first recall social choice functions, used to formalize how
to choose one outcome among several alternatives, based on
individual preferences of the agents.

Let Alt be a finite set of alternatives. Since our focus is
on characterizing mechanisms with monetary transfers, we
assume that each alternative in Alt is of the form α = (x,p)
where x ∈ X is a choice from a finite set of choices X , and
pa ∈ [−1, 1] is a payment for agent a.

For each agent a ∈ Ag, let also Θa ⊂ [−1, 1] be a finite
set of possible types for a. We let Θ =

∏
a∈Ag Θa, and we

note θ = (θa)a∈Ag ∈ Θ for a type profile, which assigns a
type θa to each agent a. The type θa of an agent a determines
how she values each choice x ∈ X ; this is represented by a
valuation function va : X ×Θa → [−1, 1].
Example 1. For instance, in a one-sided auction with one
good, a choice describes who wins the good. This can be
modelled by letting X = {−1, 1}Ag, and considering that
choice (xa)a∈Ag represents that agent a wins the good if
xa = 1. In a two-sided auction (i.e., with buyers and sellers)
with multiple copies of a good, a choice describes how many
items each agent sells or buys. We then let X = [−1, 1]Ag,
and a choice (xa)a∈Ag means that agent a buys xa items if
xa ≥ 0, and sells −xa items if xa ≤ 0 (values are normal-
ized in [-1,1]).

The type θa of agent a reflects how much the agent desires
the good. In one-sided auctions with choices defined asX =
{−1, 1}Ag as in Example 1, one could define the valuation of
agent a as va(x, θa) = xa ·θa. With this definition, a type θa
close to 1 models an agent very interested in the good, who
will have a high valuation if she receives it, the good, and
a low one if she does not. A type close to -1 represents an
agent who strongly does not want of this good, who has high
valuation if she does not receive the good, and low valuation
if she does. Finally, type 0 represents an indifferent agent,
who receives valuation 0 in all possible choices.

In double-sided auctions with multiple goods (of a same
type), with choices modeled as X = [−1, 1]Ag, a positive
type indicates the quantity an agent is willing to buy, while
a negative type denotes a selling quantity. Defining the val-
uation of agent a as va(x, θa) = xa · θa, the sign of this
value indicates if the outcome corresponds to what the agent
intended to do (selling or buying), and its norm indicates the
extent of her satisfaction or dissatisfaction.

The (quasi-linear) utility of agent a with type θa for an
alternative α = (x,p) is defined as

ua(α, θa) = va(x, θa)− pa

That is, the utility for agent a is the difference between
how much she valuates the choice x and her payment pa.

Definition 4. A social choice function (SCF) f : Θ→ Alt is
a function that, given a type profile θ, chooses an alternative
f(θ) ∈ Alt. We can split a social choice function as follows:
f = (x, {pa}), where x : Θ→ X is a choice function and for
each a, pa : Θ→ [−1, 1] is a payment function for agent a.

Example 2. The first-price social choice function ffp = (x,
{pa}) is defined as follows. The allocation choice is defined

as x(θ) = (x1, ..., xn), where xa = 1 if θa is the highest type
in θ and xa = 0 otherwise. In case two agents a 6= b have
the highest type, xa = 1 iff a ≺ b. The payment function
for agent a is defined as pa(θ) = xa · θa.

In the next sections, we describe how to represent mech-
anisms as wCGS and how to determinate whether a wCGS
implements a SCF.

4.2 Mechanisms as wCGS
While social choice functions describe what is the desired
outcome given agents’ preferences (types), a mechanism de-
scribes agents’ actions and their outcome. A mechanism
consists of a description of the agents’ possible actions, and
a description of the alternatives that result from them. Some
mechanisms are “one-shot”, meaning that the final alterna-
tive is reached after each agent has chosen one action, while
others may contain multiple stages. Also they may involve
agents holding some private information. Weighted concur-
rent game structures can very naturally model complex one-
shot or multi-stage mechanisms with imperfect information,
and we provide a general definition of mechanisms as a class
of concurrent game structures with special atomic proposi-
tions to represent types, allocations, payments etc.

Since we focus on allocation problems (in particular, auc-
tions), choices X represent allocations of goods of differ-
ent types from the set Gt = {1, ...,m}. An allocative
choice (Parkes and Ungar 2001) is a tuple (xa)a∈Ag ∈ X
where xa = (xa,1, ..., xa,m) denotes the allocation for agent
a, and xa,g ∈ [−1, 1] is the amount of goods of type g al-
located to agent a (normalized in [−1, 1]). Note that, in the
case of one type of goods (m = 1), we obtainX = [−1, 1]Ag

as in Example 1.

Definition 5. Let AP ⊇ {alla,g, paya, ter, typea : a ∈
Ag, g ∈ Gt} be a set of atomic propositions, where alla,g ,
typea, paya denote, respectively, how many units of the good
g are allocated to agent a, the type of a, and her payment.
The proposition ter specifies whether a state is terminal. A
mechanism is a wCGS over the atomic propositions AP that
satisfies the following:

(i) there is one initial position vθι for each possible type pro-
file θ ∈ Θ;

(ii) types remain unchanged through transitions, i.e. if
δ(v, c) = v′ then `(v, typea) = `(v′, typea) for each a;

(iii) each agent knows her own type: if v ∼a v′, then
`(v, typea) = `(v′, typea);

(iv) every play eventually reaches a terminal position, i.e., a
sink1 where proposition ter has value 1;

(v) in all non-terminal positions, ter has value -1.

A type profile θ together with a strategy profileσ determines
a unique terminal position v(θ,σ), which is the terminal po-
sition reached from vθι via σ. The values of propositions
alla,g and paya in terminal position v(θ,σ) encode an alter-
native that we write G[θ,σ].

1A sink is a position that loops for all action profiles.

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

490

We now illustrate with an example how this formal defini-
tion of mechanisms captures complex iterative mechanisms
with quantitative aspects and imperfect information.

Example 3 (Dutch auction). A Dutch auction is an iterative
protocol with decreasing price; hereafter we assume the sin-
gle good and single unit case. Initially, the auctioneer pro-
poses a high asking price. This price is gradually lowered
until some bidder accepts to purchase the good. The auction
then ends and the object is sold to this bidder at the given
price (Krishna 2009). In case of draw, the winner is deter-
mined with respect to an arbitrary order≺ among the agents.

Let us fix a price decrement dec ∈ (0, 1] and, for each
agent a ∈ Ag, (i) a finite set of possible types Θa ⊂ [0, 1],
and (ii) her real type θa ∈ Θa. Agent a’s valuation is
va(x) = xa · θa.

Define the mechanism Gdut = ({Aca}, V, δ, `, Vι, {∼a})
over AP = {price, alla, paya, ter, typea : a ∈ Ag}, where:
• Aca = {bid,wait} for each a ∈ Ag,
• V consists of positions of the form 〈p, {xa}, t, {θa}〉 with

p ∈ {1−x·dec : 0 ≤ x ≤ 1
dec} denoting the current price,

t ∈ {−1, 1} denoting whether the position is terminal,
xa ∈ {0, 1} specifying the allocation for agent a, and
θa ∈ Θa specifying her type.
In an initial position, the price starts at 1 and all the al-

locations are zero. That is, the set of initial positions is
Vι = {〈1, 0, ..., 0, 0, θ1, ..., θn〉 ∈ V }.

In non-terminal states, the transition function keeps de-
creasing the price p as long as it is above zero and every
agent performs the action of waiting. If an agent a bids, the
good is assigned to her (xa = 1). Since there is only one
unit of the good, ties are decided according to the order ≺.
If the price remains unchanged in the transition, the state is
marked as terminal (t = 1). The transition function defines
a loop for terminal states, ensuring no change occurs in the
auction afterwards (see Figure 1 for a partial illustration).
Formally, for each position v = 〈p, {xa}, t, {θa}〉 and joint
action c = (ca)a∈Ag, transition δ(v, c) is defined as follows:
• If t = −1, δ(v, c) = 〈p′, {x′a}, t′, {θa}〉 where:

p′ =


p− dec if p− dec ≥ 0 and

ca = wait for all a ∈ Ag
p otherwise

x′a =


1 if ca = bid and for all a′ 6= a

either ca′ = wait or a ≺ a′
0 otherwise

t′ =

{
1 if p′ = p,
−1 otherwise

• Otherwise, δ(v, c) = v.
For each v = 〈p, {xa}, t, {θa}〉 and each a ∈ Ag, the

weight function is defined as follows: `(v, price) = p,
`(v, alla) = xa, `(v, paya) = xa · p, `(v, ter) = t, and
`(v, typea) = θa.

Finally, for each agent a ∈ Ag and for any two positions
v = 〈p, {xa}, t, {θa}〉 and v′ = 〈p′, {x′a}, t′, {θ′a}a∈Ag〉 in
V , the observation relation ∼a is defined as follows:

〈1, (0, 0)〉

〈 23 , (0, 0)〉〈1, (1, 0)〉 〈1, (0, 1)〉

〈 13 , (0, 0)〉〈 23 , (1, 0)〉 〈 23 , (0, 1)〉

〈0, (0, 0)〉〈 13 , (1, 0)〉 〈 13 , (0, 1)〉

w,w

w,w

w,w

b,
w

b,
w

b,
w

w
, b

w
, b

w
, b

Figure 1: Part of the mechanism for the Dutch auction with two
agents and decrement dec = 1

3
. Terminal states are in red. We

only represent one initial state and thus we omit types, which are
the same in all states. Action bid is written b and wait is w. Finally,
we did not represent ties (bid, bid) or loops.

v ∼a v′ if (i) p = p′; (ii) xb = x′b, for all b ∈ Ag; (iii)
θa = θ′a; and (iv) t = t′.

Observation relations ∼a capture the fact that agents do
not know other agents’ preferences, and thus their actions
cannot depend on them. This is reflected in SLK[F] by the
notion of uniform strategy. It is out of the scope of this work
to consider probabilistic beliefs about agents’ preferences.

We now show how important concepts of mechanism de-
sign can be expressed in SLK[F].

4.3 Implementation of Social Choice Functions
Fix a mechanism G. The goal of an agent is to maximize her
utility, which is equal to the value of the SLK[F] formula

utila := va((all1,1, ..., alln,m), typea)− paya
in the terminal situation.

In this section we assume that F contains the function

− : (x, y) 7→ min(1,max(−1, x− y))

as well as the valuation function va for each agent a, and for
readability we use the infix notation x − y in the formula.
We also assume that F contains the comparison function

≤ : (x, y) 7→
{

1 if x ≤ y,
−1 otherwise,

the comparison function< (defined similarly, with< instead
of ≤), the equality function

= : (x, y) 7→
{

1 if x = y,

−1 otherwise,

and the n-ary sum function∑
: x1, ..., xn 7→ min(1,max(−1,

∑
k

xk))

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

491

Finally we assume that types, allocations, payments and val-
uations are normalized so that all values remain in [−1, 1].

Before defining what it means for a mechanism to imple-
ment a social choice function, we recall two classical con-
cepts of equilibria, Nash equilibria and dominant strategy
equilibria, classically used to define implementation.

Nash Equilibria A strategy profile σ = (σa)a∈Ag is a Nash
equlibrium (NE) if no agent can increase her utility with a
unilateral change of strategy (Parkes and Ungar 2001). Just
as Strategy Logic can express Nash equilibria for Boolean
objectives, SLK[F] can express Nash equilibria with quan-
titative objectives. Define the formula

NE(s) :=
∧
a∈Ag

∀t.
[
(Ag−a, s−a)(a, t)F(ter ∧ utila)

≤(Ag, s)F(ter ∧ utila)
]

where s = (sa)a∈Ag is a profile of strategy variables. The
following, stated in (Bouyer et al. 2019b), establishes that
this formula is correct.

Lemma 1. For every assignment A, we have that
JNEKGA(v) = 1 iff (A(sa))a∈Ag is a NE in G from v.

Dominant Strategy Equilibria A strategy σa is a dominant
strategy (DS) for agent a if it weakly maximizes her utility,
for all possible strategies of other agents. Define the formula

DS(sa, a) := ∀t.
[
(a, ta)(Ag−a, t−a)F(ter ∧ utila)

≤(a, sa)(Ag−a, t−a)F(ter ∧ utila)
]

For an assignment A, it holds that JDS(sa, a)KGA(v) = 1 iff
A(sa) is a dominant strategy for a in G from position v.

A strategy profile σ = (σa)a∈Ag is a dominant strategy
equilibrium (DSE) if each σa is a dominant strategy for
agent a (Nisan et al. 2007). Define

DSE(s) :=
∧
a∈Ag

DS(sa, a)

Similarly to Nash equilibria, the following holds.

Lemma 2. For every assignment A, we have that
JDSE(s)KGA(v) = 1 iff (A(sa))a∈Ag is a DSE in G from v.

Remark 3. For verifying the uniqueness of a Nash equi-
librium, we can check whether there exist two assignments
A 6= A′ such that JDSE(s)KGA(v) = JDSE(s)KGA′(v) = 1.

Implementation Informally, a mechanism implements a so-
cial choice function if the alternative chosen in equilibrium
strategies is the same as the one chosen by the social choice
function, for all possible agent preferences; in case of mul-
tiple equilibria it is required that there exist one equilibrium
that agrees with the social choice function (Parkes and Un-
gar 2001). Different equilibrium concepts may be used, in-
cluding Nash equilibria and dominant strategy equilibrium.

Definition 6. Let E ∈ {NE,DSE} be a solution concept and
f a social choice function. A mechanism G E-implements f
if for all type profiles θ ∈ Θ there exists an E-equilibrium
σ in G from vθι such that G[θ,σ] = f(θ).

Let us again consider Dutch auctions but from the social
choice function perspective.
Example 4. Under the assumption that a Nash equilibrium
exists, the Dutch auction (see Example 3) is known to im-
plement the first-price social choice function (Krishna 2009)
introduced in Example 2.

For a social choice function f = (x, {pa}) and a type pro-
file θ, define the SLK[F] formula

ϕf(θ) :=
∧
a∈Ag

(paya = pa ∧
∧
g∈Gt

alla,g = xa,g)

where x(θ) = ((xa,1, ..., xa,m))a∈Ag, pa(θ) = pa, and val-
ues pa, xa,g are constants (0-ary functions) in F .

Define also, for E ∈ {NE,DSE},

ϕimpl(f,E,θ) := ∃s.E(s) ∧ F(ter ∧ ϕf(θ))

This formula says that there exists an E-equilibrium that
leads to choice f(θ). It can thus be used to express that a
mechanism implements a given social choice function:
Theorem 1. A mechanism G E-implements a SCF f iff for
every type profile θ ∈ Θ, Jϕimpl(f,E,θ)KG(vθι) = 1.

Proof. Fix a solution concept E ∈ {NE,DSE}, a social
choice function f = (x, {pa}), a mechanism G, any as-
signment A and any type profile θ ∈ Θ. For each agent
a ∈ Ag and good type g ∈ Gt, let xa,g and pa be con-
stants in [-1, 1] denoting the alternative chosen by f, that is
x(θ) = ((xa,1, ..., xa,m))a∈Ag, and pa(θ) = pa.

Assume G E-implements f. By definition there exists a
strategy profile σ that is an E-equilibrium solution in G from
vθι and such that G[θ,σ] = f(θ). It follows that:

First, because the SLK[F] formula E(s) correctly charac-
terises E-equilibria (lemma 1 and 2), letting Aσ : sa 7→ σa
we have that JE(s)KGAσ

(vθι) = 1.
Second, the fact that G[θ,σ] = f(θ) implies that in the

terminal position vter = v(θ,σ) (which is reached from vθι
via σ), we have `(vter, alla,g) = xa,g and `(vter, paya) =
pa, for each a ∈ Ag and g ∈ Gt. Therefore, we have
J
∧
a∈Ag(paya = pa ∧

∧
g∈Gt alla,g = xa,g)KGAσ

(vter) = 1

or simply Jϕf(θ)KGAσ
(vter) = 1. By the semantics of F, it

follows that JF(ter ∧ ϕf(θ))KGAσ
(vθι) = 1.

Therefore, J∃s.E(s) ∧ F(ter ∧ ϕf(θ))KGA(vθι) = 1 (the
maximal value 1 is attained for strategy profile σ) and
Jϕimpl(f,E,θ)KGA(vθι) = 1.

Conversely, assume J∃s.E(s) ∧ F(ter ∧ ϕf(θ))KGA(vθι) =
1. By the semantics of the strategy quantifier, there exists a
strategy profile σ such that JE(s)∧F(ter∧ϕf(θ))KGAσ

(vθι) =

1, where Aσ : sa 7→ σa. It follows that JE(s)KGAσ
(vθι) =

1 and JF(ter ∧ ϕf(θ))KGAσ
(vθι) = 1. The former implies

that σ is an E-equilibrium, and since ter has value -1 in all
non-terminal positions, the latter implies that in the terminal
position vter = v(θ,σ) we have Jϕf(θ)KGAσ

(vter) = 1 This in
turn means that G[θ,σ] = f(θ), hence G E-implements f.

Notice that if there is no σ such that σ is an E-equilibrium
solution in G, we have that G does not E-implements the SCF
f, and Jϕimpl(f,E,θ)KGA(vθι) = −1.

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

492

In the next section, we show how to express and verify
properties of social choice functions by evaluating SLK[F]
formulas on mechanisms that implement them. We will use
the following parameterized formula to capture in a mecha-
nism some equilibrium that implements the social function,
and check a property of the resulting alternative. For a social
choice function f, a type profile θ ∈ Θ, an equilibrium type
E ∈ {NE,DSE} and a formula ϕ expressing a property of
the final alternative, define

Capture-alt(f,E,θ, ϕ) := ∃s.E(s) ∧ F(ter ∧ ϕf(θ) ∧ ϕ)

4.4 Mechanism Properties
We show how SLK[F] can express a variety of important
notions in mechanism design.

A direct-revelation mechanism, such as Vickrey auction,
is a non-iterative protocol where the agents’ possible actions
are their possible types. That is, a mechanism G is a di-
rect revelation one if initial positions lead directly to termi-
nal positions, and Aca = Θa for each a. Equivalently, it
is a social choice function, as it maps type profiles to alter-
natives, and every social choice function can be seen as a
direct-revelation mechanism (Jackson 2009).

Strategy proofness One of the core challenges in mech-
anism design is to ensure that an agent would prefer
“telling the truth” by reporting her real type rather than any
other (Nisan et al. 2007). Mechanisms that ensure this prop-
erty are called strategy-proof (SP) or incentive-compatible.

In a direct-revelation mechanism G, we let θ̂a be the truth-
revealing strategy for a, defined as θ̂a(vθι) = θa.
Definition 7. A direct-revelation mechanism G is strategy-
proof if (θ̂a)a∈Ag is a dominant strategy equilibrium from
vθι , for all θ ∈ Θ.

Strategy proofness of a direct-revelation mechanism G
can be expressed in SLK[F] by verifying whether the
SLK[F]-formula DSE(s) characterizing dominant strategy
equilibrium has satisfaction value 1 on G, where s denotes
the joint strategy in which each agent truthfully reports her
type. The following holds:
Proposition 1. A direct-revelation mechanism G is strategy
proof iff JDSE(s)KGA(vθι) = 1 for all θ ∈ Θ, whereA(sa) =

θ̂a for each a.

Proof. Fix a direct revelation mechanism G. We have that
Aca = Θa for each a, and G is strategy-proof iff, for each
initial position vθι , the truth revealing strategy θ̂a is a domi-
nant strategy for each a ∈ Ag. By the semantics of formula
DS(s), for any type profile θ, each strategy θ̂a is dominant
from vθι iff JDS(s)KGAθ̂a

(vθι) = 1, where Aθ̂a : s 7→ θ̂a. So

for a type profile θ, all strategies θ̂a are dominant from vθι
iff JDSE(s)KGA(vθι) = 1, where A : sa 7→ θ̂a for all a.

Individual rationality Individual rationality (IR) expresses
the idea that an agent has an incentive to participate (Parkes
and Ungar 2001), that is, she can ensure to always get non-
negative utility. Hereafter we express in SLK[F] the notion
of (ex-post) individual rationality (Nisan et al. 2007).

Definition 8. A SCF f = (x, {pa}) is individually rational if
for every θ ∈ Θ, va(x(θ))− pa(θ) ≥ 0 for each agent a.

Let us define the following formula:

IR :=
∧
a∈Ag

0 ≤ utila

Given a mechanism that E-implements a SCF f, checking
that f satisfies IR amounts to checking that formula IR has
satisfaction value one in the E-equilibrium that implements
f, for every possible type profile θ.
Proposition 2. Let f be a SCF, E ∈ {NE,DSE}, and G a
mechanism that E-implements f. f is individually rational iff
JCapture-alt(f,E,θ, IR)KG(vθι) = 1 for all θ ∈ Θ.

Proof. Fix a solution concept E ∈ {NE,DSE}, a social
choice function f, a mechanism G that E-implements f, any
assignment A and any type profile θ ∈ Θ.

Assume f is individually rational. Because G implements
f there exists a strategy profile σ that is an E equilibrium
from vθι and such that G[vθι ,σ] = f(θ). Let vter = v(θ,σ).
Since f is individually rational, we have that JIRKGA(vter) =
1. Therefore, using σ as witness, we obtain that J∃s.E(s)∧
F(ter ∧ ϕf(θ) ∧ IR)KGA(vθι) = 1.

The converse is proved in a similar way.

Efficiency A social choice function is efficient (EF) if it
chooses the allocation maximizing the social welfare, i.e.,
the total value over all agents (Parkes and Ungar 2001).
Definition 9. A social choice function f = (x, {pa}) is al-
locatively efficient if for all θ ∈ Θ,∑

a∈Ag

va(x(θ), θa) = max
x∈X

∑
a∈Ag

va(x, θa)

Define formula

Eff :=
∑
a∈Ag

va(all1,1, ..., alln,m, typea) = maxvθ

where, for each θ, maxvθ = maxx∈X
∑
a∈Ag va(x, θa) is a

constant in F . In a terminal position, it means that the social
welfare of the allocation it encodes is maximal.

The following proposition shows how one can determi-
nate whether a SCF f is efficient by verifying the satisfaction
value of the formula Eff in a mechanism that implements f.
Proposition 3. Let f be a SCF, E ∈ {NE,DSE}, and G a
mechanism that E-implements f. f is allocativelly efficient
iff JCapture-alt(f,E,θ,Eff)KG(vθι) = 1 for all θ ∈ Θ.

Proof. Analogous to the proof of Proposition 2.

Budget-Balance Budget-balance focuses on the monetary
transfer between buyers and sellers. Strong budget-balance
(SBB) requires strict balance in this transfer. The no-deficit
condition, or weak budget-balance (WBB), characterizes no
monetary loss. We recall the notions of strong and weak
budget balance (Parkes and Ungar 2001):
Definition 10. A social choice function f = (x, {pa}) is
strongly budget-balanced (resp., weakly budget-balanced) if∑
a∈Ag pa(θ) = 0 (resp.,

∑
a∈Ag pa(θ) ≥ 0) for all θ ∈ Θ.

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

493

Define formula

SBB(f,E,θ) := ∃s.E(s) ∧ F
[
ter ∧ ϕf(θ) ∧ 0 =

∑
a∈Ag

paya
]

and define WBB(f,E,θ) similarly, with ≤ instead of =.
Again, we can prove that

Proposition 4. Let f be a SCF, E ∈ {NE,DSE}, and G a
mechanism that E-implements f. It holds that f is SBB iff
JCapture-alt(f,E,θ, SBB)KG(vθι) = 1 for all θ ∈ Θ, and
similarly for WBB.

Example 5. A Dutch auction is WBB, because the bid price
is non-negative, and it is IR because the strategy of wait-
ing in every position leads to zero utility, and thus any
equilibrium would not have a negative utility. One can
check that in the mechanism Gdut from Example 3, with
the first-price social choice function ffp, for any type pro-
file θ we have JCapture-alt(ffp,NE,θ, IR)KGdut(vθι) = 1 and
JCapture-alt(ffp,NE,θ,WBB)KGdut(vθι) = 1.

Pareto Optimality A social choice function is Pareto op-
timal (PO) if it chooses an alternative for which no other
alternative is strongly preferred by at least one agent, and
weakly preferred by all others (Parkes and Ungar 2001).
Formally:

Definition 11. A social choice function f = (x, {pa}) is
Pareto optimal if, for all θ ∈ Θ, for all a ∈ Ag and for
all α 6= f(θ), if ua(α, θa) > ua(f(θ), θa) then there exists
an agent b ∈ Ag such that ub(α, θb) < ub(f(θ), θb).

For every alternative α ∈ Alt, every type profile θ and
agent a, let utilalta,α : θa 7→ ua(α, θa) be a function in F .
Define formula (recall formula utila, defined in Section 4.3):

PO :=
∧

a∈Ag,α∈Alt

(
utila < utilaltα,a(typea)→

(
∨
b∈Ag

utilaltα,b(typea) < utilb)
)

As for Proposition 2, we can prove:

Proposition 5. Let f be a SCF, E ∈ {NE,DSE}, and G a
mechanism that E-implements f. It holds that f is PO iff
JCapture-alt(f,E,θ,PO)KG(vθι) = 1 for all θ∈Θ.

4.5 Revenue Benchmarks with Knowledge
Let us now go further by considering the interplay between
the agents’ epistemic state and mechanism properties. Here-
after, we focus on the auctioneer’s revenue, i.e., the total
payment among the agents. Guaranteeing a revenue is an
important MD issue (Krishna 2009). To address this prob-
lem, Chen and Micali (2015; 2016) exhibit an auction mech-
anism based on “possibilistic beliefs”, i.e., beliefs an agent
may hold about other agents’ types. The mechanism then
sets a clear link between the revenue and the agents’ epis-
temic state. We show that this can be represented in a natural
way in SLK[F].

Second-belief benchmark Let us consider the second-
belief benchmark (Chen and Micali 2015) for single good
mechanisms. Given a set of possible type profiles Θ, a set
Ba ⊂ Θ denotes a belief for agent a about all agents’ types.

Given a tuple S ∈ [−1, 1]n, let 2nd-max(S) be the second
maximum value in S, and assume that 2nd-max ∈ F . Given
a correct belief profile B (i.e., a profile in which the true
type is considered possible), the second-belief benchmark
(for single-good auctions) is defined as follows:

2nd(B) := 2nd-max(smva1(B), ..., smvan(B))

where smva(B) := minθ∈Ba(maxb∈Ag(θb)) denotes the
sure maximum value according to a.

Let G be a mechanism. To each position v ∈ V we can
associate a correct belief Ba(v) for each agent a as follows:
Ba(v) := ({`(v′, typeb) : v′ ∼a v})b∈Ag. We then let
B(v) = (Ba(v))a∈Ag. The sure maximum value for an agent
and the second-belief benchmark in a position correspond to
the semantics of the following epistemic SLK[F]-formulas:

ϕsmv
a := Ka max

a′∈Ag
(typea′)

ϕ2nd := 2nd-max(ϕsmv
a1 , ..., ϕ

smv
an)

It follows directly that:
Proposition 6. Given a mechanism G, a position v and a
belief profile B(v), it holds that Jϕ2ndKG(v) = 2nd(B(v)).

Proof. Fix an assignment A. We have that
Jϕ2ndKGA(v) = J2nd-max(ϕsmv

a1 , ..., ϕ
smv
an)KGA(v). By the

semantics of Ka, ϕsmv
a denotes the minimum value

of Jmaxa∈Ag(typea)KGA(v′), for all v′ ∼a v. Since
Ba(v) = ({`(v′, typeb) : v′ ∼a v})b∈Ag, it holds that
Jϕsmv
a KGA(v) = minθ∈Ba(maxb∈Ag(θb)). Therefore,

Jϕ2ndKGA(v) = 2nd-max(smva1(B), ..., smvan(B)) or
simply Jϕ2ndKGA(v) = 2nd(B(v)).

Chen and Micali (2015) design a reward-based single-
stage mechanism that ensures that, in equilibrium, the rev-
enue is greater than the second belief minus ε, where ε > 0
is a reward factor associated to the mechanism. In this one-
stage mechanism, agents’ beliefs are constant. But should
we devise a multi-stage mechanism to achieve a similar re-
sult, one may ask the question whether the revenue in equi-
librium is (modulo ε) greater than the initial second belief,
or the last second belief (before termination) for instance.
Such properties can be expressed in SLK[F], as we show
for the latter one (the former one is easier). Define formulas

ϕrevenue := F(ter ∧
∑
a∈Ag

(pa))

ϕlast−2nd := F(Xter ∧ ϕ2nd)

which compute the final revenue and the second belief be-
fore the last round, respectively. Now to check whether a
given mechanism satisfies the property in all equilibria of
a given kind E ∈ {NE,DSE}, one can check whether the
following formula has value 1 on this mechanism:

ϕ2nd,ε := ∀s.E(s)→ (ϕlast−2nd − ε ≤ ϕrevenue)

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

494

Best-belief benchmark for combinatorial auctions
Chen and Micali (2016) propose the best-belief benchmark
for combinatorial auctions. This benchmark maximizes,
over all agents, the maximum revenue each one would be
sure to obtain if she were to sell all her currently allocated
goods to her opponents, based on her beliefs about their
preferences over bundles of goods.

Similar to the second-belief benchmark, one could ex-
press the best-belief benchmark using SLK[F]-formulas.
The main difference is that the formula would consider the
agents beliefs’ about each other’s valuations over possible
choices. Notice that bundles can be easily encoded as the
allocative choices introduced on Section 4.2.

5 Model Checking
In this section we show that model checking SLK[F] with
imperfect information and memoryless agents is no harder
than model checking LTL or classical SL with memoryless
agents. Let us first define formally the quantitative model-
checking problem for SLK[F].
Definition 12. The model-checking problem for SLK[F]
consists in deciding, given a sentence ϕ, wCGS G, position
v in G and predicate P ⊆ [−1, 1], whether JϕKG(v) ∈ P .

For LTL[F] model checking is in PSPACE (Almagor,
Boker, and Kupferman 2016), and so is model checking
SLK with memoryless agents (Cermák et al. 2018). We
show that it is also the case for SLK[F], as long as the func-
tions f ∈ F can be computed in polynomial space. Other-
wise, they become the computational bottleneck.
Theorem 2. Assuming that functions in F can be computed
in polynomial space, model checking SLK[F] with imperfect
information and memoryless agents is PSPACE-complete.

Proof. We first show that each recursive call only needs at
most polynomial space. First, observe that each assignment
A can be stored in spaceO((|free(ϕ)|+|Ag|)·|V |·log |Ac|).
Next, for the base case it is clear that JpKGA(v) can be
computed in constant space. For strategy quantification
J∃sa. ϕKGA(v), besides the recursive call to JϕKGA[s7→σ](v)

we need space O(|V | · log |Ac|) to store the current strat-
egy and the current maximum value computed. The case for
JKaϕKGA(v) is clear. For Jf(ϕ1, ..., ϕm)KGA(v), by assump-
tion f is computed in polynomial space. For JXϕKGA(v), we
only need to observe that the next position in Out(A, v) is
computed in constant space.

Finally we detail how Jϕ1Uϕ2KGA(v) is computed. Let
π = Out(v,A). Since G has finitely many positions, there
exist two indices k < l such that πk = πl, and since strate-
gies depend only on the current position, the suffix of π start-
ing at index l is equal to the suffix starting at index k. So
there exist ρ1 = v0...vk−1 and ρ2 = vk...vl−1 such that
π = ρ1 · ρω2 . It follows that

Jϕ1Uϕ2KGA(v) = sup
i≥0

min

(
Jϕ2KGA(πi), min

0≤j<i
Jϕ1KGA(πj)

)
= max

0≤i<l
min

(
Jϕ2KGA(πi), min

0≤j<i
Jϕ1KGA(πj)

)

This can be computed by a while loop that increments i,
computes Jϕ2KGA(πi), min0≤j<iJϕ1KGA(πj) and their min-
imum, records the result if it is bigger than the previous
maximum, and stops upon reaching a position that has al-
ready been visited. This requires to store the current value
of min0≤j<iJϕ1KGA(πj), the current maximum, and the list
of positions already visited, which are at most |V |.

Next, the number of nested recursive calls is at most |ϕ|,
so the total space needed is bounded by |ϕ| times a polyno-
mial in the size of the input, and is thus polynomial.

When the set of possible type profiles is finite, as it is
the case here, our results from the previous section show
that verifying the key MD properties SP, IR, EF, BB and
PO on mechanisms can be done by model checking SLK[F]
formulas for all type profiles of interest.

6 Conclusion
In this paper, we demonstrate how Strategy Logic provides
a formal framework expressive enough to reason about core
concepts from Mechanism Design in an intuitive way. The
ability of SL to naturally express key strategic concepts
such as Nash Equilibria, and the possibility to extend it
with quantitative aspects and epistemic operators, as we do
with SLK[F], make it a perfect candidate to become a stan-
dard logic for mechanism design, as called for in (Pauly and
Wooldridge 2003).

We demonstrate the usefulness of SLK[F] with auctions
because they “provide a good example of mechanisms which
are sufficiently complex to demonstrate the usefulness of
formal verification” (Pauly and Wooldridge 2003). We used
allocations and payments because of the example consid-
ered, but it is enough to replace them with abstract choices
to capture any kind of deterministic mechanisms. In addition
we showed how our setting allows capturing properties that
are central in the design of many types of mechanisms other
than auctions, including efficiency and Pareto optimality.

The present setting is enough to capture many kinds of
auction mechanisms where memoryless strategies are suf-
ficient to represent the bidders’ behaviour, such as one-
shot or English auctions. However, when participating in
sequential auctions, agents could gather information from
other agents’ behaviour and act based on what happened
in previous steps of the game (Jeitschko 1998). For such
situations we plan to study the model-checking problem
for SLK[F] with memoryful strategies. In the qualitative
setting already, imperfect information yields undecidabil-
ity, but known decidable cases exist (Berthon et al. 2021;
Belardinelli et al. 2020). We will investigate them in the
quantitative case.

We aim to investigate how the concurrent game structures
modelling mechanisms may be generated via compact repre-
sentations, for instance expressed in the Auction Description
Language (Mittelmann and Perrussel 2020), and study how
this would impact the complexity of model checking.

Yet another line of future research concerns the impact
of bounded rationality on mechanism design (de Clippel,
Saran, and Serrano 2018), that could be investigated thanks
to the epistemic feature of SLK[F].

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

495

Acknowledgements
This research is supported by the ANR project AGAPE
ANR-18-CE23-0013.

References
Almagor, S.; Boker, U.; and Kupferman, O. 2016. Formally
reasoning about quality. Journal of the ACM 63(3).
Alur, R.; Henzinger, T. A.; and Kupferman, O. 2002.
Alternating-time temporal logic. Journal of the ACM
49(5):672–713.
Barthe, G.; Gaboardi, M.; Arias, E.; Hsu, J.; Roth, A.; and
Strub, P.-Y. 2016. Computer-aided verification for mech-
anism design. In Proc. of the International Conference on
Web and Internet Economics (WINE 2016).
Belardinelli, F., and Lomuscio, A. 2016. Abstraction-based
verification of infinite-state reactive modules. In Proc. of
the European Conference on Artificial Intelligence (ECAI
2016).
Belardinelli, F.; Lomuscio, A.; Murano, A.; and Rubin, S.
2020. Verification of multi-agent systems with public ac-
tions against strategy logic. Artif. Intell. 285.
Berthon, R.; Maubert, B.; Murano, A.; Rubin, S.; and Vardi,
M. 2021. Strategy logic with imperfect information. ACM
Trans. Comput. Logic 22(1).
Bouyer, P.; Kupferman, O.; Markey, N.; Maubert, B.; Mu-
rano, A.; and Perelli, G. 2019a. Reasoning about Quality
and Fuzziness of Strategic Behaviours. In Proc. of the Inter-
national Joint Conference on Artificial Intelligence (IJCAI
2019).
Bouyer, P.; Kupferman, O.; Markey, N.; Maubert, B.; Mu-
rano, A.; and Perelli, G. 2019b. Reasoning about quality
and fuzziness of strategic behaviours. In Proc. of the Inter-
national Joint Conference on Artificial Intelligence (IJCAI
2019), 1588–1594.
Caminati, M.; Kerber, M.; Lange, C.; and Rowat, C. 2015.
Sound auction specification and implementation. In Proc. of
the ACM Conference on Economics and Computation (EC
2015).
Cermák, P.; Lomuscio, A.; Mogavero, F.; and Murano, A.
2018. Practical verification of multi-agent systems against
slk specifications. Inf. Comput. 261:588–614.
Chatterjee, K.; Henzinger, T.; and Piterman, N. 2010. Strat-
egy logic. Inf. Comput. 208(6):677–693.
Chen, J., and Micali, S. 2015. Mechanism design with pos-
sibilistic beliefs. Journal of Economic Theory 156:77–102.
Chen, J., and Micali, S. 2016. Leveraging possibilistic be-
liefs in unrestricted combinatorial auctions. Games 7(4).
de Clippel, G.; Saran, R.; and Serrano, R. 2018. Level-
k Mechanism Design. The Review of Economic Studies
86(3):1207–1227.
Genesereth, M., and Thielscher, M. 2014. General game
playing. Synthesis Lectures on Artificial Intelligence and
Machine Learning. Morgan & Claypool Publishers.
Jackson, M. O. 2009. Optimization and Operations Re-
search -Volume III. EOLSS Publications. chapter Mecha-
nism Theory.

Jamroga, W., and Bulling, N. 2011. Comparing variants of
strategic ability. In Proc. of the International Joint Confer-
ence on Artificial Intelligence (IJCAI 11), 252–257. AAAI
Press.
Jeitschko, T. D. 1998. Learning in sequential auctions.
Southern Economic Journal 98–112.
Kerber, M.; Lange, C.; and Rowat, C. 2016. An intro-
duction to mechanized reasoning. Journal of Mathematical
Economics 66:26 – 39.
Krishna, V. 2009. Auction Theory. Academic Press.
Laroussinie, F., and Markey, N. 2015. Augmenting ATL
with strategy contexts. Inf. Comput. 245:98–123.
Maubert, B., and Murano, A. 2018. Reasoning about knowl-
edge and strategies under hierarchical information. In Proc.
of the International Conference on Principles of Knowledge
Representation and Reasoning (KR 2018), 530–540. AAAI
Press.
Mittelmann, M., and Perrussel, L. 2020. Auction descrip-
tion language (ADL): a general framework for representing
auction-based markets. In Proc. of the European Conference
on Artificial Intelligence (ECAI 2020).
Mogavero, F.; Murano, A.; Perelli, G.; and Vardi, M. 2014.
Reasoning about strategies: On the model-checking prob-
lem. ACM Trans. Comput. Log. 15(4).
Nisan, N.; Roughgarden, T.; Tardos, É.; and Vazirani, V.
2007. Algorithmic Game Theory. Cambridge University
Press.
Padgham, L.; Thangarajah, J.; and Winikoff, M. 2008.
Prometheus design tool. In Proc. of the AAAI Conference
on Artificial Intelligence (AAAI 2008).
Parkes, D., and Ungar, L. 2001. Iterative combinatorial
auctions: Achieving economic and computational efficiency.
University of Pennsylvania Philadelphia, PA.
Pauly, M., and Wooldridge, M. 2003. Logic for mecha-
nism design–a manifesto. In Proc. of the 2003 Workshop on
Game Theory and Decision Theory in Agent Systems (GTDT
2003).
Sandholm, T. 2003. Automated mechanism design: A new
application area for search algorithms. In Proc. of the In-
ternational Conference on Principles and Practice of Con-
straint Programming (CP 2003).
Troquard, N.; van der Hoek, W.; and Wooldridge, M. 2011.
Reasoning about Social Choice Functions. JPL 40(4):473–
–498.
Wooldridge, M.; Agotnes, T.; Dunne, P.; and Van der Hoek,
W. 2007. Logic for automated mechanism design-a progress
report. In Proc. of the AAAI Conference on Artificial Intelli-
gence (AAAI 2007).
Yadav, N., and Thangarajah, J. 2016. Checking the confor-
mance of requirements in agent designs using atl. In Proc.
of the European Conference on Artificial Intelligence (ECAI
- 2016).

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

496

	Introduction
	Related Work
	Epistemic SL[F]
	Reasoning about Auction Mechanisms
	Social Choice Functions
	Mechanisms as wCGS
	Implementation of Social Choice Functions
	Mechanism Properties
	Revenue Benchmarks with Knowledge

	Model Checking
	Conclusion

