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Abstract
We consider Gödel temporal logic (GTL), a variant of lin-
ear temporal logic based on Gödel–Dummett propositional
logic. In recent work, we have shown this logic to enjoy nat-
ural semantics both as a fuzzy logic and as a superintuition-
istic logic. Using semantical methods, the logic was shown
to be PSPACE-complete. In this paper we provide a deduc-
tive calculus for GTL, and show this calculus to be sound and
complete for the above-mentioned semantics.

1 Introduction
Despite their potential usefulness in areas such as spatio-
temporal reasoning (Artemov, Davoren, and Nerode 1997)
or vague temporal reasoning (Davies 1996), the combina-
tion of linear temporal logic with a modal or non-classical
base tends to lead to high computational complexity (Bal-
biani et al. 2018) or even undecidability (Konev et al. 2006;
Vidal 2021). Nevertheless, our recent work (Aguilera et al.
2022) provides a promising avenue for fuzzy temporal rea-
soning. There, we show that linear temporal logic (LTL)
over a Gödel–Dummett base is PSPACE-complete, which is
optimal for a logic interpreting classical LTL.

The methods used in (Aguilera et al. 2022) are model-
theoretic and leave open the question of whether a proof-
theoretic approach is possible. Here, we aim to close
this gap by employing techniques used to establish com-
pleteness of an intuitionistic LTL in (Boudou, Diéguez,
and Fernández-Duque 2017) with ‘eventually’ but without
‘henceforth.’ As we will see, the complications that led to
omitting ‘henceforth’ in that work can be solved by incor-
porating the dual implication into our language, a connec-
tive that is to implication what disjunction is to conjunction.
Aside from the technical advantages it afford us, it has been
argued by Rauszer (1980) that dual implication is useful for
reasoning with incomplete or inconsistent information.

Previously, LTL based on the intermediate logic of here-
and-there (Heyting 1930) was axiomatized by Balbiani and
Diéguez (2016). This logic allows for three truth values and
is the basis for temporal answer set programming (Aguado
et al. 2021; Aguado et al. 2013). Another combination of
here-and-there, modal logic and Rauszer’s co-implication
has been studied in (Balbiani and Diéguez 2018).

Gödel logics and their extensions with possibility the-
ory (Dubois, Lang, and Prade 1987) have been extensively

studied in (Dellunde, Godo, and Marchioni 2011). These
extensions have applications in the field of logic program-
ming (Alsinet and Godo 2013; Blandi, Godo, and Rodrı́guez
2005). Aside from this, a version of the ‘next’ fragment of
intuitionistic LTL was axiomatized by (Kojima and Igarashi
2011) and a logic with ‘next’ and ‘eventually’ (but not
henceforth) by (Boudou, Diéguez, and Fernández-Duque
2017). Intuitionistic LTL with ‘henceforth’ has not been
axiomatized, but (Boudou et al. 2021) showed that logics
with the latter tense are more sensitive to choice of seman-
tics than those without it and (Chopoghloo and Moniri 2021)
provided a strongly complete infinitary calculus.

We recently showed that GTL possesses two natural se-
mantics, corresponding to whether it is viewed as a fuzzy
logic or as a superintuitionistic logic (Aguilera et al. 2022).
As a fuzzy logic, propositions take values in [0, 1], and truth
values of compound propositions are defined using standard
operations on the reals. As a superintuitionistic logic, mod-
els consist of bi-relational structures equipped with a partial
order to interpret implication intuitionistically and a func-
tion to interpret the LTL tenses. We showed that the set
of validities for either of these semantics coincides, and in
fact coincides with the set of validities for a third class of
structures we call non-deterministic quasimodels. Similar
structures were used to prove upper complexity bounds for
dynamic topological logic (Fernández-Duque 2009) and in-
tuitionistic temporal logic (Fernández-Duque 2018). In the
setting of GTL, they can be used to prove that the validity
problem is decidable: while the logic does not enjoy the fi-
nite model property for either the fuzzy or the superintuition-
istic semantics, it does enjoy the finite quasimodel property.

(Diéguez and Fernández-Duque 2018; Fernández-Duque
2012) have shown that quasimodels also come in handy
in completeness proofs. There are two main reasons for
this. First, as quasimodels are somewhat more flexible than
proper models, it is easier to construct them. Thus our task
is to construct a quasimodel falsifying a given non-derivable
formula. Once constructed, we can use unwinding tech-
niques to produce a proper bi-relational model from our
quasimodel. The second advantage is that it allows us to use
techniques normally available only for logics enjoying the
finite model property, such as fully characterizing a given
structure using a finite formula. In fact, contrary to the clas-
sical case, we will assign two characteristic formulas to each
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state w of our quasimodels, χ+(w) and χ−(w), characteriz-
ing the ‘positive’ and ‘negative’ information available in w.

Aside from these points, our completeness proof involves
several stages that should be standard to those familiar with
temporal logic: a canonical model C is built, which correctly
interprets # but not 3 and 2. In order to remedy this, a mod-
ified filtration C/Σ is built, which does interpret all tenses
correctly when restricted to the set of formulas Σ, but fails
to have a deterministic successor relation. Finally, an un-
winding procedure is applied to C/Σ to obtain a bi-relational
model. This unwinding is somewhat more complex than in
the classical case, but fortunately we may appeal to results of
(Aguilera et al. 2022) to conclude that any formula falsified
in C/Σ is also falsified in a suitable unwinding of C/Σ.

2 Syntax and Semantics
In this section we first introduce the temporal language we
work with and then two possible semantics for this language:
real semantics and bi-relational semantics.

Fix a countably infinite set P of propositional variables.
Then the Gödel temporal language L is defined by the
grammar (in Backus–Naur form):

ϕ,ψ := p | ϕ∧ψ | ϕ∨ψ | ϕ⇒ψ | ϕ⇐ψ |#ϕ |3ϕ | 2ϕ,
where p ∈ P. Here, # is read as ‘next’, 3 as ‘eventu-
ally’, and 2 as ‘henceforth’. The connective ⇐ is dual (or
co-) implication and represents the operator dual to impli-
cation (Wolter 1998). We also use ⊥ (respectively >) as a
shorthand for p⇐ p (respectively p⇒ p) for some fixed vari-
able p, and we use ¬ϕ (respectively ∼ϕ) as a shorthand for
ϕ⇒⊥ (respectively>⇐ϕ), and ϕ⇔ψ (not related to dual
implication) as a shorthand for (ϕ⇒ψ) ∧ (ψ⇒ϕ).

We now introduce the first of our semantics for the Gödel
temporal language: real semantics, which views L as a
fuzzy logic (enriched with temporal modalities). In the def-
inition, [0, 1] denotes the real unit interval.
Definition 1 (real semantics). A flow is a pair T = (T, S),
where T is a set and S : T → T is a function. A real valua-
tion on T is a function V : L × T → [0, 1] such that, for all
t ∈ T , the following equalities hold.

V (⊥, t) = 0
V (ϕ ∧ ψ, t) = min{V (ϕ, t), V (ψ, t)}
V (ϕ ∨ ψ, t) = max{V (ϕ, t), V (ψ, t)}

V (ϕ⇒ψ, t) =

{
V (ψ, t) if V (ϕ, t) > V (ψ, t)

1 if V (ϕ, t) ≤ V (ψ, t)

V (ϕ⇐ψ, t) =

{
V (ϕ, t) if V (ϕ, t) > V (ψ, t)

0 if V (ϕ, t) ≤ V (ψ, t)
V (#ϕ, t) = V (ϕ, S(t))
V (3ϕ, t) = supn<ω V (ϕ, Sn(t))
V (2ϕ, t) = infn<ω V (ϕ, Sn(t))

A flow T equipped with a valuation V is a real (Gödel tem-
poral) model.

The second semantics, bi-relational semantics, views L
as an intuitionistic logic (temporally enriched).
Definition 2 (bi-relational semantics). A (Gödel temporal)
bi-relational frame is a quadrupleF = (W,T,≤, S) where

(W,≤) is a linearly ordered set and (T, S) is a flow. A bi-
relational valuation on F is a function J·K : L → 2W×T

such that, for each p ∈ P, the set JpK is downward closed in
its first coordinate, and the following equalities hold.

J⊥K = ∅
Jϕ ∧ ψK = JϕK ∩ JψK
Jϕ ∨ ψK = JϕK ∪ JψK
Jϕ⇒ψK = {(w, t) ∈W × T | ∀v ≤ w((v, t) ∈ JϕK

implies (v, t) ∈ JψK)}
Jϕ⇐ψK = {(w, t) ∈W × T | ∃v ≥ w((v, t) ∈ JϕK

and (v, t) /∈ JψK)}
J#ϕK = (idW × S)−1 JϕK
J3ϕK =

⋃
n<ω(idW × S)−n JϕK

J2ϕK =
⋂

n<ω(idW × S)−n JϕK

where (idW×S) is the function such that (idW×S)(w, t) =

(w, S(t)). Given (w, t) ∈W × T , we say that S((w, t))
def
=

(w, S(t)). A bi-relational frame F equipped with a valua-
tion J·K is a (Gödel temporal) bi-relational model.

This semantics combines standard semantics for the im-
plications based on ≤ (read downward) and for the tenses
based on S: for example, (w, t) ∈ J3ϕK if and only if there
exists n ≥ 0 such that (w, Sn(t)) ∈ JϕK. Note that, by struc-
tural induction, the valuation of any ϕ ∈ L is downward
closed in its first coordinate, in the sense that if (w, t) ∈ JϕK
and v ≤ w, then (v, t) ∈ JϕK.

Validity of L-formulas is defined in the usual way.
Definition 3 (validity). Given a real model X = (T, S, V )
and a formula ϕ ∈ L, we say that ϕ is globally true on X ,
written X |= ϕ, if for all t ∈ T we have V (ϕ, t) = 1. Given
a bi-relational model X = (F , J·K) and a formula ϕ ∈ L,
we say that ϕ is globally true on X , written X |= ϕ, if
JϕK = W × T .

If X is a flow or a bi-relational frame, we write X |=
ϕ and say ϕ is valid on X , if ϕ is globally true for every
valuation on X . If Ω is a class of flows, frames, or models,
we say that ϕ ∈ L is valid on Ω if, for every X ∈ Ω, we
have X |= ϕ. If ϕ is not valid on Ω, it is falsifiable on Ω.

We define the logic GTLR to be the set of L-formulas that
are valid over the class of all flows and the logic GTLRel to
be the set of L-formulas that are valid over the class of all
bi-relational frames. The main theorem of (Aguilera et al.
2022) is that these logics coincide:
Theorem 4. GTLR = GTLRel. That is, for each ϕ ∈ L,
ϕ is valid over the class of real Gödel temporal models if
and only if it is valid over the class of all Gödel temporal
bi-relational models.

3 The Calculus
We begin by establishing our basic calculus for logics over
L. It is obtained by adapting the standard axioms and infer-
ence rules of LTL (Lichtenstein and Pnueli 2000), as well as
their dual versions.
Definition 5. The logic GTL is the least set of L-formulas
closed under the following axioms and rules.
I All (substitution instances of) intuitionistic tautologies
(see e.g. (Mints 2000))
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II Axioms and rules of H-B logic:
A ϕ⇒ (ψ ∨ (ϕ⇐ψ))

B
ϕ⇒ψ

(ϕ⇐ θ)⇒(ψ⇐ θ)

C
ϕ⇒ψ ∨ γ

(ϕ⇐ψ)⇒ γ
III Linearity axioms:
A (ϕ⇒ψ) ∨ (ψ⇒ϕ)
B ¬ ((ϕ⇐ψ) ∧ (ψ⇐ϕ))

IV Temporal axioms:
A ¬#⊥
B # (ϕ ∨ ψ)⇒ (#ϕ ∨#ψ)
C (#ϕ ∧#ψ)⇒# (ϕ ∧ ψ)
D # (ϕ⇒ψ)⇔ (#ϕ⇒#ψ)
E 2 (ϕ⇒ψ)⇒ (2ϕ⇒2ψ)
F 2 (ϕ⇒ψ)⇒ (3ϕ⇒3ψ)
G 2ϕ⇒ϕ ∧#2ϕ
H ϕ ∨#3ϕ⇒3ϕ
I 2(ϕ⇒#ϕ)⇒(ϕ⇒2ϕ)
J 2(#ϕ⇒ϕ)⇒(3ϕ⇒ϕ)

V Back–up confluence axiom:
# (ϕ⇐ψ)⇒ (#ϕ⇐#ψ)

VI Standard modal rules:

A
ϕ, ϕ⇒ψ

ψ
B

ϕ

#ϕ
C

ϕ

2ϕ

Axiom group II concerns the relationship between⇒ and
⇐. In particular, Axiom II.A is used in C. Rauszer’s axioma-
tization of intuitionistic logic with co-implication (called H-
B logic) (Rauszer 1974). The Gödel–Dummett axiom III.A
and its order dual III.B are used to force the connectives
⇒ and ⇐ to be implemented on locally linear posets (i.e.
posets that are a disjoint union of linear orders).

Axioms IV.C, IV.D, and IV.E are standard modal axioms
(viewing # as a box-type modality). In particular they hold
in any normal modal logic, although of course GTL is not
itself normal by virtue of being strictly sub-classical. Ax-
iom IV.F is a dual version of IV.E; such dual axioms are
often needed in intuitionistic modal logic, since 3 and 2 are
not typically interdefinable. The axioms IV.A and IV.B have
to do with the passage of time being deterministic in linear
temporal logic: IV.A characterises seriality and IV.B char-
acterises (partial) functionality, thus together they constrain
temporal accessibility to be a total function.

The co-inductive axiom IV.G states that if something will
henceforth be the case, then it is true now and, moreover, in
the next moment, it will still henceforth be the case, and IV.I
is successor induction, as time is interpreted over the nat-
ural numbers. Axioms IV.H and IV.J are their duals. Note
that ‘henceforth’ is interpreted reflexively. All rules of group
VI.A are standard modal logic deduction rules, and in partic-
ular any normal modal logic is closed under these rules.

Most of the axioms are either included in the axiomatiza-
tion of intuitionistic LTL (Boudou, Diéguez, and Fernández-
Duque 2017) or a variant of one of them (e.g. a contraposi-
tive). From this, we easily derive the following.

Proposition 6. The above calculus is sound for the class of
real models, as well as for the class of bi-relational models.

Proof. The rules II.B and II.C are readily seen to preserve
validity. We check Axioms V and III.B; all other rules or
axioms have been shown to be sound for intuitionistic or bi-
relational models in the literature (see e.g. (Balbiani et al.
2018; Rauszer 1974)).

For Axiom V, it suffices to check its validity on the class
of bi-relational models. Let M = (W,T,≤, S, J·K) be a
bi-relational model and suppose that (w, t) ∈ J# (ϕ⇐ψ)K;
we must show that (w, t) ∈ J#ϕ⇐#ψK. From (w, t) ∈
J# (ϕ⇐ψ)K we see that (w, S(t)) ∈ Jϕ⇐ψK; hence there
is (v, S(t)) ≥ (w, S(t)) with (v, S(t)) ∈ JϕK \ JψK. But
then (v, S(t)) ∈ J#ϕK \ J#ψK, witnessing that (w, t) ∈
J#ϕ⇐#ψK.
For Axiom III.B, let us assume towards a contradiction
that ¬ ((ϕ⇐ψ) ∧ (ψ⇐ϕ)) is not valid with respect to
bi-relational models, so we can find M as above and
(w, t) ∈ M such that (w, t) 6∈ J¬ ((ϕ⇐ψ) ∧ (ψ⇐ϕ))K.
Therefore, there exists (v, t) ≤ (w, t) such that (v, t) ∈
J(ϕ⇐ψ) ∧ (ψ⇐ϕ)K. Therefore, (v, t) ∈ Jϕ⇐ψK and
(v, t) ∈ Jϕ⇐ψK. Therefore, there exists (v′, t) ≥ (v, t)
and (v′′, t) ≥ (v, t) such that (v′, t) ∈ JϕK \ JψK and
(v′′, t) ∈ JψK \ JϕK. Since (W,≤) is a linear order, either
(v′, t) ≤ (v′′, t) or (v′, t) ≥ (v′′, t). In the former case
we get that (v′, t) ∈ JψK and in the latter case we get that
(v′′, t) ∈ JϕK; in any case we reach a contradiction.

Our main objective is to show that our calculus is indeed
complete; proving this will take up the remainder of this pa-
per.

As we show next, we can also derive the converses of
some of these axioms. Below, for a set of formulas Γ we
define #Γ = {#ϕ : ϕ ∈ Γ}, and empty conjunctions and
disjunctions are defined by

∧
∅ = > and

∨
∅ = ⊥.

Lemma 7. Let ϕ ∈ L and Γ ⊆ L be finite. Then the follow-
ing formulas belong to GTL.

1. #
∨

Γ⇔
∨

#Γ

2. #
∧

Γ⇔
∧

#Γ

3. 3ϕ⇒ϕ ∨#3ϕ

4. ϕ ∧#2ϕ⇒2ϕ
5. (ϕ⇐ϕ)⇒ψ

6. (ϕ⇐ψ)⇒ϕ

4 Labelled Systems and Quasimodels
Quasimodels will be a central tool in our completeness
proof. These were originally introduced in (Fernández-
Duque 2009) for dynamic topological logic, a classical pre-
decessor of intuitionistic temporal logic, for which quasi-
models were also used in (Fernández-Duque 2018). In this
section we will introduce labelled spaces, labelled systems,
and finally, quasimodels. Quasimodels can be viewed as a
sort of nondeterministic generalisation of bi-relational mod-
els. Quasimodels are a great advantage to us since GTL has
the finite quasimodel property (any falsifiable formula is fal-
sifiable in a finite quasimodel), despite not having the finite
model property for either the real or the bi-relational seman-
tics (Aguilera et al. 2022).
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Definition 8. Let Σ ⊆ L be closed under subformulas and
Φ+,Φ− ⊆ Σ. We say that the pair Φ = (Φ+,Φ−) is a
two-sided Σ-type if:

1. Φ− ∩ Φ+ = ∅,
2. if ϕ ∧ ψ ∈ Φ+, then ϕ,ψ ∈ Φ+,
3. if ϕ ∧ ψ ∈ Φ−, then ϕ ∈ Φ− or ψ ∈ Φ−,
4. if ϕ ∨ ψ ∈ Φ+, then ϕ ∈ Φ+ or ψ ∈ Φ+,
5. if ϕ ∨ ψ ∈ Φ−, then ϕ,ψ ∈ Φ−,
6. if ϕ⇒ψ ∈ Φ+, then ϕ ∈ Φ− or ψ ∈ Φ+,
7. if ϕ⇒ψ ∈ Φ−, then ψ ∈ Φ−,
8. if ϕ⇐ψ ∈ Φ−, then ϕ ∈ Φ− or ψ ∈ Φ+,
9. if ϕ⇐ψ ∈ Φ+, then ϕ ∈ Φ+,

10. if 3ϕ ∈ Φ−, then ϕ ∈ Φ−,
11. if 2ϕ ∈ Φ+, then ϕ ∈ Φ+.

If moreover Σ = Φ−∪Φ+, we may say that Φ is saturated.
The set of saturated two-sided Σ-types will be denoted TΣ.
Given Φ,Ψ ∈ TΣ, we write

Φ ≤Σ Ψ if and only if Φ− ⊆ Ψ− and Φ+ ⊇ Ψ+.

Often we want Σ to be finite, in which case we write Σ b
L to indicate that Σ ⊆ L and Σ is finite and closed under
subformulas. We remark that if Φ ∈ TΣ, then Φ− = Σ\Φ+

(and vice-versa), but it is convenient to view Φ as a pair,
since both the ‘positive’ and ‘negative’ information will play
an important role.

A partially ordered set (A,≤) is locally linear if it is a
disjoint union of linear posets. If a, b ∈ A, we write a Q b

if a ≤ b or b ≤ a. We call the set {b ∈ A : b Q a} the
linear component of a; by assumption, linear components
partition A.
Definition 9. Let Σ ⊆ L be closed under subformulas. A
Σ-labelled space is a triple W = (|W|,≤W , `W), where
(|W|,≤W) is a locally linear poset and ` : |W| → TΣ a
monotone function, in the sense that

w ≤W v implies `W(w) ≤Σ `W(v),

and such that for all w ∈ |W|:
• whenever ϕ⇒ψ ∈ `−W(w), there is v ≤W w such that
ϕ ∈ `+W(v) and ψ ∈ `−W(v);

• whenever ϕ⇐ψ ∈ `+W(w), there is v ≥W w such that
ϕ ∈ `+W(v) and ψ ∈ `−W(v).
The Σ-labelled spaceW falsifies ϕ ∈ L if ϕ ∈ `W(w)−

for some w ∈ W . The height ofW is the supremum of all
n such that there is a chain w1 <W w2 <W . . . <W wn.

IfW is a labelled space, elements of |W| will sometimes
be called worlds. When clear from context we will omit
subscripts and write, for example, ≤ instead of ≤W .

Recall that a subset S of a poset (P,≤) is convex if s ∈ S
whenever a, b ∈ S and a ≤ s ≤ b. A convex relation
between posets (A,≤A) and (B,≤B) is a binary relation
R ⊆ A×B such that for each x ∈ A the image set {y ∈ B |
x R y} is convex with respect to ≤B , and for each y ∈ B
the preimage set {x ∈ A | x R y} is convex with respect to
≤A. The relation R is fully confluent if it validates the four
following conditions:

Forth–down
if x ≤A x′ R y′ there is y such that x R y ≤B y′,

Forth–up
if x′ ≥A x R y there is y′ such that x′ R y′ ≥B y,

Back–down
if x′ R y′ ≥B y there is x such that x′ ≥A x R y,

Back–up
if x R y ≤B y′ there is x′ such that x ≤A x′ R y′.

In other words, R is fully confluent if≤A ◦R = R◦≤B and
≥A ◦R = R ◦ ≥B .

Definition 10. Let Σ ⊆ L be closed under subformulas.
Suppose that Φ,Ψ ∈ TΣ. The ordered pair (Φ,Ψ) is sensi-
ble if it satisfies the following conditions:

1. If #ϕ ∈ Φ+, then ϕ ∈ Ψ+.
2. If #ϕ ∈ Φ−, then ϕ ∈ Ψ−.
3. If 3ϕ ∈ Φ+, then ϕ ∈ Φ+ or 3ϕ ∈ Ψ+.
4. If 3ϕ ∈ Φ−, then ϕ ∈ Φ− and 3ϕ ∈ Ψ−.
5. If 2ϕ ∈ Φ+, then ϕ ∈ Φ+ and 2ϕ ∈ Ψ+.
6. If 2ϕ ∈ Φ−, then ϕ ∈ Φ− or 2ϕ ∈ Ψ−.

A pair (w, v) of worlds in a labelled spaceW is sensible if
(`(w), `(v)) is sensible. A relation S ⊆ |W| × |W| is sen-
sible if every pair in S is sensible. Further, S is ω-sensible
if

• whenever 3ϕ ∈ `+W(w), there are n ≥ 0 and v such that
w Sn v and ϕ ∈ `+W(v);

• whenever 2ϕ ∈ `−W(w), there are n ≥ 0 and v such that
w Sn v and ϕ ∈ `−W(v).

Recall that a binary relation is said to be serial if every el-
ement of the domain is related to some element of the co-
domain.

A labelled system is a labelled spaceW equipped with a
serial, fully confluent, convex sensible relationRW ⊆ |W|×
|W|. If moreover RW is ω-sensible, we say thatW is a Σ-
quasimodel.

Any bi-relational model can be regarded as a Σ-qua-
simodel: If X = (W,T,≤, S, J·K) is a bi-relational model
and x ∈ W × T , we can assign a Σ-type `X (x) to x given
by

`X (x)+ = {ψ ∈ Σ | x ∈ JψK}
`X (x)− = {ψ ∈ Σ | x 6∈ JψK} .

Note that this assignment of types is≤Σ-monotone. We also
set RX = {((w, t), (w, S(t))) | w ∈ W, t ∈ T}; it is obvi-
ous that RX is ω-sensible. Henceforth we will tacitly iden-
tify X with its associated Σ-quasimodel.

The following is proved in (Aguilera et al. 2022).

Theorem 11. Given ϕ ∈ L, the following are equivalent:

1. ϕ is falsifiable.
2. ϕ is falsifiable in a quasimodel.
3. ϕ is falsifiable in a finite quasimodel.
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5 The Canonical Model
In this section we construct a standard canonical model for
GTL. In the presence of 3 and 2, the standard canonical
model is only a labelled system, rather than a proper bi-
relational model. Nevertheless, it will be a useful ingredient
in our completeness proof. Since we are working over an
intermediate logic, the role of maximal consistent sets will
be played by complete types, as defined below. The nota-
tion ` always refers to derivability in the calculus defined in
Section 3. Below, recall that by convention,

∧
∅ = > and∨

∅ = ⊥.

Definition 12. Given two sets of formulas Γ,∆ ⊆ L, we
say that ∆ is a consequence of Γ, denoted by Γ ` ∆, if there
exist finite (possibly empty) Γ′ ⊆ Γ and ∆′ ⊆ ∆ such that
`
∧

Γ′⇒
∨

∆′ (i.e.
∧

Γ′⇒
∨

∆′ ∈ GTL).
We say that a pair of sets Φ = (Φ+,Φ−) ∈ L × L is

consistent if Φ+ 6` Φ−. A saturated, consistent pair is a
complete type. The set of complete types will be denoted
T∞.

Note that we are using the standard interpretation of Γ `
∆ in Gentzen-style calculi. When working within a turn-
stile, we will follow the usual proof-theoretic conventions of
writing Γ,∆ instead of Γ∪∆, and writing ϕ instead of {ϕ}.
Observe that there is no clash in terminology regarding the
use of the word type.

Lemma 13. If Φ is a complete type then Φ is a saturated
two-sided L-type.

Proof. Let Φ be a complete type. Observe that Φ is already
saturated by definition, so it remains to check that it satisfies
all conditions of Definition 8. Condition 1 follows from the
consistency of Φ. For condition 10 we use Axiom IV.H: if
3ϕ ∈ Φ− andϕ ∈ Φ+ we would have that Φ is inconsistent;
hence ϕ ∈ Φ−. Condition 11 is proved using Axiom IV.G.
The remaining conditions are left to the reader.

As with maximal consistent sets, complete types satisfy
a Lindenbaum property. Below, if (Γ,∆) and (Γ′,∆′)
are pairs of sets of formulas, we say that (Γ′,∆′) extends
(Γ,∆) if Γ ⊆ Γ′ and ∆ ⊆ ∆′.

Lemma 14 (Lindenbaum lemma). Let Γ,∆ ⊆ L. If Γ 6` ∆,
then there exists a complete type Φ extending (Γ,∆).

Proof. The proof is standard, but we provide a sketch. Let
ϕ ∈ L. Note that either Γ, ϕ 6` ∆ or Γ 6` ∆, ϕ, for otherwise
by a cut rule (which is intuitionistically derivable) we would
have Γ ` ∆. Thus we can add ϕ to Γ or to ∆, and by
repeating this process for each element of L (or using Zorn’s
lemma) we can find a suitable Φ.

Before defining the canonical model, recall that for a set
of formulas Γ, we have #Γ

def
= {#ϕ | ϕ ∈ Γ}. We also

define
	Γ

def
= {ϕ | #ϕ ∈ Γ}.

Given a set A, let IA denote the identity function on A.
The canonical model C is defined as the labelled structure

C = (|C|,≤C, SC, `C),

where |C| = T∞ is the set of complete types, Φ ≤C Ψ if
Φ ≤L Ψ (i.e., if Φ− ⊆ Ψ− and Φ+ ⊇ Ψ+), SC(Φ) =
(	Φ+,	Φ−), and `C(Φ) = Φ. We will usually omit writ-
ing `C, as it has no effect on its argument.

Next we show that C is an L-labelled system. We begin
by showing that it is based on a labelled space.

Lemma 15. (|C|,≤C, `C) is a L-labelled space.

Proof. We know that ≤L is a partial order and restrictions
of partial orders are partial orders, so ≤C is a partial or-
der. Moreover, `C is the identity, so Φ ≤C Ψ implies that
`C(Φ) ≤L `C(Ψ).

To prove that (|C|,≤C) is locally linear, assume towards a
contradiction that it is not. We consider two cases:

1. There exist Φ, Ψ and Θ such that Φ ≤L Ψ and Φ ≤L Θ,
but Ψ 6≤L Θ and Θ 6≤L Ψ. By definition, there exist two
formulas ϕ ∈ Θ+ \Ψ+ and ψ ∈ Ψ+ \Θ+. It is easy to see
that ϕ⇒ψ 6∈ Θ+ and ψ⇒ϕ 6∈ Ψ+. This would imply that
Axiom III.A does not belong to Φ+—a contradiction.
2. There exist Φ, Ψ and Θ such that Φ ≥L Ψ and Φ ≥L Θ,
but Ψ 6≥L Θ and Θ 6≥L Ψ. Then it is easy to see that
there exist two formulas ϕ ∈ Ψ+ \ Θ+ and ψ ∈ Θ+ \ Ψ+

such that ϕ⇐ψ ∈ Ψ+ and ψ⇐ϕ ∈ Θ+. From Φ ≥L Ψ,
Φ ≥L Θ, and some intuitionistic reasoning we conclude that
(ϕ⇐ψ) ∧ (ψ⇐ϕ) ∈ Φ+, which contradicts Axiom III.B.

We finish by considering the conditions on ⇒ and ⇐. Let
us consider Φ ∈ |C|:

• If ϕ⇒ψ ∈ Φ− then, by Condition 7 of Definition 8,
ψ ∈ Φ−. Let us define u = (Φ+ ∪ {ϕ}, {ψ}), and let
us assume by contradiction that u is not consistent. This
means that there exists γ ∈ Φ+ such that γ∧ϕ⇒ψ ∈ GTL.
By propositional reasoning, γ⇒ (ϕ⇒ψ) ∈ GTL. Since
γ ∈ Φ+ and Φ is consistent, ϕ⇒ψ 6∈ Φ−—a contradic-
tion. Therefore, u is consistent and, by Lemma 14, it can
be extended to a complete type Ψ. From the definition of u
we can conclude that Ψ ≤L Φ, ϕ ∈ Ψ+, and ψ ∈ Ψ− as
required.
• If ϕ⇐ψ ∈ Φ+ then, by Condition 9, ϕ ∈ Φ+. Let us
define u = ({ϕ},Φ− ∪ {ψ}), and let us assume by contra-
diction that u is not consistent. This means that there ex-
ists γ ∈ Φ− such that ϕ⇒ψ ∨ γ ∈ GTL. By Rule II.C,
we get (ϕ⇐ψ)⇒ γ ∈ GTL. Since γ ∈ Φ−, we deduce
that ϕ⇐ψ 6∈ Φ+—a contradiction. By Lemma 14, u can
be extended to a complete type Ψ. It is easy to check that
Φ ≤L Ψ, ϕ ∈ Ψ+, and ψ ∈ Ψ− as required.

Lemma 16. SC : |C| → |C| is well defined.

Proof. Let Φ ∈ |C| and Ψ = SC(Φ); we must check that
Ψ ∈ |C| = T∞. Recall that Ψ+ = 	Φ+ and Ψ− = 	Φ−.
To see that Ψ is saturated, let ϕ ∈ L be so that ϕ 6∈ Ψ−.
It follows that #ϕ 6∈ Φ−, but Φ is saturated, so #ϕ ∈ Φ+

and thus ϕ ∈ Ψ+. Since ϕ was arbitrary, Ψ− ∪ Ψ+ = L.
Next we check that Ψ is consistent. If not, let Γ ⊆ Ψ+ and
∆ ⊆ Ψ− be finite and such that

∧
Γ⇒

∨
∆ ∈ GTL. Using

VI.B and IV.D we see that #
∧

Γ⇒#
∨

∆ ∈ GTL, which
in view of Lemma 7 implies that

∧
#Γ⇒

∨
#∆ ∈ GTL as
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well. But #Γ ⊆ Φ+ and #∆ ⊆ Φ−, contradicting the fact
that Φ is consistent. We conclude that Ψ ∈ |C|.

Lemma 17. SC is fully confluent.

Proof. We check the four conditions:

Forth–down, forth–up: Let Φ, Ψ be such that Φ ≤L Ψ.
Since SC is a function, these properties amount to showing
that SC(Φ) ≤L SC(Ψ). If ϕ ∈

(
SC(Ψ)

)+
then #ϕ ∈ Ψ+,

which since Φ ≤L Ψ implies that #ϕ ∈ Φ+ and hence ϕ ∈(
SC(Φ)

)+
. Similarly we can check that if ϕ ∈

(
SC(Φ)

)−
then ϕ ∈

(
SC(Ψ)

)−
, so that SC(Φ) ≤L SC(Ψ), as needed.

Back–up: Let Φ, Ψ, and Θ be such that Ψ = SC(Φ) and
Ψ ≤L Θ, and let us define u = (	Θ+,Φ− ∪ 	Θ−). As-
sume toward a contradiction that u is not consistent. There-
fore, there exist γ ∈ Φ−, ϕ ∈ Θ+, and ψ ∈ Θ− such
that #ϕ⇒ (γ ∨#ψ) ∈ GTL. By Lemma 7(6, we get that
(#ϕ⇐#ψ)⇒ γ ∈ GTL. Since γ ∈ Φ− and Φ is consis-
tent and saturated, we have #ϕ⇐#ψ ∈ Φ−. By Axiom V,
#(ϕ⇐ψ)⇒ (#ϕ⇐#ψ) ∈ Φ+. Since #ϕ⇐#ψ ∈ Φ−

and Φ is consistent and saturated, we have # (ϕ⇐ψ) ∈
Φ−. Since Ψ = SC(Φ), we have ϕ⇐ψ ∈ Ψ− ⊆ Θ−.
Thus either ϕ ∈ Θ− or ψ ∈ Θ+—a contradiction. By
Lemma 14, u can be extended to a complete type Υ, which
satisfies Φ ≤L Υ and Θ = SC(Υ), as required.
Back–down: Let Φ, Ψ, and Θ be such that Ψ = SC(Φ) and
Θ ≤L Ψ and define u = (Φ+ ∪ 	Θ+,	Θ−) and assume
that u is not consistent. This means that there exists γ ∈ Φ+,
ϕ ∈ Θ+, and ψ ∈ Θ− such that γ ∧ #ϕ⇒#ψ ∈ GTL.
By propositional reasoning, γ⇒ (#ϕ⇒#ψ) ∈ GTL, so
#ϕ⇒#ψ ∈ Φ+. By Axiom IV.D, # (ϕ⇒ψ) ∈ Φ+. Since
Ψ = SC(Φ), we have ϕ⇒ψ ∈ Ψ+ ⊆ Θ+. Therefore
ψ ∈ Θ+—a contradiction. By Lemma 14, u can be extended
to a complete type Υ. It can be checked that Υ ≤L Φ and
Θ = SC(Υ), as required.

Lemma 18. SC is a convex relation.

Proof. Since SC is a function, images of points are single-
tons, hence automatically convex. Thus we need only prove
that preimages are convex. We proceed by contradiction.
Let us take Υ ∈ |C| and let us define A = S−1

C (Υ) and let
us assume that A is not convex. This means that there exist
Φ,Ψ,Θ ∈ |C| such that Φ,Ψ ∈ A and Φ ≤L Θ ≤L Ψ,
but Θ 6∈ A. Since Φ,Ψ ∈ A and Θ 6∈ A, it follows that
SC(Φ) = SC(Ψ) = Υ 6= SC(Θ). We consider two cases:

• there exists #ϕ ∈ Θ+ such that ϕ 6∈ Υ+. Then #ϕ ∈
Φ+, so ϕ ∈ Υ+—a contradiction.

• there exists #ϕ ∈ Θ− such that ϕ 6∈ Υ−. Then #ϕ ∈ Ψ−

so ϕ ∈ Υ−—a contradiction.

Lemma 19. SC is sensible.

Proof. Let us consider Φ,Ψ such that Ψ = SC(Φ). We con-
sider the conditions for (Φ,Ψ) to be sensible.

If #ϕ ∈ Φ+ then ϕ ∈ Ψ+ by the definition of SC. If
#ϕ 6∈ Φ+ then #ϕ ∈ Φ− and, by definition, ϕ ∈ Ψ−.

If 3ϕ ∈ Φ+ and ϕ 6∈ Φ+, it follows that ϕ ∈ Φ−. By
Lemma 7, 3ϕ⇒ϕ ∨ #3ϕ ∈ GTL, so we cannot have that
#3ϕ ∈ Φ−, and hence #3ϕ ∈ Φ+, so that 3ϕ ∈ Ψ+.
Similarly, if 3ϕ ∈ Φ− we have that #3ϕ ∈ Φ−, for
otherwise we obtain a contradiction from IV.H. Therefore,
3ϕ ∈ Ψ− as well.

If 2ϕ ∈ Φ+ then, by Axiom IV.G we get ϕ,#2ϕ ∈ Φ+.
Since Ψ = SC(Φ), we get 2ϕ ∈ Ψ+. Conversely, assume
that 2ϕ ∈ Φ−. By Lemma 7, ϕ∧#2ϕ ∈ Φ−, so either ϕ ∈
Φ− or #2ϕ ∈ Φ− (giving in the second case 2ϕ ∈ Ψ−).
In either case we reach the desired conclusion.

We remark the general fact that given a Σ1-labelled sys-
tem and a subformula-closed Σ2 ⊆ Σ1, one can restrict the
labelling to Σ2 in the natural way (by replacing its output
at any point by its intersection with Σ2). Doing so yields a
Σ2-labelled system. This is easily verifiable from the defini-
tions.

Proposition 20. The canonical model C is an L-labelled
system. Restricting the labelling to any subformula-closed
Σ ⊆ L yields a Σ-labelled system.

Proof. For the first claim, we need for the following three
properties to hold: 1. (|C|,≤C, `C) is a labelled space; 2. SC

is a serial, fully confluent, convex sensible relation; and 3. `C
has TL as its codomain. The first item is Lemma 15. SC is
serial since it is a well defined function by Lemma 16, and
it is a fully confluent, convex, sensible relation by Lemmas
17, 18, and 19. Finally, if Φ ∈ |C| then `C(Φ) = Φ, which
is an element of TL by Lemma 13.

The second claim follows from the observation preceding
the proposition.

6 The Canonical Quasimodel
In this section we describe a finite quotient C/Σ of the canon-
ical labelled system C constructed in Section 5, and we show
that C/Σ is a Σ-labelled system. Later, in Section 8, we will
show that C/Σ is also ω-sensible and thus a quasimodel.

We obtain C/Σ from C in two steps. First, we will take
a bisimulation quotient to obtain a finite Σ-labelled space
equipped with a fully confluent sensible relation. The sec-
ond step will be to extend the sensible relation to be convex,
yielding a finite Σ-labelled system.

We describe the quotient explicitly, noting afterwards that
it is a particular type of bisimulation quotient. The assump-
tion that Σ is finite is only needed at the end: if Σ is finite
then C/Σ will be finite. So for now let Σ be any subformula-
closed subset of L, and let C = (|C|,≤C, SC, `C) be the
canonical labelled system, which by Proposition 20 is a Σ-
labelled system when `C is restricted to a Σ-labelling, which
we assume (and henceforth denote by `).

For Φ ∈ |C|, define L(Φ) =
{
`(Ψ) | Ψ Q Φ

}
. We define

the binary relation ∼ on |C| by

Φ ∼ Ψ ⇐⇒ (`(Φ), L(Φ)) = (`(Ψ), L(Ψ)).

If Σ is finite, then clearly |C|/∼ is finite.
Note that ∼ is the largest relation that is simultaneously a

bisimulation with respect to the relations ≤ and ≥, with Σ
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treated as the set of atomic propositions that bisimilar worlds
must agree on.

Now define a partial order ≤Q on the equivalence classes
|C|/∼ of ∼ by

[Φ] ≤Q [Ψ] ⇐⇒ L(Φ) = L(Ψ) and `(Φ) ≥ `(Ψ),

noting that this is well-defined and is indeed a partial order.
Since each set L(Φ) can be linearly ordered by inclusion

and `(Φ) ∈ L(Φ), the poset (|C|/∼,≤Q) is a disjoint union
of linear orders. By defining `Q by

`Q([Φ]) = `(Φ)

we obtain a Σ-labelled space (|C|/∼,≤Q, `Q); it is not hard
to check that this labelling is inversely monotone and that
the clauses for⇒ and⇐ hold with this labelling.

Now define the binary relation RQ on |C|/∼ to be the
smallest relation such that [Φ] RQ [S(Φ)], for all Φ ∈ |C|.

Lemma 21. The relationRQ is fully confluent and sensible.

Proof. It is clear that RQ is sensible. For confluence, sup-
pose [Φ] RQ [S(Φ)]. To see that the forth–up condition
holds, suppose further that [Φ] ≤Q [Ψ]. Then as `(Φ) ∈
L(Φ) = L(Ψ) there is some Θ ≥ Φ with [Ψ] = [Θ]. Then
we have [Θ] RQ [S(Θ)] and [S(Φ)] ≤Q [S(Θ)], as required
for the forth–up condition. The proofs of the remaining three
confluence conditions are entirely analogous.

As promised, we now have a Σ-labelled space equipped
with a fully confluent sensible relation. We now transform
this labelled space into a Σ-labelled system by making the
additional relation convex by fiat.

Define R+
Q by X R+

Q Y if and only if there exist X1 ≤Q
X ≤Q X2 and Y1 ≤Q Y ≤Q Y2 such that X2 RQ Y1 and
X1 RQ Y2. Now define C/Σ = (|C|/∼,≤Q, R+

Q, `Q).

Lemma 22. The structure C/Σ is a Σ-labelled system.

Proof. We already know that (|C|/∼,≤Q, `Q) is a Σ-lab-
elled space. First we must check R+

Q is still fully confluent
and sensible.

For the forth–down condition, supposeX ≤Q X ′ R+
Q Y

′.
Then by the definition ofR+

Q, there are someX2 ≥Q X ′ and
Y1 ≤Q Y ′ such that X2 RQ Y1. Since X ≤Q X ′ ≤Q X2,
by the forth–down condition forRQ there is some Y ≤Q Y1

with X RQ Y and therefore X R+
Q Y . Since Y ≤Q Y1 ≤Q

Y ′, we are done. The proof that the forth–up condition holds
is just the order dual of that for forth–down. The proofs of
the back–down and back–up conditions are similar.

To see that R+
Q is sensible, suppose X R+

Q Y and that
#ϕ ∈ Σ. Take X1 ≤Q X ≤Q X2 and Y1 ≤Q Y ≤Q Y2

such that X RQ Y1. Then

#ϕ ∈ `Q(X) =⇒ #ϕ ∈ `Q(X1)

=⇒ ϕ ∈ `Q(Y2)

=⇒ ϕ ∈ `Q(Y )

=⇒ ϕ ∈ `Q(Y1)

=⇒ #ϕ ∈ `Q(X2) =⇒ #ϕ ∈ `Q(X),

so #ϕ ∈ `Q(X) ⇐⇒ ϕ ∈ `Q(Y ). The 3 and 2 cases are
similar.

Finally, we show thatR+
Q is convex. Firstly, for the image

condition, if X R+
Q Y1 and X R+

Q Y2 with Y1 ≤Q Y ≤ Y2,
then by the definition of R+

Q we can find X2 ≥Q X and
Y ′1 ≤Q Y1 with X2 RQ Y ′1 , and similarly X1 ≤Q X and
Y ′2 ≥Q Y2 with X1 RQ Y ′2 . Since then X1 ≤Q X ≤Q X2

and Y ′1 ≤Q Y ≤Q Y ′2 , by the definition of R+
Q we con-

clude that X R+
Q Y . The preimage condition is completely

analogous. This completes the proof that C/Σ is a Σ-labelled
system.

Lemma 23. Suppose Σ is finite, and write ‖Σ‖ for its car-
dinality. Then the height of C/Σ is bounded by ‖Σ‖+ 1, and
the cardinality of the domain |C|/∼ of C/Σ is bounded by
(‖Σ‖+ 1) · 2‖Σ‖(‖Σ‖+1)+1

Proof. Each element of the domain of C/Σ is a pair (`, L)
where L is a (nonempty) subset of ℘Σ and ` ∈ L. Since L is
linearly ordered by inclusion, it has height at most ‖Σ‖+ 1.
There are (2‖Σ‖)i subsets of ℘Σ of size i, so there are at
most

∑‖Σ‖+1
i=1 (2‖Σ‖)i distinct L. The sum is bounded by

2‖Σ‖(‖Σ‖+1)+1. The factor of ‖Σ‖+1 corresponds to choice
of an ` ∈ L, for each L.

Thus we have an exponential bound on the size of C/Σ.
Later, once we prove C/Σ is a quasimodel, the decidability
of GTL can be inferred from this bound. See (Aguilera et al.
2022) for a more direct proof of decidability using the same
quotient construction. However, for our purposes, it suffices
to observe that C/Σ is finite.

7 Characteristic Formulas
Next we show that there exist formulas defining points in the
canonical quotient, i.e. to eachw ∈ |C/Σ|we assign formulas
‘distinguishing’ w. In fact, we need two versions of such
formulas, as we can define them to be either true or false
outside of the linear component of w. First, we define a
formula χ+

Σ(w) (or χ+(w) when Σ is clear from context)
such that for all Γ ∈ |C|, χ+(w) ∈ Γ if and only if w = [Γ′]
for some Γ′ ≥ Γ. Dually, we define χ−(w) = χ−Σ(w) so
that for all Γ ∈ |C|, χ−(w) /∈ Γ if and only if w = [Γ′] for
some Γ′ ≤ Γ. Compared to (Diéguez and Fernández-Duque
2018), these formulas require dual implication, as they must
look ‘up’ and ‘down’ the model. In this section, we write
C/Σ = (|C/Σ|,≤, R, `). We will omit subindices on the ` and
L functions.

Definition 24. Fix Σ b L. Given ∆ ∈ TΣ, define−→
∆ =

∧
∆+⇒

∨
∆− and

←−
∆ =

∧
∆+⇐

∨
∆−. Given

w ∈ |C/Σ|, we define a formula χ0(w) = χ0
Σ(w) by

χ0(w) :=
∧

∆∈L(w)

∼
−→
∆ ∧

∧
∆/∈L(w)

¬
←−
∆ .

Then define χ+(w) = χ+
Σ(w) by

χ+(w) =
←−−
`(w) ∧ χ0(w)
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and χ−(w) = χ−Σ(w) by

χ−(w) = χ0(w)⇒
−−→
`(w).

Proposition 25. Given w ∈ |C/Σ| and Γ ∈ |C|,
1) χ0(w) ∈ Γ+ if and only if L(Γ) = L(w),
2) χ+(w) ∈ Γ+ if and only if [Γ] ≤ w, and
3) χ−(w) ∈ Γ− if and only if [Γ] ≥ w.

Proof. Let w ∈ |C/Σ| and Γ ∈ |C|.

1) First assume that χ0(w) ∈ Γ+, so that
∧

∆∈L(w)∼
−→
∆ ∈

Γ+ and
∧

∆/∈L(w) ¬
←−
∆ ∈ Γ+. Let ∆ ∈ L(w). From ∼

−→
∆ ∈

Γ+, we obtain Φ ≥ Γ such that
−→
∆ /∈ Φ+. Hence there is

Φ∆ ≤ Φ with
∧

∆+ ∈ Φ+
∆ and

∨
∆− ∈ Φ−∆, i.e. `(Φ∆) =

∆. From local linearity we see that Φ∆ Q Γ; hence ∆ =
`(Φ∆) ∈ L(Γ).

Similarly, if ∆ ∈ TΣ \L(w), for any Ψ ≤ Γ we have that
←−
∆ /∈ Ψ+, so that there is no Ψ∆ ≥ Ψ with

∧
∆+ ∈ Ψ+

∆ and∨
∆− ∈ Ψ−∆. Thus there is no Ψ∆ Q Γ with

∧
∆+ ∈ Ψ+

∆

and
∨

∆− ∈ Ψ−∆, i.e. ∆ /∈ L(Γ) (for the Ψ∆ ≥ Γ case, set
Ψ = Γ; for Ψ∆ ≤ Γ set Ψ = Ψ∆).

The converse follows by similar reasoning. Assume that
L(Γ) = L(w). Then from ∆ ∈ L(Γ) we readily ob-
tain ∼

−→
∆ ∈ Γ+, and similarly from ∆ /∈ L(Γ) we obtain

¬
←−
∆ ∈ Γ+, from which we obtain by propositional reason-

ing χ0(w) ∈ Γ+.

2) If χ+(w) ∈ Γ+ then χ0(w) ∈ Γ+, hence L(Γ) = L(w),
while

←−−
`(w) ∈ Γ+ implies that there is some Γ′ ≥ Γ with

`(Γ′) = `(w). This shows that w = [Γ′] ≥ [Γ], as claimed.

3) This item is similar to the previous, except that we ob-
serve that if L(Γ) 6= L(w), then χ−(w) /∈ Γ−.

Remark 26. Note that the formula χ+
Σ(w) makes essential

use of dual implication, as properties of w ≥ [Γ] do not af-
fect truth values in Γ in the language with⇒ alone. In con-
trast, the formulas χ−Σ are similar to the formulas Sim(w) of
(Diéguez and Fernández-Duque 2018), although we remark
that dual implication is still needed to describe the full linear
component of w.

Next we establish some provable properties of each of χ+
Σ

and χ−Σ . We begin with the former.

Proposition 27. Given w ∈ |C/Σ| and ψ ∈ Σ:

1) If ψ ∈ `−(w), then ` χ+(w)⇒(χ+(w)⇐ψ).

2) If ψ ∈ `+(w), then ` χ+(w)⇒ψ.

3) For any w ∈ |C/Σ|, ` χ+(w)⇒#
∨
wRv

χ+(v).

Proof. 1) Let Γ ∈ |C| and assume that ψ ∈ `−(w) and
χ+(w) ∈ Γ+; by properties of the canonical model, it suf-
fices to show that (χ+(w)⇐ψ) ∈ Γ+. From χ+(w) ∈ Γ
and Proposition 25 we obtain ∆ ≤ Γ such that [∆] = w,
hence χ+(w) ∈ ∆+ and ψ ∈ ∆−, yielding (χ+(w)⇐ψ) ∈
Γ.

2) If ψ ∈ `+(w), as above, let Γ ∈ |C| be such that χ+(w) ∈
Γ+, and ∆ ≤ Γ with [∆] = w. Then ψ ∈ ∆+, yielding
ψ ∈ Γ+.

3) Let Γ be such that χ+(w) ∈ Γ, so that there is ∆ ≤ Γ with
[∆] = w. Then w R [SC(∆)] by definition, and moreover
χ+([SC(∆)]) ∈ SC(∆+) implies that #χ+([SC(∆)]) ∈
∆+. Thus #χ+([SC(∆)]) ∈ Γ+ by downward persistence,
so that

∨
wRv χ

+(v) ∈ Γ+.

The formula χ−Σ behaves ‘dually’, as established below.

Proposition 28. Given w ∈ |C/Σ| and ψ ∈ Σ:

1) If ψ ∈ `−(w), then ` ψ⇒χ−(w).
2) If ψ ∈ `+(w), then `

(
ψ⇒χ−(w)

)
⇒χ−(w).

3) For any w ∈ |C/Σ|, ` #
∧
wRv

χ−(v)⇒χ−(w).

Proof. 1) Assume that ψ ∈ `−(w)∩Γ+ and write w = [∆].
Then ψ ∈ ∆−, which means we cannot have Γ ≥ ∆. Hence
Proposition 25 implies that χ−(w) /∈ Γ−, i.e. χ−(w) ∈ Γ+.

2) Suppose that ψ ∈ `+(w) and proceed to prove the claim
by contrapositive. If χ−(w) ∈ Γ− for some Γ ∈ |C|, then
there is ∆ ≤ Γ such that w = [∆]. But then χ−(w) ∈
∆− and ψ ∈ ∆+, which implies that

(
ψ⇒χ−(w)

)
∈ ∆−,

hence also
(
ψ⇒χ−(w)

)
∈ Γ−, as required.

3) Proceed by contrapositive. If χ−(w) ∈ Γ− for some
Γ ∈ |C|, then there is ∆ ≤ Γ such that w = [∆]. We
have that w R [SC(∆)] by definition. Letting v = [SC(∆)],
we have that χ−(v) ∈ S−C (∆), hence #χ−(v) ∈ ∆−,
and by downward persistence, #χ−(v) ∈ Γ−. Hence
#
∧

wRv χ
−(v) ∈ Γ−.

8 Completeness
The formulas χ±Σ are fundamental in our completeness
proof; specifically, we will use them to show that C/Σ is ω-
sensible, hence a quasimodel. Since validity over the class
of quasimodels is equivalent to real validity by Theorem
11, completeness will follow. The following lemma is the
first step towards establishing ω-sensibility. Once again, we
write C/Σ = (|C/Σ|,≤, R, `), and as usual R∗ is the transi-
tive, reflexive closure of R.

Lemma 29. If Σ b L and w ∈ |C/Σ|, then

1. `
∨

wR∗v χ
+(v)⇒#

∨
wR∗v χ

+(v), and
2. ` #

∧
wR∗v χ

−(v)⇒
∧

wR∗v χ
−(v).

Proof. The first item follows from Proposition 27(3), as for
any v ∈ R∗(w) we have that

` χ+(v)⇒#
∨
vRu

χ+(u).

Since v R u implies that w R∗ u by transitivity,

` χ+(v)⇒#
∨

wR∗u

χ+(u).
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Since v was arbitrary, we obtain

`
∨

wR∗v

χ+(v)⇒#
∨

wR∗u

χ+(u),

which by a change of variables yields the original claim.
Item 2 is similar, but uses Proposition 28(3).

In order to complete our proof that C/Σ is ω-sensible, it
suffices to apply induction to the formulas of Lemma 29.

Proposition 30.

1. If w ∈ |C/Σ| and 3ψ ∈ `+(w), then there is v ∈ R∗(w)
such that ψ ∈ `+(v).

2. If w ∈ |C/Σ| and 2ψ ∈ `−(w), then there is v ∈ R∗(w)
such that ψ ∈ `−(v).

Proof. 1. Towards a contradiction, assume that w ∈ |C/Σ|
and 3ψ ∈ `+(w) but, for all v ∈ R∗(w), ψ ∈ `−(w).
By Lemma 29, ` #

∧
wR∗v

χ−(v)⇒
∧

wR∗v

χ−(v). By the

3-induction axiom IV.J and standard modal reasoning, `
3
∧

wR∗v

χ−(v)⇒
∧

wR∗v

χ−(v); in particular,

` 3
∧

wR∗v
χ−(v)⇒χ−(w). (1)

Now let v ∈ R∗(w). By Proposition 28(1) and the as-
sumption that ψ ∈ `−(v) we have that ` ψ⇒χ−(v), and
since v was arbitrary, ` ψ⇒

∧
wR∗v χ

−(v). Using distribu-
tivity IV.F we further have that ` 3ψ⇒3

∧
wR∗v χ

−(v).
This, along with (1), shows that ` 3ψ⇒χ−(w). However,
by Proposition 27(2) and our assumption that 3ψ ∈ `+(w)
we have that `

(
3ψ⇒χ−(w)

)
⇒χ−(w). Hence by modus

ponens we obtain ` χ−(w). Writing w = [Γ], Proposi-
tion 25 yields χ−(w) /∈ Γ+, but this contradicts ` χ−(w).
We conclude that there is v ∈ R∗(w) with ψ ∈ `+(v), as
needed.

2. This is similar to the first item, but dualised. Towards
a contradiction, assume that w ∈ |C/Σ| and 2ψ ∈ `−(w)
but, for all v ∈ R∗(w), ψ ∈ `+(w). By Lemma 29,
`
∨

wR∗v

χ+(v)⇒#
∨

wR∗v

χ+(v). By the 2-induction axiom

IV.I, `
∨

wR∗v

χ+(v)⇒2
∨

wR∗v

χ+(v); in particular,

` χ+(w)⇒2
∨

wR∗v

χ+(v). (2)

Now let v ∈ R∗(w). By Proposition 27(2) and the as-
sumption that ψ ∈ `+(v), we have that ` χ+(v)⇒ψ, and
since v was arbitrary, `

∨
wR∗v χ

+(v)⇒ψ. Using distribu-
tivity IV.E we further have that ` 2

∨
wR∗v χ

+(v)⇒2ψ.
This, along with (2), shows that

` χ+(w)⇒2ψ. (3)
By Proposition 27(1) and our assumption that 2ψ ∈ `−(w)
we have that ` χ+(w)⇒

(
χ+(w)⇐2ψ

)
, hence by (3) and

Rule II.B we obtain ` χ+(w)⇒(2ψ⇐2ψ). In view of
Lemma 7.5, this implies that χ+(w) is contradictory. Writ-
ing w = [Γ], Proposition 25 yields χ+(w) ∈ Γ, which once
again is impossible. We conclude that there is v ∈ R∗(w)
with ψ ∈ `−(v).

Corollary 31. If Σ b L, then C/Σ is a quasimodel.

Proof. By Lemma 22, C/Σ is based on a labelled system,
while by Proposition 30, R is ω-sensible. By definition, C/Σ
is a quasimodel.

We are now ready to prove that our calculus is complete.

Theorem 32. If ϕ ∈ L is valid, then ` ϕ.

Proof. We prove the contrapositive. Suppose ϕ is an un-
provable formula and let Σ be the set of subformulas of ϕ.
Since ϕ is unprovable, there is Γ ∈ |C| with ϕ ∈ Γ−. Hence
[Γ] ∈ |C/Σ| is a point in a quasimodel falsifying ϕ, so that by
Theorem 11, ϕ is not valid.

9 Concluding Remarks
We have provided a sound and complete calculus for the
Gödel temporal logic GTL. These results further cement
GTL as a privileged logic for fuzzy temporal reasoning and
pave the way for a proof-theoretic treatment of these log-
ics. Among the challenges in this direction is the design of
cut-free or cyclic calculi.

In proving our main results, we have developed tools for
the treatment of superintuitionistic temporal logics, specif-
ically identifying the usefulness of combining ‘henceforth’
with co-implication. We believe that this insight will lead to
completeness proofs for related logics, including intuition-
istic LTL, where complete calculi for ‘eventually’ are avail-
able, but not so for ‘henceforth’. Along these lines, it should
be remarked that the techniques of (Diéguez and Fernández-
Duque 2018) should lead to a sound and complete calcu-
lus for the logic with⇒,# and 3 (but no co-implication or
henceforth), although such a result does not follow immedi-
ately from the present work.

Another subject that would be worth studying in the near
future is bisimulation in Gödel temporal logic. This tool has
been used to determine that temporal operators are not in-
terdefinable in the intuitionistic temporal setting (Balbiani
et al. 2018; Balbiani et al. 2020). For the class of tempo-
ral here-and-there models, ‘henceforth’ is a basic operator
that cannot be defined, while ‘eventually’ becomes defin-
able in terms of ‘henceforth’, ‘next’, and implication (Bal-
biani et al. 2018; Balbiani et al. 2020). When introducing co-
implication, results on definability exist in the literature: for
a combination of the logic of here-and-there, co-implication
and the basic modal logic K, it has been proven by (Balbiani
and Diéguez 2018) that modal operators become interdefin-
able. We do not know if co-implication has the same effect
to our Gödel temporal logic; a negative answer would re-
quire a suitable notion of bisimulation preserving both im-
plications, as well as the temporal operators.

In a different direction, logics such as PDL or CTL may
also enjoy naturally axiomatizable Gödel counterparts. The
techniques developed here and by (Aguilera et al. 2022)
could very well be applicable in these settings.
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soning in PSPACE. CoRR abs/2205.00574.
Alsinet, T., and Godo, L. 2013. A complete calculus for pos-
sibilistic logic programming with fuzzy propositional vari-
ables. CoRR abs/1301.3832.
Artemov, S.; Davoren, J.; and Nerode, A. 1997. Modal log-
ics and topological semantics for hybrid systems. Technical
Report MSI 97-05.
Balbiani, P., and Diéguez, M. 2016. Temporal here and
there. In Loizos, M., and Kakas, A., eds., Logics in Artificial
Intelligence, 81–96. Springer.
Balbiani, P., and Diéguez, M. 2018. Here and there
modal logic with dual implication. In Bezhanishvili, G.;
D’Agostino, G.; Metcalfe, G.; and Studer, T., eds., Advances
in Modal Logic 12, proceedings of the 12th conference on
Advances in Modal Logic, held in Bern, Switzerland, August
27–31, 2018, 63–82. College Publications.
Balbiani, P.; Boudou, J.; Diéguez, M.; and Fernández-
Duque, D. 2018. Bisimulations for intuitionistic temporal
logics. arXiv 1803.05078.
Balbiani, P.; Boudou, J.; Diéguez, M.; and Fernández-
Duque, D. 2020. Intuitionistic linear temporal logics. ACM
Trans. Comput. Log. 21(2):14:1–14:32.
Blandi, L.; Godo, L.; and Rodrı́guez, R. O. 2005. A con-
nection between similarity logic programming and Gödel
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