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Abstract

AGM’s belief revision is one of the main paradigms in the
study of belief change operations. Despite its popularity and
importance to the area, it is well recognised that AGM’s work
relies on a strong idealisation of the agent’s capabilities and
the nature of beliefs themselves. Particularly, it is recognised
in the literature that Belief and Knowledge are hyperinten-
sional attitudes, i.e. they can differentiate between contents
that are necessarily equivalent, but to our knowledge, only
a few works have explicitly considered how hyperintension-
ality affects belief change. This work investigates abstract
operations of hyperintensional belief change and their con-
nection to belief change in non-classical logics, such as be-
lief contraction operations for Horn Logics and Description
Logics. Our work points to hyperintensional belief change
as a general framework to unify results in belief change for
non-classical logics.

1 Introduction
Belief Change is the area that studies how doxastic agents
change their minds after acquiring new information. One
of the most influential approaches to Belief Change in the
literature is the AGM paradigm (Alchourrón, Gärdenfors,
and Makinson 1985).

Although the AGM approach has led to profound devel-
opments in belief dynamics, it has received criticism, par-
ticularly concerning the idealised nature of doxastic agents
in their work (Hansson 1991; Rott and Pagnucco 1999;
Hansson and Wassermann 2002). Namely, an agent’s be-
lief state is characterised in their work by a consequentially
closed set of beliefs, and a belief revision is an intensional
operator, i.e. based on the language semantics/proof theory.
In fact, Gärdenfors (1988, p. 9), acknowledges that AGM’s
notion of belief is but merely an idealisation “judged in re-
lation to the rationality criteria for the epistemological the-
ory”.

Hansson (1992) argues in his criticism of using conse-
quentially closed belief sets that, on a dynamic level, the
agent’s belief state depends not only on the meaning of their
beliefs but also on something else, which the author identi-
fies with its syntactic structure. More yet, it has been argued
in the literature (Halpern and Pucella 2011; Wansing 1990;
Bjerring 2013) that resource-bounded agents are not re-
quired to believe all consequences of their currently held

beliefs, even if they are logically capable of rational inquiry,
since an agent can fail to reach the conclusion of a reasoning
process due to a lack of cognitive resources.

We call attitudes that depend on sentential contents finer-
grained than sentential intensions of hyperintensional atti-
tudes (Cresswell 1975). In other words, these attitudes can
draw distinctions between necessarily equivalent contents.
For example, while the sentences “3 is a prime number” and
“3068 is divisible by 13” have the same intension, as math-
ematical necessities, they certainly cannot be transparently
substituted for the other in the sentence “Alice believes that
3 is a prime number.”

As Özgün and Berto (2020) argue, it is well-known that
mental attitudes, such as believing, are sensitive to hyperin-
tensional distinctions between equivalent sentences and that
these distinctions are connected to well-studied problems,
such as logical omniscience (Halpern and Pucella 2011;
Bjerring 2013; Rantala 1982).

Similarly, several non-classic logics, such Horn
Logic (Delgrande 2008) and Description Logics (Baader
et al. 2003) can be understood as sublanguages of some
classical logic and, as such, impose hyperintensional differ-
ences within the latter. Thus, understanding the interplay
between the hyperintensional nature of beliefs and their
dynamics has significance from a philosophical point of
view and may provide a framework to study belief change
in several non-classical logics of interest to Knowledge
Representation and Artificial Intelligence.

Based on the work of Santos et al. (2018) and of
Berto (2019), Souza (2020) studies general notions of hy-
perintensional belief contraction based on an Abstract Logic
framework. In this work, we employ Souza’s hyperinten-
sional belief contractions to study belief change in non-
classical logics, with applications to belief change in Horn
Logic and Description Logics. We also extend Souza’s
framework by introducing a new family of hyperintensional
belief contraction operations based on Hansson’s (1991) be-
lief base contraction, which is a generalization of Souza’s
previous proposals, as well as correct the characterisations
presented in that work.

This work is structured as follows: first, in Section 2,
we discuss the literature related to hyperintensional belief
change and frameworks for non-classical logic that can be
connected to this notion; in Section 3, we present the back-
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ground results of AGM belief change and Hansson’s be-
lief base change; we introduce, in Section 4, three hyper-
intensional contraction operations, based on the work of
Souza (2020) and characterise these operations through pos-
tulates; in Section 5, we apply these operations to study ex-
amples in the literature of belief change for non-classical
logics, such as Delgrande and Wassermann’s (2013) Horn
Contractions and Ribeiro and Wassermann’s (2009) contrac-
tions for Description Logics; finally, in our Final Consider-
ations, we discuss the importance of hyperintensional be-
lief change as a general framework of belief change in non-
classical logics and possible future developments for this
framework.

2 Related Work
Extensive work has been published on general notions of
belief change not constrained by the laws of classical logic,
such as the work on belief change for non-classical (Del-
grande 2008; Ribeiro 2012; Ribeiro et al. 2013; Gabbay,
Rodrigues, and Russo 2008), paraconsistent (Girard and
Tanaka 2016), or substructural logics (Aucher 2015). We
will focus on work connected to, or that can be used to study,
hyperintensional notions of belief change.

Girard and Tanaka (2016) have investigated dynamic be-
lief change operators for many-valued logics, which in prin-
ciple could be used to model some hyperintensional notions,
as classical consequences need not be valid in such logics.
While we believe this work proposes an interesting and gen-
eral framework for non-classical notions of belief change,
including some notion of hyperintensionality, it is not clear
how hyperintensional contexts can be encoded in it. Particu-
larly, since their models are based on intensional interpreta-
tions of connectives, it is not directly clear how to construct
(a class of) models that can differentiate two (classically)
equivalent formulas ϕ and ψ without degenerating the inter-
pretation of these connectives.

Berto (2019) proposes a topic-sensitive hyperintensional
logic of conditional beliefs, in which belief revision is in-
terpreted as conditionalisation. In this logic, the author
shows that the notion of conditional belief satisfies mini-
mal desiderata for logics of belief change (Board 2004) and
non-monotonic reasoning (Gabbay 1985). To our knowl-
edge, this is the first work explicitly proposing the integra-
tion of hyperintensional phenomena within a theory of belief
change and, in fact, it constitutes the main inspiration for our
work. Unlike his work, ours investigates how a general no-
tion of hyperintensional belief change can be defined, based
on the AGM approach, that can be connected to different
semantic frameworks for hyperintensional reasoning.

It is interesting to notice that, since impossible-world se-
mantics has been a popular approach to model the hyperin-
tensional nature of beliefs (Cresswell 1975; Rantala 1982),
work on belief change based on impossible-world seman-
tics can be connected to our work and may present tools and
properties with which we can evaluate our contribution.

Badura and Berto (2019) propose the use an impossible-
world semantics framework to overcome several limitations
of Lewis’ modal analyses of Truth in Fiction. While their
interpretation of the notion of truth in fiction statements is

conceptually connected to belief revision, the authors also
do not establish the connection with the AGM approach, as
this was not their goal in the first place.

Fermé and Wassermann (2018) have also proposed the
use of impossible worlds semantics as a framework to study
iterated belief expansion. The authors extend Grove’s mod-
els (Grove 1988) for classical propositional logic with one
impossible worldwK satisfying all formulas of the language.
This world is, however, included in the model merely as a
technical device to represent the belief state in which the
agent has inconsistent belief and not to model any kind of
hyperintensional property of beliefs. However, if their ap-
proach was to be extended, we believe such a framework
can be used to define hyperintensional notions of revision,
contraction and expansion, based on the authors encoding
of such operations.

Perhaps the works closest to ours are that of Santos et
al. (2018) on pseudo-contractions and of Souza (2020) on
hyperintensional belief contractions. Given a logic L, San-
tos et al. (2018) investigate how these operations can be de-
fined for sublogics of L, thus studying how contraction-like
operators can be defined for consequence operators which
can take into consideration (possibly) hyperintensional dif-
ferences between formulas in the reasoning process. While
their work does investigate the connections between hyper-
intensional beliefs and belief change, it does not do so ex-
plicitly. Souza (2020), on the other hand, based on the work
of Santos et al. (2018) and of Berto (2019), proposed gen-
eral notions of hyperintensional belief contraction. We ex-
tend this latter work by proposing a new operation, namely
C-Base contractions, which can be interpreted as a generali-
sation of Hansson’s (1991) belief base contractions, and ap-
plying these operations to obtain belief contraction operators
for non-classical logics, such as Horn Logic and Description
Logics.

3 Preliminaries
Let us consider a logic L “ xL,Cny where L is the log-
ical language and Cn : 2L Ñ 2L is a consequence op-
erator. In AGM’s approach, the belief state of an agent is
represented by a belief set, i.e. a consequentially closed set
K “ CnpKq Ď L of L-formulas.

On a belief set, AGM investigate three basic belief change
operators: expansion, contraction and revision. Belief ex-
pansion blindly integrates a new piece of information into
the agent’s beliefs. Belief contraction removes a currently
believed sentence from the agent’s set of beliefs, with mini-
mal alterations. Finally, belief revision is the operation of
integrating new information into an agent’s beliefs while
maintaining consistency. Among these basic operations,
only expansion can be univocally defined. The other two are
defined by a set of rational constraints or postulates, usually
referred to as the AGM postulates. These postulates define
a class of suitable change operators representing different
rational ways in which an agent can change their beliefs.

AGM require the foundational logic L to satisfy some
properties in order for belief change operations to be defin-
able. These properties are the following:
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• inclusion: Γ Ď CnpΓq.

• idempotence: CnpΓq “ CnpCnpΓqq.

• monotonicity: If Γ Ď Γ1 then CnpΓq Ď CnpΓ1q.

• tarskianicity: If Cn satisfies inclusion, idempotence and
monotonicity.

• compactness: for any ϕ P CnpΓq, there is some finite
Γ1 Ď Γ s.t. ϕ P CnpΓ1q.

• supraclassicality: Let Cn0 be the classical propositional
logic consequence operator, Cn0pΓq Ď CnpΓq for any
Γ Ď L.

• deduction theorem: If β P CnpΓ Y tαuq then α Ñ β P
CnpΓq.

To construct contraction operations, AGM (1985) intro-
duce the notion of partial meet contractions. Let K Ď L be
a set of formulas and ϕ P L be a formula of L, the remainder
set KKLϕ is the set of sets K 1 satisfying:

• K 1 Ď K

• ϕ R CnpK 1q

• K 1 Ă K2 Ď K implies ϕ P CnpK2q.

When it is clear to which logic L we are referring, we will
denote KKLA by KKA.

A partial meet contraction ´ is an operation for which
there is a selection function γ, s.t. for any K and ϕ

K ´ ϕ “
č

γpKKϕq.

By selection function, we mean that the function γ satis-
fies (i) H ‰ γpKKAq Ď KKA if KKA ‰ H and (ii)
γpKKAq “ tKu otherwise.

Hansson and Wassermann (2002) have shown that for any
monotonic and compact logic, an operation ´ is a partial
meet contraction if and only if it satisfies the following pos-
tulates:

psuccessq If ϕ R CnpHq, then ϕ R CnpK ´ ϕq

pinclusionqK ´ ϕ Ď K

prelevanceq If β R KzK ´ ϕ, then there is some K 1 Ď
K s.t. K´ϕ Ď K 1, ϕ R CnpK 1q, and ϕ P CnpK 1Ytβuq

puniformityq If for any K 1 Ď K, ϕ P CnpK 1q iff ψ P
CnpK 1q, then K ´ ϕ “ K ´ ψ

This study has spammed several investigations on the gen-
eralisability of AGM belief change to other logics, such as
Horn Logics (Delgrande 2008), Description Logics (Flouris,
Plexousakis, and Antoniou 2005; Ribeiro and Wasser-
mann 2009), and non-compact logics (Ribeiro, Nayak, and
Wassermann 2018). Given the more general nature of Hans-
son and Wassermann’s (2002) characterisation, we will fo-
cus on these postulates to define hyperintensional belief con-
tractions to a broader class of logics instead of the more
restricted AGM postulates. In the following sections, we
will investigate how the previous postulates and construc-
tions need to be altered to account for the hyperintensional
nature of beliefs.

4 Hyperintensional Belief Contraction
The term hyperintensionality was introduced by
Creswell (1975) to describe attitudes, such as beliefs,
that can draw distinctions between necessarily equiva-
lent formulas or having the same intension. As such,
hyperintensionality is commonly explained by means of
the relation between the contents of a sentence1 and its
intension, with respect to a standard semantics. For ex-
ample, in possible-world semantics, a sentence’s intension
is commonly understood as the set of possible worlds in
which this sentence holds. Thus, hyperintensional semantic
differences can be established in relation to this fixed
semantic framework.

In the remainder of this work, we will represent hyperin-
tensional reasoning - i.e. reasoning that considers hyperin-
tensional contexts - in an abstract form by means of the re-
lationship between two consequence operators over a given
language. Let us define this notion formally.
Definition 1. Let L “ xL,Cny be a logic, andC : 2L Ñ 2L

be a consequence operator. We say that:
• C is L-sound, if for every Γ Ď 2L, CpΓq Ď CnpΓq

• C is L-complete, if for every Γ Ď 2L, CnpΓq Ď CpΓq

We believe L-sound consequences are useful to study hy-
perintensional attitudes. For example, they are easily appli-
cable for specifying slow thinking cognitive processes (So-
laki, Berto, and Smets 2019; Bjerring and Skipper 2019)
which can be used to describe the cognitive process of de-
duction and explain why knowing that “3 is a prime num-
ber” is valid is not enough for one to know that “3068 is
divisible by 13” also is, even though they are intensionally
equivalent. L-complete consequence operators, on the other
hand, can be useful to understand natural inferences that lie
outside the realm of the language’s semantics and usually as-
sociated with pragmatic phenomena, such as conversational
implicatures.

In the following, we explore some different L-sound hy-
perintensional contraction operations, i.e. hyperintensional
contractions based on a L-sound consequence operator C,
and characterise them through appropriate postulates, as
commonly pursued by the AGM tradition. Throughout this
section, we will denote by KKϕ the remainder set KKLϕ
according to the foundational logic L.

4.1 C-Dependent Contractions
The first example of a L-sound hyperintensional contraction
operation that we are aware of was proposed by Santos et
al. (2018) in their study of pseudo-contraction operations
for non-classic logics. The authors propose the notion of C-
dependent partial meet contractions2, which consist of main-
taining all information that can be deduced by a L-sound
consequence operator, i.e. by hyperintensional reasoning,
while removing a formula from the agent’s beliefs. The op-
eration can be formally defined as follows.

1The is an ongoing debate on the nature of the sentential con-
tents involved in drawing appropriate hyperintensional distinctions,
see for example the work of Cresswell (1975) and Jago (2014)

2In their terminology, Cn˚-pseudo-partial meet contractions.
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Definition 2. Let L be a monotonic and compact logic, let
C be a L-sound consequence operator, and K Ď L be a
set of formulas. We say an operator ´ : 2L ˆ L Ñ 2L

is a C-dependent partial meet contraction (or C-dependent
contraction) on K if there is some selection function γ s.t.
for any formula ϕ P L it holds that

K ´ ϕ “
č

γpCpKqKϕq

To characterise these operations, we employ the following
postulates.

(C-logical inclusion) K ´ ϕ Ď CpKq.
(success) ϕ R CnpHq then ϕ R CnpK ´ ϕq

(C-uniformity) If for all K 1 Ď CpKq it holds that ϕ P
CnpK 1q iff ψ P CnpK 1q, then K ´ ϕ “ K ´ ψ.
(C-logical relevance) If β P CpKqzK ´ ϕ, then there is
some K 1 Ď CpKq s.t. K ´ ϕ Ď K 1, ϕ R CnpK 1q, and
ϕ P CnpK 1 Y tβuq.
We can easily generalise Santos et al.’s (2018) character-

isation, which assumes the consequence operator Cn to be
tarskian, to monotonic and compact logics L and, thus, to
C-dependent contractions in general.
Theorem 3. Let L be a monotonic and compact logic, and
C be a L-sound consequence operator. An operator ´ is
a C-dependent contraction on a set K Ď L and a formula
ϕ P L iff ´ satisfies (C-logical inclusion), (success), (C-
uniformity), and (C-logical relevance)

Proof. (Construction to Postulates): The satisfaction of the
postulates can be trivially obtained from the fact that there
is some partial meet contraction a in L s.t. K ´ ϕ “

CpKq a ϕ and a satisfies (success), (inclusion), (rele-
vance), and (uniformity).

(Postulates to Construction): Let us construct the function
γ s.t. γpCpKqKϕq “ tK 1 P CpKqKϕ | K ´ ϕ Ď K 1u if
ϕ R CnpHq and γpCpKqKϕq “ tCpKqu, otherwise.

It is easy to see that the γ function is well-defined, i.e. if
CpKqKα “ CpKqKβ, then γpCpKqKαq “ γpCpKqKβq
from (C-uniformity). The fact that γ is a selection function
follows from (success), sinceCn is monotonic and compact.

Finally, we must show that K´ϕ “
Ş

γpCpKqKϕq. We
have two cases: if ϕ P CnpHq and ϕ R CnpHq.

In the first case, by construction,
Ş

γpCpKqKϕq “

CpKq and, by C-logical inclusion, K ´ ϕ Ď CpKq “
Ş

γpCpKqKϕq. As ϕ P CnpHq, then there is no K 1 Ď
CpKq s.t. ϕ R CnpK 1q, as Cn is monotonic. Thus, by (C-
logical relevance) of ´, there is no β P CpKqzK ´ ϕ, i.e.
CpKq “ K ´ ϕ.

In the second case, we have that ϕ R CnpHq, thus
CpKqKϕ ‰ H and γpCpKqKϕq ‰ H. AsK´ϕ is a subset
of any K 1 P γpCpKqKϕq, then K ´ ϕ Ď

Ş

γpCpKqKϕq.
To obtain the reverse inclusion, take β R K ´ ϕ. If
β R CpKq, then β R

Ş

γpCpKqKϕq; on the other hand,
if β P CpKqzK ´ ϕ, by (C-logical relevance), there is
some K 1 s.t. K ´ ϕ Ď K Ď CpK 1q, ϕ R CnpK 1q, but
ϕ P CnpK 1 Y tβuq. Since Cn is monotonic and compact,
there is some maximal K2 P CpKqKϕ s.t. K 1 Ď K2.
As K ´ ϕ Ď K2, then K2 P γpCpKqKϕq and, thus,
β R

Ş

γpCpKqKϕq.

As Santos et al. (2018) discuss, C-dependent contractions
define intermediary levels of information preservation for a
contraction operation, encoded by the (C-logical relevance)
postulate, ranging from belief base contractions - which are
completely dependent on the structure of the belief base -
to AGM contractions - which are completely independent of
that structure. In fact, it is easy to see that if CpKq “ K,
the notion of C-dependent contraction is reduced to that of
partial meet contraction.

Corollary 4. Let L be a monotonic and compact logic, C be
a L-sound consequence operator s.t. CpKq “ K. An oper-
ator´ is aC-dependent contraction iff´ satisfies (success),
(inclusion), (relevance) and (uniformity).

4.2 C-Sensitive Contraction
Berto (2019) defines their topic-sensitive conditional beliefs,
which the author interprets as belief revision, as the result of
revising the agent’s beliefs by some new information and se-
lecting all hyperintensional consequences of the agent’s be-
liefs. Based on the Harper identity (Alchourrón, Gärdenfors,
and Makinson 1985), which connects the operations of revi-
sion and contraction, Souza (2020) proposes the notion of
C-sensitive contraction, generalising Berto’s topic-sensitive
belief change operations.

Definition 5. Let L be a monotonic and compact logic,C be
a L-sound consequence operator, K Ď L a set of formulas.
We say an operator´ : 2LˆLÑ 2L is aC-sensitive partial
meet contraction (or C-sensitive contraction) on K if there
is some selection function γ s.t. for any formula ϕ P L, it
holds that

K ´ ϕ “ Cp
č

γpKKϕqq

It is important to notice that C-sensitive contractions re-
turn a consequentially closed set, similar to AGM belief con-
tractions. While in Definition 5, we do not require the in-
put set K to be consequentially closed, as in AGM’s opera-
tions, we will focus in our characterisation for contractions
on consequentially-closed sets of beliefs, either regarding
the operator Cn or the hyperintensional operator C. As
such, depending on the properties of the consequence op-
erator C, C-sensitive contractions satisfy a variation of the
postulate (closure). We will employ the following postulates
in the characterisation of C-sensitive contractions, a revi-
sion of the postulates originally proposed by Souza (2020)
regarding the (C-sensitive relevance) postulate.

(C-enforced closure) K ´ ϕ “ CpK ´ ϕq

(C-logical inclusion) K ´ ϕ Ď CpKq.

(success) If ϕ R CnpHq then ϕ R CnpK ´ ϕq

(uniformity) If for all K 1 Ď K, ϕ P CnpK 1q iff ψ P

CnpK 1q, then K ´ ϕ “ K ´ ψ

(C-sensitive relevance) If β P CpKqzCnpK ´ ϕq then
there is some K 1 Ď CnpKq s.t. K ´ ϕ Ď K 1, ϕ R

CnpK 1q, and ϕ P CnpK 1 Y tβuq.

It is clear from similar studies in belief change in non-
classical logics (Hansson and Wassermann 2002; Flouris,
Plexousakis, and Antoniou 2005; Ribeiro and Wassermann
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2009; Santos et al. 2018) that the connection between pos-
tulates and constructions of operators may depend on which
properties the foundational logic satisfies.

To provide the connection between the construction of
C-Sensitive contractions in Definition 5 and the postulates
presented above, beside those properties introduced in Sec-
tion 3, in this this work, we will employ the following prop-
erty for the consequence operator C:
• locality: If ϕ P CpKq, for all K 1 Ď K s.t. ϕ P CnpK 1q,
ϕ P CpK 1q.

• local inclusion: Ifϕ P CpKq, for allK 1 Ď K s.t. ϕ P K 1,
ϕ P CpK 1q.
The locality property indicates that the consequence op-

erator C is local, in the sense that it is restricted to a relevant
subset of the language or domain of discourse. This property
abstractly encodes forms of restricted (or resource-bounded)
reasoning that we observe, for example, in Hansson and
Wassermann’s (2002) local implications and Souza’s (2020)
topic-sensitive consequences.

As such, we can characterise the following connections.
Proposition 6. Let L be a tarskian and compact logic, C
be a L-sound consequence operator, K Ď L be a set of
formulas, and ´ be a C-sensitive partial meet contraction
on K. It holds that:

1. ´ satisfies (uniformity)
2. If C satisfies idempotence, ´ satisfies (C-enforced clo-

sure).
3. If C satisfies monotonicity, ´ satisfies (success) and (C-

logical inclusion)
4. If K “ CnpKq and C satisfies monotonicity and locality,

then ´ satisfies (C-sensitive relevance)
5. If K “ CpKq and C satisfies monotonicity, local inclu-

sion, and locality, then´ satisfies (C-sensitive relevance)

Proof. The proof can be easily obtained from the fact that if
´ is a C-sensitive partial meet contraction, there is a partial
meet contractiona on L s.t. K´ϕ “ CpK aϕq. As such,
we will only show the proof for the (C-enforced closure) and
(C-sensitive relevance) postulate.

(C-enforced closure): As K ´ ϕ “ Cp
Ş

γpKKϕqq, then
CpK ´ ϕq “ CpCp

Ş

γpKKϕqqq. By idempotence of C,
CpCp

Ş

γpKKϕqqq “ Cp
Ş

γpKKϕqqq “ K ´ ϕ. Thus
K ´ ϕ “ CpK ´ ϕq.

(C-sensitive relevance): First we show for the case K “

CnpKq. Take β P CpKqzCnpK ´ ϕq, then β P CpKq and
β R CnpCpK a ϕqq. By the inclusion property of Cn, we
conclude that β R CpK a ϕq. As C satisfies monotonicity
and locality, since β P CpKq and K ´ ϕ Ď CpKq, β R
CnpK a ϕq and thus β R K a ϕ. By (relevance) of the
partial meet operator a, as β P CpKq Ď CnpKq “ K and
β R K a ϕ, there is some K 1 Ď K s.t. K a ϕ Ď K 1 and
ϕ R CnpK 1q but ϕ P CnpK 1 Y tβuq. As Cn is monotonic
and compact, there is some maximal element K2 Ď K s.t.
K 1 Ď K and ϕ R CnpK2q. As K “ CnpKq and Cn is
tarskian, it is easy to see that K2 “ CnpK2q, then K´ϕ “
CpK a ϕq Ď CnpK a ϕq Ď CnpK2q “ K2, ϕ R K2
and ϕ P CnpK2 Y tβuq, by monotonicity of Cn.

To show that it holds for the case K “ CpKq, it suf-
fices to see that if K 1 P KKϕ, then K 1 “ CpKq. Take
K 1 P KKϕ. As K 1 Ď K “ CpKq, K 1 Ď CpK 1q is
immediate since C satisfies local inclusion. Let us show
that the reverse inclusion holds. Take β P CpK 1q. If
β R K 1 then, by maximality of K 1, ϕ P CnpK 1 Y tβuq.
As β P CpK 1q Ď CnpK 1q, K 1 Y tβu Ď CnpK 1q. As Cn is
tarskian, CnpK 1Ytβuq Ď CnpCnpK 1qq “ CnpK 1q. Thus,
ϕ P CnpK 1qwhich is absurd due to the fact thatK 1 P KKϕ.
Then β P K 1 and CpK 1q Ď K 1. The remaining arguments
for showing (C-sensitive relevance) are similar to the case
in which K “ CnpKq.

With that, we can provide the following representation re-
sult for C-sensitive contractions.

Theorem 7. Let L be a tarskian and compact logic, and C
be a L-sound consequence operator satisfying monotonicity,
idempotence, and locality (monotonicity, idempotence, local
inclusion and locality). Let yet K Ď L be a belief set, i.e.
set of formulas s.t. K “ CnpKq (K “ CpKq). An operator
´ is a C-sensitive partial meet contraction on K iff ´ sat-
isfies (success), (C-enforced closure), (logical uniformity),
(C-logical inclusion) and (C-sensitive relevance).

Proof. Satisfaction of postulates is consequence of Proposi-
tion 6. The proof of construction follows a similar idea to
the construction of partial meet contraction by AGM. Take

γpKKϕq “

"

tK 1 P KKϕ |K ´ ϕ Ď K 1u if ϕ R CnpHq
tKu otherwise

It is easy to see that γpKKϕq is well-defined, as in
the previous cases. As such, let us show that K ´ ϕ “

Cp
Ş

γpKKϕq.
pĎq: Since C is monotonic and K ´ ϕ Ď

Ş

γpKKϕq,
we have that CpK ´ ϕq Ď Cp

Ş

γpKKϕq. By (C-enforced
closure) of ´, we conclude that K ´ ϕ Ď Cp

Ş

γpKKϕqq.
pĚq: Take β P Cp

Ş

γpKKϕq, then β P CpKq, since C is
monotonic. Suppose β R CnpK ´ ϕq, then by (C-sensitive
relevance) there is some K 1 Ď K s.t. K ´ ϕ Ď K 1, ϕ R
CnpK 1q but ϕ P CnpK 1 Y tβuq. As Cn is monotonic and
compact, there is some maximal K2 Ď K s.t. K ´ ϕ Ď K2

and ϕ P CnpK2 Y tβuq. As K2 is maximal, K2 P KKϕ
and, thus, K2 P γpKKϕq. As β R K2, since ϕ R CnpK2q,
we conclude that β R

Ş

γpKKϕq and β R Cnp
Ş

γpKKϕqq,
since Cn is tarskian. As C is L-sound, we conclude that
β R Cp

Ş

γpKKϕq, which is absurd. Then β P CnpK´ϕq.
As β P CpCpKqq “ CpKq and K ´ ϕ Ď CpKq, then, by
locality of C, β P CpK ´ ϕq “ K ´ ϕ.

4.3 C-Base Contraction
On the other way of the construction of C-sensitive contrac-
tion, Hansson (1991) shows that belief base contractions ´
can be defined by means of a belief set contraction a as
K ´ ϕ “ K XCnpKq a ϕ. We can generalise this notion
to hyperintensional belief contraction in the following way.

Definition 8. Let L be a monotonic and compact logic, C
be a L-sound consequence operator, and K Ď L be a set
of formulas. We say an operator ´ : 2L ˆ L Ñ 2L is a
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C-base partial meet contraction (or C-base contraction) on
K if there is some selection function γ s.t. for any formula
ϕ P L it holds that

K ´ ϕ “ CpKq X
č

γpCnpKqKϕq

As C-base contractions are defined based on a generalisa-
tion of belief base contractions, we can provide a characteri-
sation of our operations based on Hansson’s characterisation
of belief base contractions by the following modified postu-
lates.

(C-logical inclusion) K ´ ϕ Ď CpKq.
(success) If ϕ R CnpHq, then ϕ R CnpK ´ ϕq

(Cn uniformity) If for all K 1 Ď CnpKq, it holds that ϕ P
CnpK 1q iff ψ P CnpK 1q, then K ´ ϕ “ K ´ ψ

(C-local logical relevance) If β P CpKqzK ´ ϕ, then
there is some K 1 Ď CnpKq, s.t. K ´ ϕ Ď K 1, ϕ R

CnpK 1q and ϕ P CnpK 1 Y tβuq.

With that, we can provide the following representation re-
sult for C-sensitive contractions.
Theorem 9. Let L be a monotonic and compact logic, C be
a L-sound consequence operator, andK Ď L be a set of for-
mulas. An operator ´ is a C-base partial meet contraction
on K iff ´ satisfies (C-logical inclusion), (success), (Cn
uniformity), and (C-local logical relevance).

Proof. (Construction to postulates): satisfaction of (C-
logical inclusion), (success), and (Cn uniformity) is im-
mediate from the fact that L is monotonic and compact
and, thus, there is a partial meet contraction a in L s.t.
K ´ ϕ “ CpKq X pCnpKq a ϕq.

To prove satisfaction of (C-local logical relevance), we
need to see that if β P CpKqzK ´ ϕ, as K ´ ϕ “ CpKq X
pCnpKq a ϕq, then β R CnpKq a ϕ. As CpKq Ď CnpKq
and β P CpKq, we conclude that β P CnpKqzCnpKq a ϕ.
By (relevance) of the partial meet contraction a, we con-
clude that there is some K 1 Ď CnpKq s.t. CnpKq a ϕ Ď
K 1 and ϕ R CnpK 1q but ϕ P CnpK 1 Y tβuq. As, by defini-
tion,K´ϕ Ď CnpKq a ϕ, then there is someK 1 Ď CnpKq
s.t. K ´ ϕ Ď K 1 and ϕ R CnpK 1q but ϕ P CnpK 1 Y tβuq.

(Postulates to construction): The proof is similar to that
of Theorem 3. Let us define γpCnpKqKϕq “ tK 1 P
CnpKqKϕ | K ´ ϕ Ď K 1u if ϕ R CnpHq, and
γpCnpKqKϕq “ CnpKq, otherwise.

The only important changes from the proof of Theo-
rem 3 concern the argumentation for the inclusion CpKq X
Ş

γpCnpKqKϕq Ď K ´ ϕ.
Suppose, by contradiction, that there is some β P CpKqX

Ş

γpCnpKqKϕqzK ´ ϕ, then β P CpKqzK ´ ϕ. By (C-
local logical relevance), there is some K 1 Ď CnpKq s.t.
K ´ ϕ Ď K 1, ϕ R CnpK 1q but ϕ P CnpK 1 Y tβuq. As
L is monotonic and compact, by the upper bound property,
there is K2 P CnpKqKϕ s.t. K 1 Ď K2. As K ´ ϕ Ď

K 1 Ď K2, we conclude that K2 P γpCnpKqKϕq, by con-
struction. As such, β R K2 and, thus, β R

Ş

γpCnpKqKϕq,
which is a contradiction to the hypothesis that β P CpKq X
Ş

γpCnpKqKϕqzK´ϕ. Thus,CpKqX
Ş

γpCnpKqKϕq Ď
K ´ ϕ

Notice that C-base contractions are generalisations of C-
dependent contractions, for L-sound operators C, since the
postulate (C-logical relevance) implies the postulate (C-
local logical relevance). Moreover, it is not always the case
that C-base contractions are C-dependent contractions. Let
us examine the following example.

Example 10. Let L “ ta, b, c, d, eu and let Cn : 2L Ñ 2L

and C : 2L Ñ 2L be consequence operators such that:

Cnpta, c, d, euq “ ta, c, d, eu,
Cnpta, c, duq “ Cnpta, d, euq “ Cnpta, c, d, euq,
Cnpta, cuq “ ta, cu,
Cnpta, duq “ tau,
Cpta, c, duq “ ta, d, eu,
Cpta, cuq “ ta, cu,
Cpta, duq “ tau.

Take K “ ta, c, du, we conclude that CnpKqKe “

tta, cu, ta, duu, while CpKqKe “ tta, duu. Thus for
some selection function γ, i.e. if γpCnpKqKeq ‰ ta, du,
Ş

γpCpKqKeq ‰ CpKq X
Ş

γpCnpKqKeq.

In the same way that C-sensitive contractions generalise
the notion of AGM contraction to hyperintensional opera-
tors, C-base contractions generalise the notion of base con-
traction for the hyperintensional case. In fact, it is easy to
see that the strong connection between AGM contractions
and base contraction is reproduced in our framework.

Proposition 11. Let L be a monotonic and compact logic
satisfying inclusion and letC be a L-sound consequence op-
erator. An operator ´ : 2L ˆ LÑ 2L satisfies (C-sensitive
relevance) only if it satisfies (C-local logical relevance).

With that, we see that if the foundational logic L satisfies
the suitable properties, every C-sensitive contraction is a C-
base contraction.

5 Belief Change in Non-classical Logics as
Hyperintensional Belief Change

In this section, we investigate some applications of our gen-
eral notions of L-sound hyperintensional contractions to ex-
amine belief change operations in the literature. We will fo-
cus on using hyperintensional belief contractions to examine
Delgrande and Wassermann’s (2013) belief contractions for
Horn Logic, as well as for Ribeiro and Wassermann’s (2009)
belief contractions for Description Logics.

5.1 Belief Change in Horn Logic
Horn Logic is an important restriction on the syntax of clas-
sical propositional (or first-order) logic with several applica-
tions in Artificial Intelligence and Computer Science, in ar-
eas such as logic programming, truth maintenance systems,
and databases. Horn Logic is also a framework to study lim-
ited reasoning and its applications.

The topic of belief change in Horn logic has, to our knowl-
edge, firstly been tackled by the work of Delgrande (2008),
which investigates the application of the AGM approach to
defining belief change operators in such a restricted logic.
The interest in studying belief change in this logic comes
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from its potential applications, for example, in evolving
databases, but also in revealing the theoretical underpinnings
of AGM belief change for weak logics not containing full
classical propositional reasoning (Delgrande 2008).

In the remainder of this subsection, we will suppose our
foundational logic to be the classical propositional logic
L0 “ xL0, Cny defined over some fixed countable propo-
sitional symbol set P .

Definition 12. We define the language of Horn Formulas,
the set LH Ă L0 containing the Horn formulas as given by:

• p P P is a Horn Clause;
• a1 ^ a2 ^ ¨ ¨ ¨ ^ an Ñ a is a Horn Clause, with ai, a P P

for 1 ď i ď n;
• Every Horn Clause is a Horn Formula;
• If ϕ,ψ are Horn Formulas, so is ϕ^ ψ.

We define Horn Logic as the logic constructed with the
language of Horn Formulas and a consequence operator Ch

- Horn consequence - over this language.

Definition 13. We define the Horn consequence operator
Ch : 2L0 Ñ 2L0 as

ChpXq “ CnpXq X Lh

It is easy to see from the semantics of Horn Logic, pre-
sented in (Delgrande 2008; Delgrande and Wassermann
2013), that the consequence operator Ch actually defines
consequence in Horn Logic. We can now introduce the no-
tion of Horn Contraction, introduced by Delgrande (2008).

Definition 14. (Delgrande 2008) Let Lh “ xLh, Chy be the
Horn Logic, and K Ď Lh be a closed set of Horn Formulas,
i.e. K “ ChpKq. We say an operation´ : 2LhˆLh Ñ 2Lh

is a Belief Set Horn Contraction operation on K iff there is
a selection function γ s.t. for any formula ϕ P Lh it holds
that

K ´ ϕ “
č

γpKKLh
ϕq

Let us redefine our notion of C-dependent contractions to
Horn Logic.

Definition 15. Let L0 “ xL0, Cny be the Classical Propo-
sitional Logic, and K Ď L0 be a set of formulas. We say
an operation ´ : 2L0 ˆ L0 Ñ 2L0 is a Horn-Dependent
Contraction operation on K if there is a selection function
γ s.t. for any formula ϕ P L0 it holds that

K ´ ϕ “
č

γpChpKqKϕq

It is easy to see that every Horn Belief Set Contraction is
a Horn-Dependent Contraction.

Lemma 16. Let Lh “ xLh, Chy be the Horn Logic and
K Ď Lh a closed set of Horn Formulas, i.e. K “ ChpKq.
An operation ´ : 2Lh ˆ Lh Ñ 2Lh is a Belief Set Horn
Contraction operation on K iff there is a Horn-Dependent
Contraction operation on K , a : 2L0 ˆ L0 Ñ 2L0 , s.t. for
any ϕ P Lh it holds that

K ´ ϕ “ K a ϕ

Proof. It suffices to see that, as ChpXq “ CnpXq X Lh,
if K “ ChpKq, then KKLh

ϕ “ ChpKqKL0
ϕ “ KKL0

ϕ.
Notice that, asCh satisfies monotonicity, local inclusion and
locality, if K 1 P ChpKqKL0

ϕ, then K 1 “ ChpK
1q. As

Ch is compact, it is easy to see that K 1 P KKLh
ϕ. The

reverse inclusion is immediate from the fact that if K 1 P
KKLh

ϕ, then K 1 Ď ChpKq “ K and it is the maximal
element containing K 1 and not proving ϕ, given that Cn is
compact.

More yet, as Ch clearly satisfies monotonicity, idempo-
tence, local inclusion and locality, it is easy to see that Horn
Belief Set Contractions are also examples of Ch-sensitive
contractions.
Lemma 17. Let Lh “ xLh, Chy be the Horn Logic and
K Ď Lh be a closed set of Horn Formulas, i.e. K “

ChpKq. An operation ´ : 2Lh ˆ Lh Ñ 2Lh is a Belief Set
Horn Contraction operation on K iff there is a Ch-sensitive
contraction operation on K, a : 2L0 ˆ L0 Ñ 2L0 , s.t. for
any ϕ P Lh, it holds that

K ´ ϕ “ K a ϕ

Proof. As we have shown in Lemma 16 that KKLh
ϕ “

KKL0
ϕ, it suffices to see that, by definition, K ´ ϕ “

Ş

γpKKLh
ϕq “

Ş

γpKKL0
ϕq. As ´ satisfies (enforced

closure), K ´ ϕ “ ChpK ´ ϕq “ Chp
Ş

γpKKL0ϕqq “
K a ϕ.

Lemma 17 shows that while our general notions of hy-
perintensional belief contraction may differ, in well-behaved
logics such as Horn Logic, these notions may coincide. This
fact indicates that our notions are more general and may ap-
ply to a wide range of logics while maintaining appropriate
rationality criteria for belief change.

The connection of our hyperintensional contractions to
belief change in Horn Logic is not limited to Horn Belief Set
Contractions but can be extended to Delgrande and Wasser-
mann’s (2013) belief base contractions for Horn Logic as
well.
Definition 18. (Delgrande and Wassermann 2013) Let
Lh “ xLh, Chy be the Horn Logic. We say an operation
´ : 2Lh ˆ Lh Ñ 2Lh is a Horn Contraction operation on a
set of Horn Formulas K Ď Lh iff there is a selection func-
tion γ s.t. for any Hor formula ϕ P Lh, it holds that:

K ´ ϕ “
č

γpKKLh
ϕq

To define our hyperintensional base contractions, which
we will use to interpret Delgrande and Wassermann’s (2013)
Horn Contractions, we will employ the following L0-sound
consequence operator.
Definition 19. We define the Horn restriction operator Ch :
2L0 Ñ 2L0 as

CÓhpXq “ X X Lh

It is not difficult to see that the postulates above imply
the postulates of C-base contractions, considering the Horn
restriction operator Ch. To show that this connection holds,
let us redefine our C-base contractions to the particular case
of Horn Logic.
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Definition 20. Let L0 be the classical propositional logic.
We say an operation ´ : 2L0 ˆ L0 Ñ 2L0 is a Horn Base
Contraction operation on a set K Ď L0 iff there is a selec-
tion function γ s.t. for any formula ϕ P L0 it holds that:

K ´ ϕ “ CÓhpKq X
č

γpCnpKqKL0ϕq

Finally, it is easy to see that Delgrande and Wassermann’s
Horn Contractions coincide with our Horn Base Contrac-
tions.
Lemma 21. Let Lh “ xLh, Chy be the Horn Logic and
K Ď Lh be a set of Horn Formulas. An operation ´ :
2Lh ˆ Lh Ñ 2Lh is a Horn Contraction operation on K iff
there is a Horn Base Ch-sensitive contraction operation on
K, a : 2L0 ˆ L0 Ñ 2L0 , s.t. for any ϕ P Lh, it holds that

K ´ ϕ “ K a ϕ

Proof. It suffices to see that, as K Ď Lh and ϕ P Lh, K 1 P
KKLh

ϕ iff there is some K2 P CnpKqKL0
ϕ s.t. K 1 “

K XK2.
Take K 1 P KKLh

ϕ, then K 1 is a maximal subset s.t.
K 1 Ď K and ϕ R ChpK

1q. Well, ChpK
1q “ CnpK 1q X

Lh “ CÓhpCnpK
1qq, thus ϕ R CnpK 1q. As Cn is com-

pact, there is a K2 P CnpKqKLh
ϕ s.t. K 1 Ď K2. Clearly,

K 1 Ď K X K2. To show the reverse inclusion, it suf-
fices to see that if there is some β P pK X K2qzK 1, then
there is a set K3 “ K 1 Y tβu s.t. K 1 Ă K3 Ď K and
ϕ R ChpK

3q “ CnpK3q X Lh Ď CnpK2q, contradicting
the maximality of K 1.

5.2 Belief Contraction in Description Logics
Description Logics (DLs) are a wide family of logic-based
languages used for knowledge representation and reason-
ing, differing in their expressive power and the compu-
tational properties of their reasoning tasks (Baader et al.
2003). These languages have been used as the foundation
of knowledge representation languages such as the Ontol-
ogy Web Language (Motik, Hayes, and Horricks 2004), the
standard language for the descriptions of computational on-
tologies for the Semantic Web, among other applications,
e.g. (Moreira et al. 2005; Souza et al. 2015). While there
is a significant number of DLs proposed in the literature, in
this work, we will focus on the basic logic ALC and its sub-
languages (Baader et al. 2003).

A terminological signature (or simply signature) of a de-
scription language is a tuple xNC , NR, NIy such that NC

is a non-empty set of atomic concept names, NR is a non-
empty set of atomic role names, and NI is a non-empty set
of individuals. Given a signature, we construct the language
of ALC by the following grammar, where A P NC and
R P NR:

C ::“ A | J | K | p Cq | pC[Cq | pC\Cq | p@R.Cq | pDR.Cq

The formal semantics of concepts may be given by in-
terpretations I, consisting of a non-empty set (∆) and an
interpretation function (I). In such an interpretation, a prim-
itive atomic conceptA is assigned to a setAI Ď ∆ and each
primitive atomic role R to a binary relation RI Ď ∆ ˆ ∆

C CI

J ∆
K H

 C ∆zCI

pC [Dq CI XDI

pC \Dq CI YDI

@R.C tx P ∆ | @y P ∆ : xx, yy P RI Ñ y P CIu
DR.C tx P ∆ | Dy P ∆ : xx, yy P RI and y P CIu

Table 1: Interpretation of ALC concepts

and each individual name a P NI is assigned to an element
of the domain of discourse aI P ∆. The semantics of the
formulas of ALC is, then, defined on Table 1.

The ALC terminological language (ALCT ) is defined as
the set of all formulas

ϕ ::“ C Ď D | Cpaq | Rpa, bq | a “ b

where, C,D are formulas of ALC, R P NR is a role name
and a, b P NI are individuals.

We say an interpretation I satisfy a formula ϕ, denoted
I ( ϕ, if:

I ( C Ď D if CI Ď DI

I ( Cpaq if aI P CI

I ( Rpa, bq if xa, by P RI

I ( a “ b if aI “ bI

We say that a terminological formula ϕ P ALCT is satis-
fiable if there is some interpretation that satisfies it, and that
it is valid, if for any interpretation it is satisfied. In this con-
text, a knowledge base is a set K Ď ALCT of terminologi-
cal formulas, and we say that an interpretation I satisfiesK,
denoted I ( K, if for any ϕ P K it holds that I ( ϕ. We
say a knowledge base K implies formula ϕ P ALCT , de-
noted K ( ϕ, if any interpretation that satisfies K also sat-
isfies ϕ. Thus, we define CnpKq “ tϕ P ALCT |K ( ϕu.

As Cn is a monotonic and compact operator, based on
Hansson and Wassermann’s (2002) characterisation of par-
tial meet contraction, we know that there we can define par-
tial meet contraction operators for ALCT . We will employ
these operators to construct belief contraction operators for
sublanguages of ALCT based on our hyperintensional con-
tractions. With that, we can show that belief change in logics
of restricted reasoning can arise from their relationship with
more expressive logics, for which we can construct belief
change operators.

In Knowledge Representation, different DLs are defined
as syntactic restrictions on the kind of formulas that can ap-
pear in a knowledge base. For example, the well-known
DL EL (Baader 2003) is defined by limiting the concepts
C,D occurring in a terminological formula C Ď D. For
any such logic L “ xL,Cy with L Ď ALCT sufficiently
strong, i.e. any logic monotonic and compact such that for
K Ď L, it holds that CpKq “ CnpKq X L, we can eas-
ily see, as for Horn Logic, that any partial meet contraction
´ : 2L ˆ LÑ 2L can be defined as a hyperintensional base
contraction on ALCT . Let us show this formally.
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Definition 22. We define the L restriction operator CL :
2ALCT Ñ 2ALCT as

CLpXq “ X X L

With that, we can redefine ourCL-base contractions to the
particular case of subsets of ALC.

Definition 23. Let L “ xL,Cy a monotonic and compact
logic, s.t. L Ď ALCT and CpXq “ CnpXq XL. We say an
operation ´ : 2ALCT ˆALCT Ñ 2ALCT is an ALC-Base
Contraction operation on a set K Ď ALCT iff there is a
selection function γ s.t. for any ϕ P ALCT , it holds that:

K ´ ϕ “ CLpKq X
č

γpCnpKqKALCT ϕq

Clearly, as ALCT satisfies inclusion, ALC-Base Contrac-
tions are CL-Base Contractions. Finally, it is easy to see
that partial meet contractions on L coincide with ALC Base
Contractions.

Lemma 24. Let L “ xL,Cy a monotonic and compact
logic, s.t. L Ď ALCT and CpXq “ CnpXq X L, K Ď L
be a set of L-formulas. An operation ´ : 2L ˆ L Ñ 2L

is a partial meet contraction operation on K iff there is a
ALC-Base Contraction a : 2ALCT ˆALCT Ñ 2ALCT s.t.
for any ϕ P L, it holds that

K ´ ϕ “ K a ϕ

The proof of the above result is similar to that of Horn
Logic. As such, we can see that for any sufficiently strong
monotonic and compact sublogics of ALC, we can con-
struct belief contraction operators based on ALC. Notice
that our assumption that the sublogic L is sufficiently strong,
i.e. CpXq “ CnpXq X L, is not an unreasonable one, since
this property holds for several sublanguages of ALC, such
as the logics in the EL family (Baader 2003), and in theDL-
Lite family (Calvanese et al. 2005), etc.

More importantly, based on our hyperintensional belief
contractions, we can propose belief change operations for
non-monotonic Description Logics (Governatori and Rotolo
2004), which is not possible in the framework of partial-
meet contraction.

With the connection of hyperintensional belief contrac-
tion, horn contractions and belief contractions in description
logics, we point out our framework’s potential to study be-
lief change in non-classical logics.

6 Final Considerations
In this work, we investigated the application of belief change
operations arising from hyperintensional treatments of be-
liefs to define belief contraction operations on non-classical
logics. Firstly, we defined and characterised three different
notions of hyperintensional belief contraction arising from
generalisations of operations in the literature. In doing so,
we generalise Santos et al.’s (2018) previous results on the
characterisation ofCn˚-pseudo contractions (here calledC-
dependent contractions) and their applications of hyperin-
tensional belief change to construct belief change operations
for non-classical logics.

Notice that, by encoding hyperintensional reasoning by
means of the relation among two different consequence op-
erators C and Cn, our approach is general enough to be
connected to different foundational theories of hyperinten-
sionality - such as the structural perspective underlying the
structured propositions tradition (Cresswell 1975) and the
informational perspective underlying Berto’s mereological
treatment (Berto 2019). As such, even if sentences such as
p :“3 is a prime number” and q :“3068 is divisible by 13”
are necessarily equivalent, i.e Cnppq “ Cnpqq, we can ab-
stractly represent the hyperintensional semantic difference
between the formulas by imposing that Cppq ‰ Cpqq.

The connection between Horn contractions and hyperin-
tensional contractions indicates that hyperintensional belief
change can be used to unify different work on non-classical
belief change, particularly for sublogics of classical logic
(Gabbay, Rodrigues, and Russo 2008). That is the case, for
example, of belief change in Description Logics (Flouris,
Plexousakis, and Antoniou 2005; Ribeiro and Wassermann
2009), as explored in this work. Our results explain how we
construct and characterise variations of belief base change
to these subclassical logics and point to a general framework
for studying belief change in non-classical logics.

This connection between contractions in subclassic logics
and hyperintensional logics, while theoretically valuable, is
not surprising in the sense that subclassic logics necessarily
impose hyperintensional differentiations in the underlying
logic. Our work highlights that, as a subclassical logic can
be understood as a hyperintensional interpretation within the
foundational logic, belief change in the former is intrinssi-
caly defined by belief change in the latter. This fact indicates
that the approach proposed by Gabbay (2008) for defining
belief change operators for non-classical logics is semanti-
cally well-behaved, in the sense that it preserves desirable
properties of the resulting belief change operator for a great
variety of underlying logics.

While we focus on an abstract interpretation of hyperin-
tensionality, we believe that the semantic treatment of such
notions can provide insightful intuitions for the construc-
tion of different belief change operations. Particularly, since
competing approaches in the literature represent hyperinten-
sional contexts in different ways, we believe that general
frameworks such as impossible-world semantics (Rantala
1982) or Sedlar’s (2019) Montague-Scott semantics can be
used to explain diverse proposals of belief change oper-
ations in the literature and their logical characterisations.
More yet, we believe semantic-based operations can be more
easily connected to other recent dynamic logic-based the-
ories of belief and mental change (Girard and Rott 2014;
Souza, Vieira, and Moreira 2020) and to the work on iterated
belief change (Jin and Thielscher 2007; Fermé and Wasser-
mann 2018).

In future work, we aim to investigate the use of these
semantic frameworks to characterise belief change in non-
classical logics in a unified manner. This will help, in our
opinion, to provide belief change operators for a great range
of logics, such as non-monotonic and non-compact logics,
which are of interest to both Artificial Intelligence and Phi-
losophy.
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