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Abstract
Definite descriptions are phrases of the form ‘the x such that
ϕ’, used to refer to single entities in a context. They are of-
ten more meaningful to users than individual names alone,
in particular when modelling or querying data over ontolo-
gies. We investigate free description logics with both individ-
ual names and definite descriptions as terms of the language,
while also accounting for their possible lack of denotation.
We focus on the extensions of ALC and, respectively, EL
with nominals, the universal role, and definite descriptions.
We show that standard reasoning in these extensions is not
harder than in the original languages, and we characterise the
expressive power of concepts relative to first-order formulas
using a suitable notion of bisimulation. Moreover, we lay
the foundations for automated support for definite descrip-
tions generation by studying the complexity of deciding the
existence of definite descriptions for an individual under an
ontology. Finally, we provide a polynomial-time reduction of
reasoning in other free description logic languages based on
dual-domain semantics to the case of partial interpretations.

1 Introduction
Noun phrases that can be used to refer to a single object in
a context are known in linguistics as referring expressions
(REs). These include both individual names, such as ‘KR
2021’, and definite descriptions, such as ‘the General Chair
of KR 2021’ (Neale 1990; Cann 1993). Compared to in-
dividual names alone, REs provide increased flexibility in
the description and the identification of objects, representing
also a natural tool to transmit this kind of information in a
semantically transparent way. In the context of information
and knowledge base (KB) management systems, REs have
been proposed to address the problem of object identifiers
that remain obscure to end-users, such as blank node identi-
fiers in RDF or system-generated ref expressions in object-
oriented databases (Borgida, Toman, and Weddell 2016b;
Borgida, Toman, and Weddell 2017).

However, with the recent exception of the work
by Neuhaus, Kutz, and Righetti (2020) discussed below,
most of the ontology languages considered in the litera-
ture have not included definite descriptions as first-class
terms, on a par with individual names. To this goal, an-
other feature of REs has to be taken into account: that
of possibly failing to denote any object at all. For in-
stance, ‘KR 2019’ is a non-denoting individual name, since

no KR conference took place in 2019, while ‘the Program
Chair of KR 2020’ and ‘the banquet of KR 2020’ are non-
denoting definite descriptions, because this conference had
two Program Chairs and no banquet in 2020. This is not
easily captured in classical first-order logic (FO), where
an individual name is always assigned to an element of
the domain by the interpretation function, and definite de-
scriptions are not included among the terms of the lan-
guage (Russell 1905). Logics that allow for possibly non-
denoting terms are known as free logics (Bencivenga 2002;
Lehmann 2002).

In this work, we introduce and study a family of descrip-
tion logic (DL) languages with both individual names and
definite descriptions, that we call free DLs with definite de-
scriptions, or free DLs, for short. Syntactically, they extend
the classical ones with nominals of the form {ιC}, where
ιC is a term standing for the definite description ‘the object
that is C’ and C is a concept. We denote the resulting DLs
with an upperscript ι, focussing in particular onALCOιu and
ELOιu, which are, respectively,ALC and EL with nominals,
the universal role, and definite descriptions. Their semantics
is based on partial interpretations, that generalise the clas-
sical ones by letting the interpretation function to be partial
on individual names, meaning that only a subset of all the
individual names has its elements assigned to objects of the
domain. Moreover, the extension of {ιC} in a partial inter-
pretation coincides with that of the concept C, if C is inter-
preted as a singleton, and it is empty otherwise. Nominals
involving definite descriptions can be used to form concept
inclusions (CIs) with different satisfaction conditions. E.g.,

{ι∃isPCof.{dl20}} v ∃reportsTo.{ι∃isGCof.{dl20}}

states that whoever (if anyone) is the Program Chair of DL
2020 reports to the General Chair of DL 2020: if there is
exactly one object in ∃isPCof.{dl20}, then ∃isGCof.{dl20}
is forced to have exactly one element as well, but this CI is
(vacuously) satisfied also in interpretations without, or with
more than one, object in ∃isPCof.{dl20}.

We show that reasoning in free DLs with definite descrip-
tions can be performed at no additional costs. For (exten-
sions of) ALCOιu, we employ a polynomial time reduction
(via a translation that can be applied to other constructors
as well) to the corresponding language without definite de-
scriptions, so that efficient off-the-shelf reasoners can be

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

63



used. Moreover, we show that entailment in ELOιu ontolo-
gies remains tractable, using a modified version of the algo-
rithm for classical ELO (Baader, Brandt, and Lutz 2005).

We next characterise the expressive power of ALCOιu
concepts relative to FO on partial interpretations, using an
appropriate notion of ALCOιu bisimulations. This result is
of interest in its own right, but also serves as an important
technical tool for the remainder of the article.

Having designed a suitable DL language, we further con-
sider the task of constructing ontologies with definite de-
scriptions. As a step in this direction, we study the prob-
lem of finding meaningful REs for an individual under a
given ontology. This is related to RE generation in natural
language processing, concerned with the automatic produc-
tion of such noun phrases, possibly extracted from a non-
linguistic source, e.g. a database (Reiter and Dale 2000;
Krahmer, van Erk, and Verleg 2003; Krahmer and van
Deemter 2012). Towards a better understanding of this prob-
lem, we investigate the complexity of deciding the existence
of an RE for an individual within a given language and sig-
nature and with respect to an ontology. The signature al-
lows the user to specify the features of interest for describ-
ing an object, and by deciding this problem it can be deter-
mined whether alternative characterisations of an individual
are available. For example, consider the following ALCOιu
ontology O, about KR events held between 2018 and 2020:

KRConf ≡ {kr18, kr19, kr20},
KRWork ≡ {dl18, dl19, dl20},
KREvent ≡ KRConf t KRWork,

{kr19} v ⊥, {kr18} ≡ ∃hasRC.>,
{dl18, kr18, dl19, kr20} ≡ ∃hasPCM.{ι∃isGCof.{dl20}},

{kr20, dl20} ≡ ∃hasLoc.VirtualLoc.

The first three CIs define, respectively, the concepts of KR
Conference, Workshop and Event, while the next two state,
respectively, that ‘KR 2019’ does not denote, and that KR
2018 is the one and only object that has a Registration
Chair. The subsequent CI asserts that the KR events hav-
ing as PC Member the General Chair of DL 2020 are ex-
actly DL 2018, KR 2018, DL 2019 and KR 2020. Finally,
the last one expresses that the objects having a virtual lo-
cation are exactly KR 2020 and DL 2020. Focussing on
location-based characterisations of KR events, the nominal
{kr20} has an ELO RE in terms of the signature Σ1 =
{KRConf, hasLoc,VirtualLoc}, since

O |= {kr20} ≡ KRConf u ∃hasLoc.VirtualLoc,

whereas there is no RE for {kr20} in any language if we con-
sider the signature Σ2 = {KREvent, hasLoc,VirtualLoc}.
If we instead choose to refer to KR events in light of their
organising members, we have that {kr20} has no RE un-
der Σ3 = {KRConf, hasPCM, isGCof, dl20}, while it can
be described in ALCOιu (but not in ELOιu) in terms of
Σ4 = {KRConf, hasRC, hasPCM, isGCof, dl20}, since it is
equivalent under O to the ALCOιu concept

KRConf u ∃hasPCM.{ι∃isGCof.{dl20}} u ¬∃hasRC.>.

We show that deciding the existence of REs is
2EXPTIME-complete if the ontology and the RE are both
in ALCOιu. The problem is in PTIME if the ontology and
the RE are both in ELOιu, under the additional assumption
that the individual name one aims to describe denotes in ev-
ery model of the ontology. Without this assumption, the
complexity remains open. If FO expressions are allowed
as REs, the first problem becomes EXPTIME-complete and
the latter is still in PTIME, because of the projective Beth
definability property (Beth 1956; Chang and Keisler 1990)
of FO, also on partial interpretations, and because reason-
ing in ALCOιu and ELOιu are EXPTIME- and, respectively,
PTIME-complete. In this case, for ELOιu, no restriction is
needed regarding the denotation of the individual name. If
instead the ontology is in ALCOιu (even ALCO), but one
asks for an ELOιu RE, the problem becomes undecidable.

Finally, we compare our framework to the positive and
negative semantics for free DLs proposed by Neuhaus, Kutz,
and Righetti (2020), based on dual-domain interpretations.
For both these semantics, we provide a polynomial time re-
duction to reasoning in ALCOιu on partial interpretations.

Detailed proofs are provided in the full version (Artale et
al. 2021a).

2 Free Description Logics
We introduce basic notions for free DLs (with definite
descriptions) by presenting the syntax and semantics of
ALCOιu, which we define as a free DL based on the classical
ALCOu (Baader et al. 2003), and other related languages.

2.1 Syntax
Let NC, NR and NI be countably infinite and pairwise disjoint
sets of concept names, role names, and individual names,
respectively. The ALCOιu terms τ and concepts C are con-
structed by mutual induction as follows:

τ ::= a | ιC, C ::= A | {τ} | ¬C | (C uC) | ∃r.C | ∃u.C,

where a ∈ NI, A ∈ NC, r ∈ NR, and u is the universal
role. A term of the form ιC is called a definite description,
with the concept C being the body of ιC, and a concept {τ}
is called a (term) nominal. An ALCOιu axiom is either an
ALCOιu concept inclusion (CI) of the form (C v D) or an
ALCOιu assertion of the formC(τ) or r(τ1, τ2), whereC,D
are concepts, r ∈ NR, and τ, τ1, τ2 are terms. An ALCOιu
ontology O is a finite set of CIs and assertions.

All the usual syntactic abbreviations and conventions are
assumed. In particular, for concepts, we set ⊥ = A u ¬A,
> = ¬⊥, C t D = ¬(¬C u ¬D), C ⇒ D = ¬C t D,
and ∀s.C = ¬∃s.¬C, with s ∈ NR ∪ {u}, while a concept
equivalence (CE) C ≡ D abbreviates C v D,D v C.

In the rest of this paper, we will consider other DL lan-
guages with nominals, that we introduce briefly here. We
define the classical ALCO as ALCOιu without neither defi-
nite descriptions nor the universal role, while ALCOι and
ALCOu are defined as ALCO with the addition of ei-
ther definite descriptions or the universal role, respectively.
Moreover, the language ELOιu is obtained from ALCOιu by
allowing only for ⊥, > (considered now as primitive logical
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symbols), concept names, term nominals, conjunctions and
existential restrictions. Finally, ELO, ELOι and ELOu are
similarly defined sublanguages of ELOιu.

Given a DL L, the signature of an L ontology O, ΣO, is
the set of all concept, role and individual names occurring in
O, while con(O) is the set of all subconcepts occurring in
O. For a signature Σ ⊆ NC ∪NR ∪NI, an L(Σ) ontology O
is an L ontology such that ΣO ⊆ Σ (analogous notions are
given for L concepts, where in particular con(C) is the set
of subconcepts occurring in C).

2.2 Semantics
For the DL languages with nominals considered in this work,
we generalise their semantics through the notion of par-
tial interpretation. A partial interpretation is a pair I =
(∆I , ·I), where ∆I is a non-empty set, called domain of I,
and ·I is a function that maps every A ∈ NC to a subset of
∆I , every r ∈ NR to a subset of ∆I×∆I , the universal role
u to the set ∆I ×∆I itself, and every a in a subset of NI to
an element in ∆I . In other words, ·I is a total function on
NC ∪ NR and a partial function on NI. A total interpretation
is a partial interpretation I = (∆I , ·I) in which ·I is also
total on NI. The value τI of a term τ in I and the extension
CI of a concept C in I are defined by mutual induction:

(ιC)I =

{
d, if CI = {d}, for some d ∈ ∆I ;

undefined, otherwise.

We say that τ denotes in I iff τI = d, for a d ∈ ∆I . Thus,
in particular, an individual name a denotes in I iff aI is
defined. In addition, where s ∈ NR ∪ {u}:

(¬C)I = ∆I \ CI , (C uD)I = CI ∩DI ,
(∃s.C)I = {d ∈ ∆I | ∃e ∈ CI : (d, e) ∈ sI}.

Moreover, we set {τ}I = {τI}, if τ denotes in I, and
{τ}I = ∅, otherwise.

A concept C is satisfied in I iff CI 6= ∅, and it is satisfi-
able iff there is a partial interpretation in which it is satisfied.
Given an axiom α ∈ O, the satisfaction of α in I, written
I |= α, is defined as follows:

I |= C v D iff CI ⊆ DI ,
I |= C(τ) iff τ denotes in I and τI ∈ CI ,

I |= r(τ1, τ2) iff τ1, τ2 denote in I and (τI1 , τ
I
2 ) ∈ rI .

We say thatO is satisfied in a partial interpretation I (or that
I satisfies, or is a model of, O), written I |= O, iff I |= α,
for every α ∈ O, and it is satisfiable iff it is satisfied in some
partial interpretation. A concept C is satisfiable w.r.t. an on-
tology O if both C and O are satisfied in some partial inter-
pretation. Moreover, O entails an axiom α, written O |= α,
if every partial interpretation that satisfiesO satisfies also α.
Finally, we say that an ontology O′ is a conservative exten-
sion of an ontology O if every model of O′ is a model of O,
and every model of O can be turned into a model of O′ by
modifying the interpretation of symbols in ΣO′ \ΣO, while
keeping fixed the interpretation of symbols in ΣO. We also
consider these notions for total (that is, classical) interpreta-
tions and write ‘on total interpretations’ explicitly whenever
this is the case.

2.3 Basic Properties
We discuss some properties of free DLs, where L ∈
{ALCOιu, ELO

ι
u} in the following.

(1) An L term τ denotes in a partial interpretation I iff
I |= > v ∃u.{τ}. Furthermore, an L ontology O entails
> v ∃u.{τ} iff O |= >(τ) and this happens iff τ denotes
in all the partial interpretations that are models of O. We
say that an individual name a denotes w.r.t. an ontologyO if
O |= > v ∃u.{a}. By adding such a CI to an ontology for
each individual name occurring in it, we immediately obtain
that the L ontology satisfiability and entailment problems
on total interpretations can be reduced in polynomial time to
the corresponding problems on partial interpretations. The
converse polynomial time reduction can be defined by sub-
stituting every individual name a occurring in an ontology
or axiom with a fresh concept name Ba, and adding the CI
Ba v {ba}, for a fresh individual name ba.

(2) On partial interpretations, an L assertion C(τ) is not
equivalent to {τ} v C. Indeed, while terms occurring in
assertions are forced by the semantics to always denote, the
CI {τ} v C is satisfied in any partial interpretation where
τ is not denoting. Nevertheless, assertions are just syntactic
sugar. One can replace
• C(τ) by {τ} v C, > v ∃u.{τ}; and
• r(τ1, τ2) by {τ1} v ∃r.{τ2}, > v ∃u.{τ1}.
This encoding yields an equivalent ontology. Thus, from
now on, we may assume w.l.o.g. that L ontologies do not
contain assertions.

(3) For every L ontology O, concept C and term τ , we
have that O |= {τ} ≡ C implies O |= {τ} ≡ {ιC}. In
ELOιu, under the assumption that an ELOιu term τ denotes
in every model of an ELOιu ontology O, we also have the
following, for every ELOιu concept C: if O |= {τ} ≡ C,
then O |= {τ} ≡ C ′, where C ′ is obtained from C by sub-
stituting every {ιD} occurring in C with the concept D.

(4) Given an L ontology O, we can obtain a conservative
extension O of O in flattened form, that is, such that all oc-
currences of definite descriptions in O are of the form ιB,
where B is a concept name. Indeed, let ιC1, . . . , ιCn be all
the definite descriptions in O that do not occur in the body
of another definite description ιC ′. We define O as

O′ ∪
⋃

1≤i≤n

{BCi ≡ Ci},

where O′ is obtained from O by substituting the bod-
ies C1, . . . , Cn of ιC1, . . . , ιCn with fresh concept names
BC1

, . . . , BCn , respectively, and {BCi ≡ Ci} is the ontol-
ogy obtained by recursively applying the procedure just de-
scribed to the ontology {BCi ≡ Ci}.

3 Reasoning in Free DLs
We study the complexity of reasoning inALCOιu and ELOιu.

3.1 Satisfiability in ALCOιu
We prove that satisfiability in ALCOιu is EXPTIME-
complete. To show this result, we provide a polynomial size
equisatisfiable translation into ALCOu.
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An ALCOιu ontology O is in normal form if it is in flat-
tened form and all the CIs inO are either of the formE v F ,
where E,F are ALCu (i.e., ALC with the universal role)
concepts, or {τ} v A, or A v {τ}, with A ∈ NC. It can be
seen that an ALCOιu ontology can be transformed in poly-
nomial time into anALCOιu ontology in normal form that is
a conservative extension of the original.

We now define a translation of an ALCOιu ontology O
in normal form into an ALCOu ontology O†. While the
translation preserves symbols in NC ∪NR, nominals {τ} are
translated as follows:

{τ}† = {τ}+ u C≤1
τ ,

where: {τ}+ = Ab, with fresh Ab ∈ NC, if τ = b ∈ NI;
{τ}+ = B, if τ = ιB, with B ∈ NC; and C≤1

τ stands for
the concept ∀u.({τ}+ ⇒ {aτ}), with fresh aτ ∈ NI. We
now define

(E v F )† = E v F,

({τ} v A)† = {τ}† v A, (A v {τ})† = A v {τ}†,
where E,F are ALCu (i.e., ALC with the universal role)
concepts, and A is a concept name. Finally, we set O† as⋃
CvD∈O

{(C v D)†} ∪
⋃

{τ}∈con(O)

{{τ}+ v ∀u.({aτ} ⇒ {τ}+)}.

We then obtain the following.

Lemma 1. An ALCOιu ontology O in normal form is sat-
isfiable iff the ALCOu ontology O† is satisfiable on total
interpretations.

It follows from a result in Propositional Dynamic Logic
extended with nominals and the universal modality (Passy
and Tinchev 1991, Corollary 7.7) that the ALCOu ontology
satisfiability problem on total interpretations is in EXPTIME.
The matching lower bound comes from the ALC ontology
satisfiability problem on total interpretations (Gabbay et al.
2003). Since the ALCOιu ontology satisfiability problem on
total interpretations is reducible in polynomial time to its
counterpart on partial interpretations (cf. Point (1) in Sec-
tion 2.3), the following holds.

Theorem 2. ALCOιu ontology satisfiability (both on partial
and total interpretations) is EXPTIME-complete.

The reduction we presented can be easily adapted to deal
with more expressive DLs, e.g. extensions of ALCOιu with
inverse roles and number restrictions.

3.2 Reasoning in ELOιu
We prove that entailment in ELOιu ontologies is PTIME-
complete. To show this result, we assume w.l.o.g. that the
assertions are encoded within the CIs in the ontology (cf.
Point (2) in Section 2.3) and adapt the completion algorithm
for ELO ontologies (Baader, Brandt, and Lutz 2005). The
main idea is to add a copy of each concept name in an on-
tology and remove it only if its extension is a singleton in
any model. Even though ELOιu admits a mild form of dis-
junction ({ιA} v B states that the extension of A contains
at least two elements or A v B), the logic remains ‘Horn’

in the sense that (if an ontology is satisfiable, then) minimal
models exist.

Any ELOιu ontology can be converted in polynomial time
into a conservative extension in normal form, that is, an
ELOιu ontology O in flattened form where all CIs have one
of the following forms:

C1 u C2 v D, ∃r.C v D, C v ∃r.D, {τ} v D, C v {τ},
where C(i) ∈ NC ∪ {>}, D ∈ NC ∪ {>,⊥} and all terms τ
in O are either of the form {a}, with a ∈ NI, or of the form
{ιA}, with A ∈ NC.

Let O be in normal form. We denote by BCO the union
of {>}, the set of all concept names occurring in O, and the
set of all concepts {a} ∈ con(O). Also, we denote by BC+

O
the union of BCO with {⊥} ∪ {{ιA} | {ιA} ∈ con(O)}
and byRO the set including u and the role names occurring
in O. Given A,B ∈ NC, we may write A v B instead of
A u A v B. If {ιA} ∈ con(O), we assume w.l.o.g. that
{ιA} v A ∈ O. Moreover, we write A to denote a concept
name which we aim at checking whether O |= A v B (see
Lemma 3 and Table 1). The classification graph for O and
A is a tuple (V, S,R) where
• V = BCO∪{Ac | A ∈ (BCO∩NC)}, with eachAc ∈ NC

fresh;
• S is a function mapping nodes in V to subsets of BC+

O ;
• R is a function mapping edges in V × V to (possibly

empty) subsets ofRO, where r is inRO.
Intuitively, a concept name of the form Ac represents a sec-
ond element in the extension of A, and it is removed from
the classification graph if A has at most one object in its
extension. Initially, we set S(C) := {C,>}, for all nodes
C ∈ V , andR(C,D) := ∅, for all edges (C,D) ∈ (V ×V ).
If C ∈ V \ BCO is of the form Ac, with A ∈ NC, then we
add A to S(Ac). Given C,D ∈ BCO, we write C ;R D
iff there are C1, . . . , Ck ∈ BCO such that C1 ∈ S(C);
r ∈ R(Cj , Cj+1), for some r ∈ RO, for all 1 ≤ j < k;
D ∈ S(Ck). The completion rules are given in Table 1.
Assume that rules are only applied if S or R or V change
after the rule application. This bounds the number of rule
applications to a polynomial in the number of concept and
role names in O. Thus, the resulting completed classifica-
tion graph forO can be constructed in polynomial time with
respect to the size of O.
Lemma 3. Given an ELOιu ontology O in normal form, let
S be the node function of a completed classification graph
for O (cf. rules in Table 1), A ∈ NC and B ∈ BCO ∪ {⊥}.
Then, O |= A v B iff S(A) ∩ {B,⊥} 6= ∅.

Thanks to Lemma 3, given arbitrary ELOιu concepts C,D
and an ELOιu ontology O, one can decide in polynomial
time whether C v D is entailed by O by adding A ≡ C
and B ≡ D to O, converting it in normal form, and then
checking whether S(A)∩{B,⊥} 6= ∅, where A, B are fresh
concept names. As an immediate consequence of Lemma 3
and the polynomial size of a completed classification graph
we obtain the following complexity result.
Theorem 4. Entailment in ELOιu (both on partial and total
interpretations) is PTIME-complete.
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if then
R1: C uD v B ∈ O, C,D ∈ S(E) add B to S(E)
R2: A ;R E, C v ∃r.D ∈ O, C ∈ S(E) add r to R(E,D), R(Ec, D)
R3: ∃r.C v D ∈ O, C ∈ S(B), r ∈ R(E,B) add D to S(E)
R′3: ∃u.C v D ∈ O, A ;R C, E ∈ V add D to S(E)
R4: {τ} ∈ S(E) ∩ S(D), A ;R D; S(E) := S(E) ∪ S(D)
R5: r ∈ R(E,D), ⊥ ∈ S(D) add ⊥ to S(E)
R6: {τ} v D ∈ O, {τ} ∈ S(E) add D to S(E)
R7: C v {τ} ∈ O, C ∈ S(E) add {τ} to S(E)
R8: {τ} ∈ S(B), B ∈ NC V := V \ {Bc}
R9: B ∈ S(E), Bc 6∈ V add {ιB} to S(E)
R10: A ;R C, {ιB} ∈ S(C) V := V \ {Bc}

Table 1: Completion rules for subsumption in ELOι
u with respect to ontologies.

The completed classification graph can be used to define
a polynomial size canonical model for an ELOιu ontology (if
it is satisfiable). Let O be in normal form and let (V, S,R)
be the completed classification graph for O and a concept
name A. Consider the following sets:

RA = {C ∈ BCO | A ;R C},
RcA = {Cc ∈ V | C ∈ RA ∩ NC},

over which we define the relation ∼, where

C ∼ D iff C = D or {τ} ∈ S(C) ∩ S(D), for some τ .

It can be seen that ∼ is an equivalence relation, whose equiv-
alence classes are denoted by [C]. Assume ⊥ /∈ S(A) (oth-
erwise, by Lemma 3, no model of O and A exists). The
polynomial size canonical model of O and A is the partial
interpretation IA,O = (∆IA,O , ·IA,O ) such that:

• ∆IA,O = {[C] | C ∈ RA ∪RcA};
• rIA,O = {([C], [D]) ∈ ∆IA,O ×∆IA,O | ∃D′ ∈ [D].r ∈
R(C,D′)}, for all r ∈ NR ∩RO;

• DIA,O = {[C] ∈ ∆IA,O | D ∈ S(C)}, for all D ∈ NC;

• aIA,O = [C], for some C ∈ RA, if {a} ∈ S(C), for all
a ∈ NI.

We are now ready to state the main property of the canon-
ical model, used in Section 5.

Theorem 5. Let O be an ELOιu ontology in normal form
and A a concept name satisfiable w.r.t. O. Then [A] ∈ CIA,O
iff O |= A v C, for every ELOu concept C.

We note that the equivalence is stated for ELOu concepts
and not for ELOιu concepts. In fact, it is an interesting open
problem whether polynomial size canonical models exist
that satisfy the equivalence for ELOιu concepts.

4 Bisimulations and Expressive Power
Here we discuss the expressive power of free DLs. In
particular, we define a notion of bisimulation for ALCOιu
that we use to characterise the expressive power of con-
cepts relative to FO formulas interpreted on partial in-
terpretations. The definitions are standard in the litera-
ture (Areces, Blackburn, and Marx 2001; ten Cate 2005;

Lutz, Piro, and Wolter 2011), but have to be adapted to par-
tial interpretations and definite descriptions.

Let I and J be partial interpretations, and let Σ be a sig-
nature. An ALCO(Σ) bisimulation between I and J is a
relation Z ⊆ ∆I × ∆J such that, for every d ∈ ∆I and
e ∈ ∆J with (d, e) ∈ Z, every concept name or nomi-
nal X formulated within Σ, and every role name r in Σ:
(atom) d ∈ XI iff e ∈ XJ ; (forth) if (d, d′) ∈ rI then
there is e′ ∈ ∆J such that (e, e′) ∈ rJ and (d′, e′) ∈ Z;
and (back) if (e, e′) ∈ rJ then there is d′ ∈ ∆I such that
(d, d′) ∈ rI and (d′, e′) ∈ Z. For pointed partial interpre-
tations (I, d) and (J , e), we say that (I, d) is ALCO(Σ)
bisimilar to (J , e) and write (I, d) ∼ALCOΣ (J , e) if there
is an ALCO(Σ) bisimulation Z between I and J such that
(d, e) ∈ Z. ALCO(Σ) bisimulations characterise the ex-
pressive power of ALCO(Σ) concepts in the sense that an
FO formula ϕ is preserved under ALCO(Σ) bisimulations
iff it is equivalent to an ALCO(Σ) concept. To characterise
ALCOιu(Σ) we add a condition that reflects its ability to
count up to one and also add totality conditions that reflect
the addition of the universal role.

An ALCOιu(Σ) bisimulation Z between I and J is an
ALCO(Σ) bisimulation that is total, meaning that ∆I and
∆J are the domain and range of the relation, and that satis-
fies, for all (d, e) ∈ Z:

(ι) there exists d′ ∈ ∆I such that d 6= d′ and
(I, d) ∼ALCOΣ (I, d′) iff there exists e′ ∈ ∆J such
that e′ 6= e and (J , e) ∼ALCOΣ (J , e′).

We write (I, d) ∼ALCOιuΣ (J , e) if there exists an
ALCOιu(Σ) bisimulation Z between I and J containing
(d, e), and we write (I, d) ≡ALCOιuΣ (J , e) if d ∈ CI iff e ∈
CJ , for all ALCOιu(Σ) concepts C. The definition of ω-
saturated partial interpretation is the obvious generalisation
of that one for total interpretations (Chang and Keisler 1990;
Artale et al. 2021a).

Theorem 6. For all signatures Σ and all pointed partial
interpretations (I, d) and (J , e),

1. if (I, d) ∼ALCOιuΣ (J , e), then (I, d) ≡ALCOιuΣ (J , e);
2. if (I, d) ≡ALCOιΣ (J , e) and I,J are ω-saturated, then

(I, d) ∼ALCOιΣ (J , e).
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The following example illustrates how bisimulations can
be used to prove the inexpressibility of certain concepts.
Example 1. The concept C = ∃u.{ιA} states that the ex-
tension ofA has cardinality one, that is d ∈ CI iff |AI | = 1,
for any interpretation I and d ∈ ∆I . The concept D =
∃u.(A u ¬{ιA}) is such that d ∈ DI iff |AI | ≥ 2, hence it
states that A has cardinality greater or equal to two. How-
ever, there is no ALCOιu concept stating that the extension
of A has cardinality two: the pointed interpretations (I, d)
and (J , e) depicted below areALCOιu({A})-bisimilar (wit-
nessed by Z = ∆I ×∆J ), but |AI | = 2 < |AJ |.

I
AAd

J
Ae A A

We next state thatALCOιu is the fragment of FO on partial
interpretations that is invariant underALCOιu-bisimulations.
The standard translation of an ALCOιu concept C into an
FO formula πx(C) with one free variable x is defined as
expected, where for nominals of the form {ιC} we set:

πx({ιC}) = ∃xπx(C) ∧ ∀x∀y(πx(C) ∧ πy(C)→ x = y)

∧ ∀y(πy(C)→ x = y).

An FO formula ϕ(x) is invariant under ∼ALCOιuΣ iff, for ev-
ery (I, d) and (J , e) such that (I, d) ∼ALCOιuΣ (J , e), we
have I |= ϕ(d) iff J |= ϕ(e).
Theorem 7. Let Σ be a signature, and let ϕ(x) a first-order
formula such that Σϕ(x) ⊆ Σ. The following conditions are
equivalent:

1. there exists an ALCOιu(Σ) concept C such that πx(C) is
logically equivalent to ϕ(x);

2. ϕ(x) is invariant under ∼ALCOιuΣ .
We next consider ELOιu. In contrast toALCOιu, we do not

have a model-characterisation of ELOιu that generalises the
one for EL (Lutz and Wolter 2010; Lutz, Piro, and Wolter
2011). The fundamental problem is to constrain simulations
(the basic notion used to characterise EL) in such a way that
they capture the expressivity of ELOιu concepts.

To obtain preliminary results on ELOιu REs in the next
section, we remind the reader of the standard simulations
between interpretations and how they characterise ELOu. A
relation Z ⊆ ∆I ×∆J is an ELO(Σ) simulation from I to
J iff it satisfies (atomR), i.e., the ‘only if’ direction of the
Condition (atom), and the Condition (forth) given above. An
ELOu(Σ) simulation from I to J is an ELO(Σ) simulation
from I to J that is left total, meaning that ∆I is the domain
of the relation. We write (I, d) ≤ELOuΣ (J , e) if there exists
an ELOu(Σ) simulation Z from I to J with (d, e) ∈ Z.
Given a DL L, a partial interpretation I with d ∈ ∆I , and a
signature Σ, we call the L(Σ) type of d in I the set tIL(Σ)(d)

of L(Σ) concepts C such that d ∈ CI .
Theorem 8. For all signatures Σ and all partial pointed
interpretations (I, d) and (J , e),

1. if (I, d) ≤ELOuΣ (J , e), then tIELOu(Σ)(d)⊆ tJELOu(Σ)(e);

2. if tIELOu(Σ)(d) ⊆ tJELOu(Σ)(e) and J is ω-saturated, then
(I, d) ≤ELOuΣ (J , e).

5 Existence of Referring Expressions
One of the main motivations for enriching DLs with defi-
nite descriptions comes from the observation that individ-
ual names used in databases, ontologies, or other forms of
KBs, are very often completely meaningless to the human
user (Borgida, Toman, and Weddell 2016b). Introducing se-
mantically meaningful referring expressions (REs) in addi-
tion to individual names via ontologies enables a more infor-
mative naming of individuals, and thus a more user-friendly
modelling of domains. In this section, we address the prob-
lem of providing support for the generation of such expres-
sions for individual names that occur in an ontology. Thus,
for an individual name a and an ontology O, the goal is to
support the generation of a concept C so that

O |= {a} ≡ C,

if such a concept exists. One can then replace a by ιC in the
ontology or add an explicit definition of {a} to the ontology
and possibly remove other inclusions that become redundant
(see (ten Cate et al. 2006; ten Cate, Franconi, and Seylan
2013) for this approach applied to concept names rather than
individual names). Other than being used to improve an on-
tology, REs may also be regarded as answer to queries about
individuals (Borgida, Toman, and Weddell 2016b).

To support the targeted generation of REs, we consider
two types of restrictions on C: (i) the restriction of the sig-
nature of C to some subset Σ of the signature of O; and (ii)
restrictions on the DL constructors used in C. As an initial
step, we focus on the DLs introduced in this paper and on
the complexity of deciding the existence of an RE. We also
discuss briefly what happens if one admits FO formulas as
REs. The algorithm deciding the existence of REs can then
inform the development of a generating algorithm for REs,
although this is beyond the scope of the present contribution.

Formally, given a pair (L,LR) of logics, (L,LR) RE ex-
istence is the problem of deciding, for an L ontology O, an
individual name a, and a signature Σ, whether a is explicitly
LR(Σ) definable under O, that is, whether there exists an
LR(Σ) concept C such that O |= {a} ≡ C. If LR = FO,
then we ask whether there is an FO formula ϕ(x) over Σ
such that O |= ∀x((x = a) ↔ ϕ(x)). Such a concept or
formula is called an LR(Σ) RE for a under O. If L = LR,
then we simply speak of L RE existence.

Theorem 9. On partial and total interpretations:

1. (ALCOιu,FO) RE existence is EXPTIME-complete;
2. (ELOιu,FO) RE existence is in PTIME;
3. ALCOιu RE existence is 2EXPTIME-complete;
4. (ALCOιu, ELO

ι
u) RE existence is undecidable;

5. ELOιu RE existence is in PTIME, for individuals a that
denote w.r.t. the ontology.

We first comment on Points (1) and (2), which are con-
sequences of the fact that FO has the projective Beth de-
finability property on total and partial interpretations, and
the EXPTIME and PTIME upper bounds for reasoning in
ALCOιu and ELOιu, respectively. In detail, we say that an
individual name a is implicitly definable from a signature
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Σ under an ontology O if for all (partial or total, respec-
tively) models I and J of O such that ∆I = ∆J and
XI = XJ , for all X ∈ Σ, we have aI = aJ . Clearly, if
a is explicitly L(Σ)-definable under O, then it is implicitly
definable from Σ under O. We say that L has the projec-
tive Beth definability property (PBDP) for individuals if the
converse holds. FO is known to have the PBDP for individ-
uals (and, in fact, for arbitrary relations) under total inter-
pretations (Chang and Keisler 1990). It is straightforward to
extend the model-theoretic proof given, e.g., in (Chang and
Keisler 1990) to show that FO enjoys the PBDP for individ-
uals (and, again, arbitrary relations) under partial interpreta-
tions as well. From an algorithmic viewpoint, the PBDP is
important because it implies that explicit definability can be
checked using implicit definability, and the latter reduces to
a standard reasoning problem: a is implicitly definable from
Σ under O iff O ∪O′ |= {a} ≡ {a′}, where O′ is obtained
from O by uniformly substituting every symbol X not in Σ
by a fresh symbol X ′. We thus proved Points (1) and (2).

FO is arguably too expressive as a language for REs for
individuals in DL ontologies, and Points (3) to (5) address
the problem of finding REs within the DLs considered in this
paper. Unfortunately, ALCOιu does not enjoy the PBDP for
individuals.

Example 2. Let Σ = {A, r} and assume that O consists of
the following CIs:

{a} v ∃r.{a},
¬{a} uA v ∀r.(¬{a} ⇒ ¬A),

¬{a} u ¬A v ∀r.(¬{a} ⇒ A).

Then a is implicitly definable from Σ under O since O |=
∀x((x = a) ↔ r(x, x)). However, the figure depicted be-
low (for which we assume aI = a) shows a model I of O
such that (I, aI) ∼ALCOιuΣ (I, e), with e 6= aI . Thus, any
ALCOιu(Σ) concept that applies to aI applies to e in I and
so a cannot be explicitly ALCOιu(Σ) definable under O.

I

a

AA

e
r

r

r

We now come to the proof of (3). We adapt the proof
given in (Artale et al. 2021b) that RE existence in ALCOu
is 2EXPTIME-complete. The proof is based on the bisim-
ulation characterisation given in the previous section. The
changes required to the proof in (Artale et al. 2021b) are
subtle and non-trivial, however, as one now has to take care
of the Condition (ι) for definite descriptions. Assume O, Σ,
and an individual a are given. Then we say that O, {a} and
O,¬{a} are jointly consistent modulo ALCOιu(Σ) bisimu-
lations iff there exist models I andJ ofO and e ∈ ∆J such
that e 6= aJ and (I, aI) ∼ALCOιuΣ (J , e). Example 2 above
illustrates this definition. The following lemma reduces the
RE existence problem to the problem of deciding the com-
plement of joint consistency modulo ALCOιu(Σ) bisimula-
tions.

Lemma 10. Let O be an ALCOιu ontology, a an individual
name, and Σ a signature. Then the following conditions are
equivalent:

1. there exists an ALCOιu(Σ) RE for a under O;
2. O, {a} and O,¬{a} are not jointly consistent modulo
ALCOιu(Σ) bisimulations.

The following lemma states the main technical result from
which Point (3) follows.

Lemma 11. For ALCOιu ontologies O, signatures Σ, and
individual names a, joint consistency ofO, {a} andO,¬{a}
modulo ALCOιu(Σ)-bisimulations is 2EXPTIME-complete.
The lower bound holds already if a is the only individual
name in O.

Sketch. The proof of the upper bound is mosaic-based,
where mosaics are pairs (T1, T2) of sets T1 and T2 of O-
types such that there exist models I1 and I2 of O and nodes
dt, t ∈ Ti, realising t in Ii, i = 1, 2, such that all pairs dt, dt′
with t, t′ ∈ T1 ∪ T2 are ALCOιu(Σ) bisimilar. The maxi-
mal sets of such pairs that can make up the types realised in
models I1, I2 can be enumerated in double exponential time
by formulating appropriate constraints and employing a re-
cursive elimination procedure. These constraints have to be
extended significantly compared to (Artale et al. 2021b) to
deal with the cardinality constraints imposed by definite de-
scriptions. The lower bound can be proved by adapting the
lower bound proof for ALCOu in (Artale et al. 2021b).

To show Point (4), we make use of a recent undecidabil-
ity proof in the context of conjunctive query inseparability
of ALC KBs given in (Botoeva et al. 2019). In that paper it
is shown that it is undecidable whether twoALC KBs entail
the same conjunctive queries. To this end, an ALC ontol-
ogy O1, an EL-ontology O2, a signature Σ consisting of
concept and role names, and a single individual name a are
constructed such that it is undecidable whether

O1 ∪ {r(a, a)} |= C(a) ⇒ O2 ∪ {r(a, a)} |= C(a)

for all EL(Σ) concepts C. It turns out that only concepts C
of a particular form are relevant. In our reduction we cre-
ate an ALCO ontology O by taking the union of relativized
versions ofO1 andO2 and two individuals a and b such that
the relativization of O1 acts on a and the relativization of
O2 on b. We add a fresh concept name Da,b to Σ and add
Da,b ≡ {a} t {b} to O. Then the set {a, b} is trivially ex-
plicitly definable using an EL(Σ) concept under O and so a
is explicitly definable using an ELOιu(Σ) concept under O
iff it can be distinguished from b using an ELOιu(Σ) con-
cept in the sense that O |= C(a) and O |= ¬C(a). The
undecidability of a weaker form of distinguishability (does
there exist an ELOιu(Σ) concept such that O |= C(a) and
O 6|= C(a)?) is immediate. To achieve undecidability of the
stronger form of indistinguishability we add further inclu-
sions to O that make subtle use of the form of the relevant
concepts C.

We come to the proof of Point (5). It has already been
observed in Point (3) of Section 2.3 that for every ELOιu
ontology O, Σ ⊆ ΣO, and individual name a that denotes
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w.r.t.O, there exists an ELOu(Σ) RE for a underO iff there
exists an ELOιu(Σ) RE for a under O. Thus, as we assume
in Point (5) that a denotes w.r.t. the ontology, it suffices
to decide the existence of ELOu(Σ) REs. In fact, one can
use Theorem 5 and the simulation characterisation of ELOu
concepts given in Lemma 8 to prove the following charac-
terisation of the existence of REs.
Lemma 12. Given a signature Σ and an ELOιu ontology
O = O0 ∪ {A ≡ {a}}, where O0 is an ELOιu ontology in
normal form, A is a concept name satisfiable w.r.t. O, and a
is an individual name, the following are equivalent:

1. there does not exist an ELOu(Σ) RE for a under O;
2. there exist a model J of O and e ∈ ∆J such that

(IA,O, aIA,O ) ≤ELOuΣ (J , e) and e 6= aJ .

Condition (2) of Lemma 12 can be checked in polynomial
time in the size of O (Artale et al. 2021a). Thus, to show
Point (5), it suffices to recall that every ELOιu ontology can
be transformed in polynomial time into a ELOιu ontology
in normal form that is a conservative extension of the orig-
inal ontology, and observe that the existence of an RE over
a subset of the signature of an ontology is invariant under
replacing the ontology by a conservative extension.

The complexity of RE existence remains open if we do
not assume the individual a denotes (of course, if we as-
sume total interpretations, this is trivially the case). We note
that a PTIME upper bound cannot be shown via the PBDP:
while EL enjoys the PBDP (Lutz, Seylan, and Wolter 2019),
neither ELOι nor ELOιu enjoy the PBDP for individuals on
partial interpretations. To show this for ELOιu one can use
an example provided in (Fortin, Konev, and Wolter 2021).
The following example shows that ELOι does not enjoy the
PBDP for individuals on partial interpretations.
Example 3. Let Σ = {b, B} and O be the ELOι ontology:

{a} v {b}, {a} v ∃r.B, B v ∃s.{a}.

On partial interpretations, a is implicitly definable from Σ
under O, since O |= {a} ≡ {b} u ∃u.B. However, a is not
ELOι(Σ) explicitly definable underO, as shown by the par-
tial interpretations I,J that are models of O in the figure
below, where we assume aI = b, aJ undefined, bI = b, and
bJ = b. Non ELOι(Σ) explicit definability follows from
the observation that b satisfies exactly the same ELOι(Σ)
concepts in I and in J (namely {b}).

I
bB

r

s

J
b

6 Free DLs with Dual-Domain Semantics
Free logics deal with terms that might fail to denote any exis-
tent object. Semantically, they need to address the following
issues: (i) the formal distinction between existent and non-
existent objects; (ii) the truth of atomic formulas involving
terms that do not refer to existent objects. Concerning (i),
the two main options are the so-called single-domain and

dual-domain semantics. Single-domain semantics are based
on interpretations with a unique domain of objects, repre-
senting the set of things that possibly exist. Dual-domain
semantics introduce instead interpretations based on two do-
mains of objects: the outer domain, representing the set of
all possible things; and the inner domain, a subset of the
outer domain over which quantifiers are allowed to range,
containing only those objects that actually exist. Concerning
(ii), three of the most prominent options are the so-called
positive, negative and neutral (or gapped) semantics. Posi-
tive semantics allow atomic formulas with terms that refer to
non-existent objects to be possibly true. Negative semantics
require all atomic formulas with terms denoting non-existent
objects, or non-denoting at all, to be false by default. Neu-
tral semantics introduce a truth-value gap for such formulas,
so that their truth value is left undefined (Nolt 2020).

While partial interpretations are a kind of single-domain
negative semantics, Neuhaus, Kutz, and Righetti (2020) con-
sider free DLs with nominals over dual-domain interpre-
tations, presenting a positive, a negative and a gapped se-
mantics. This approach naturally fits scenarios where ob-
jects of the domain can start or cease to exist, as frequently
considered in first-order modal and temporal logics (Gar-
son 2001; Gabbay et al. 2003; Braüner and Ghilardi 2007;
Fitting and Mendelsohn 2012; Garson 2013). Moreover, a
positive semantics allows one to avoid inconsistencies when
reasoning in presence of data sources that contradict the on-
tology, a motivation shared also by inconsistency-tolerant
DLs (Lembo et al. 2010; Lembo et al. 2015), by represent-
ing “error” individuals as non-existent objects.

To show how the dual-domain semantics can be captured
in our framework, we present the logic ALCOι∗ (Neuhaus,
Kutz, and Righetti 2020), defined similarly to ALCOι, with
the addition of T as a concept name representing the set of
existing objects. Moreover, an ALCOι∗ assertion is of the
form C(τ), r(τ1, τ2), or τ1 = τ2, with C an ALCOι∗ con-
cept, r ∈ NR, and τ, τ1, τ2 ALCOι∗ terms. An ALCOι∗
axiom is either anALCOι∗ CI, C v D, with C,D ALCOι∗
concepts, or an ALCOι∗ assertion. An ALCOι∗ formula is
defined inductively as follows, with β ALCOι∗ axiom:

ϕ ::= β | ¬(ϕ) | (ϕ ∧ ϕ).

A dual-domain interpretation is a triple I = (∆I , dI , ·I),
where ∆I is a non-empty set, called outer domain of I , dI ⊂
∆I is a (possibly empty) set called inner domain of I , and
·I is a function mapping every A ∈ NC to a subset of ∆I ,
every r ∈ NR to a subset of ∆I × ∆I , and every a ∈ NI

to an element in ∆I . Given a dual-domain interpretation I ,
the extension CI of an ALCOι∗ concept C in I is defined
similarly to ALCOι, with the exception of:

TI = dI ,

(∃r.C)I = {d ∈ ∆I | ∃e ∈ dI ∩ CI : (d, e) ∈ rI},
while, for a definite description ιC, the value of ιC in I is:

(ιC)I =

{
d, if dI ∩ CI = {d};
dιC , with dιC ∈ ∆I \ dI arbitrary, otherwise.

Moreover, on dual-domain interpretations, we define the ex-
tension of ALCOι∗ nominals as follows: {τ}I = {τ I}.
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Given anALCOι∗ formula ϕ and a dual-domain interpre-
tation I , we inductively define two different kinds of satis-
faction relations between I and ϕ: one under positive se-
mantics, denoted by |=+; and one under negative semantics,
denoted by |=−. In the following, ◦ ∈ {+,−}.

I |=◦ C(τ) iff
{
τ I ∈ CI , if ◦ = +;

τ I ∈ dI and τ I ∈ CI , if ◦ = −;

I |=◦ r(τ1, τ2) iff
{

(τ I1 , τ
I
2 ) ∈ rI , if ◦ = +;

τ I1 , τ
I
2 ∈ dI and (τ I1 , τ

I
2 ) ∈ rI ,

if ◦ = −;

I |=◦ τ1 = τ2 iff
{
τ I1 = τ I2 , if ◦ = +;

τ I1 , τ
I
2 ∈ dI and τ I1 = τ I2 , if ◦ = −;

I |=◦ C v D iff, for all d ∈ dI , d ∈ CI implies d ∈ DI ,

I |=◦ ¬(ψ) iff I 6|=◦ ψ, I |=◦ ψ∧χ iff I |=◦ ψ and I |=◦ χ.
We say that ϕ is satisfiable on dual-domain interpretations
under positive, respectively negative, semantics iff there ex-
ists a dual-domain interpretation I such that I |=+ ϕ, re-
spectively I |=− ϕ.

Differently from classical ALCO on total interpretations
and from ALCOιu on partial interpretations (cf. Point (2)
in Section 2.3), ALCOι∗ assertions under these semantics
cannot be encoded into ALCOι∗ CIs. Moreover, paren-
theses in negated formulas ¬(ϕ) are not eliminable, since
they disambiguate between assertions of the form ¬C(τ),
with a negated concept, and negated assertions of the form
¬(C(τ)). Indeed, these expressions have different satisfac-
tion conditions on dual-domain interpretations under nega-
tive semantics: while ¬C(τ) requires τ I to be an element
of the inner domain in any of its models I , a formula like
¬(C(τ)) is satisfied also in dual-domain interpretations I
where τ I is in the outer, but not in the inner, domain.

We now show that ALCOι∗ satisfiability on dual-domain
interpretations under either positive or negative semantics
is polynomial time reducible to ALCOιu reasoning on par-
tial interpretations. The proof is reminiscent of the one from
first-order modal logic, to reduce varying to constant domain
semantics (Braüner and Ghilardi 2007; Fitting and Mendel-
sohn 2012), in that it exploits an existence concept to repre-
sent the inner domain on partial interpretations.

Theorem 13. ALCOι∗ formula satisfiability on dual do-
main interpretations under either positive or negative se-
mantics is polynomial time reducible to ALCOιu ontology
satisfiability.

Since the gapped semantics allows for truth value gaps, it
is not covered by our setting based on a two-valued seman-
tics. A comparison with this option is left as future work.

7 Related Work
Definite descriptions introduce mild forms of cardinality
constraints, a set of constructors with a long tradition in
DLs (Baader, Buchheit, and Hollunder 1996; Tobies 2000;
Baader and Ecke 2017; Baader and Bortoli 2019; Baader,
Bednarczyk, and Rudolph 2020) that allow to constrain the

number of elements in the extension of a concept. The ex-
pressivity of many of these logics goes far beyond the DLs
proposed here, and novel reasoning tools are required. In
contrast, reasoning in our free DLs can be reduced to reason-
ing in standard DLs (ALCOιu) or mild extensions (ELOιu).

Concerning RE generation tasks, other DL-based ap-
proaches have studied the problem of finding a concept
to describe an element with respect to a single interpreta-
tion given as input (Areces, Koller, and Striegnitz 2008;
Areces, Figueira, and Gorı́n 2011). More expressive DLs,
as well as a relaxed version of the closed-world assump-
tion, are considered in (Ren, van Deemter, and Pan 2010b;
Ren, van Deemter, and Pan 2010a).

REs have also been proposed for several applications in
ontology-based data management, such as query answering
over KBs (Borgida, Toman, and Weddell 2016b; Borgida,
Toman, and Weddell 2017; Toman and Weddell 2019a),
identity resolution in ontology-based data access (Toman
and Weddell 2018; Toman and Weddell 2019b), and identifi-
cation problems in conceptual modelling (Borgida, Toman,
and Weddell 2016a). The DLs considered in these papers are
tractable languages tailored to efficient query answering in
presence of functionality and path-based identification con-
straints. In this approach, DL concepts can serve as REs
under a given KB if they contains exactly one element in
all the models of the KB and satisfy a correctness condi-
tion with respect to a query. They are not, however, directly
treated as possibly non-denoting terms of the language.

Finally, hybrid logics with non-denoting nominals have
not received much attention in the literature, with the excep-
tion of (Hansen 2011) in the context of public announcement
logics. However, formalisms involving definite descriptions
are actively investigated in first-order modal logic (Indrze-
jczak 2018; Orlandelli and Corsi 2018; Indrzejczak 2020),
where the possible lack of referents for names and descrip-
tions is usually paired with non-rigid denotation features,
i.e., the ability to refer to different objects at different states.

8 Discussion
We have introduced DLs with definite descriptions on par-
tial interpretations, and investigated standard reasoning (sat-
isfiability and entailment) and automated support for gen-
erating definite descriptions (RE existence). Many open
problems remain to be explored. Regarding ELOιu, it is
open whether the PTIME upper bound for RE existence
holds in general, whether there is a polynomial size canon-
ical model for ELOιu-concepts and whether a satisfactory
model-theoretic characterisation of its expressivity can be
given. Also, RE existence is only a first step towards auto-
mated support for generating definite descriptions in prac-
tice. This could be approached by exploring the shape
and interpretability of definitions obtained from interpolants
computed by FO theorem provers. Finally, we intend to ex-
tend our free DLs with definite descriptions with a temporal
dimension (Lutz, Wolter, and Zakharyaschev 2008), for ap-
plications in temporal conceptual modelling and query an-
swering over temporal DL ontologies (Artale et al. 2014;
Artale et al. 2017), where the interaction between lack of
denotation and non-rigidity can be at stake.
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