Bit Copying — The Ultimate Computational Simplicity

Oleg Mazonka, July 2009
mazonka@gmail.com

Abstract. A computational abstract machine based on twaabipes: referencing and bit
copying is presented. These operations are suffiég carrying out any computation. They
can be used as the primitives for a Turing-comptetgramming language. The interesting
point is that the computation can be done withogtd operations such a\D or OR. The
compiler and emulator of this language with sanmptegrams are available on the Internet.

Introduction

In a quest to build an imperative language withgimallest possible number of instructions several
One Instruction Set Computer (OISC) languages Hepen invented. One example, the ultimate
RISC architecture [1], utilizes a single instruatiocopy memory to memory. The complex
behaviour of such machine is achieved by mappiegntilachine registers on memory cells. For
example, a memory cell with the address zero isriskeuction pointer, so copying to this address
effectively realizes unconditional jump. Arithmetiperations are also achieved by using special
registers in memory performing more complex operation hardware level.

Another example, Subleq [2], does not have memaapped registers. Its computational power
based on program self-modification and its suffidie complex instruction. The abstract machine
is defined as a process working on an infinite yaogamemory cells with each instruction having
three operands. The processor reads from the methag operands, subsequent call8 C ,
subtracts the value of the cell addressed\lisom the value of the cell addressedBband stores
the result in the same cell addressedb¥f the result is less than or equal to zero, dkecution
jumps to the address and the processor reads the next instruction fiteere, otherwise next 3
operands are read from the memory. This languageoien to be Turing-complete. There are a
few variations of this language, which are simitamprinciple. A compiler from a simple C-like
language has been written, which compiles a progrdmSubleq processor code [3]. Attempts to
reduce the complexity of the atomic operation haenbundertaken. For example, Rojas [5] proves
that conditional branching is not necessary foversal computation given the ability of code self-
modification.

Although OISC languages have just one instructioa,instruction does a number of manipulations
or computations under the hood. Hence there is estoun: which language has the simplest
instruction and is it possible to make a languadk & simpler instruction?

Another interesting question relates to logic opens. It is commonly known that any classical
computations are usually done using bit logic opana: AND, OR, XOR, and NOT. These
operations are neither a complete set nor a ming@iatequired for computatio®R and XOR can

easily be expressed viND andNOT and vice versa. However it is commonly assumetl dha
needs at leasiND or OR like operations to make real computations. Itas possible to combine
OR and XOR operations to erase a single bit. Therefore they umable to produce classical
computations. Hence a question arises: is it plessdomake programmed computation without
using logical operations lik&ND andOR?

1. Referencing as Computational Operation

Surprisingly,OR and XOR reversible operations can produce irreversiblaltesf they are used in
combination with referencing. In the following tabl

000 001|010 011]100|101|110] 111
100/ 011]011]111| 110|100 010| 101

the first row has initial three bits. The secondvrbas the same bits with one invertédD{
operation applied). The one inverted is the oneresiced by all three, as the index of the bit equal
to binary representation taken modulo 3. As onesamntwo initial states (001 and 010) produce
the same final result (011), which makes this erderation irreversible.

A machine, similar to register machines descrilme8tephen Wolfram’s NKS [4], can be realized
using continuous process of bit inversion on theesaet of bits. For example, 3 bit machine
produce a sequence (000) (100) (110) (010) (0111)(101) (100) ...

The figure above shows Wolfram diagrams for 2,,%,4, and 7 bit machines. On the right side of
each diagram bits represented as dark (for 1) amtewfor 0) squares. On the left side a small
square shows the interpreted value of the bitse-attidress of the next bit to be inverted. The
address is calculated as the binary representatisome integer taken modulo number of bits.

Taking binary value and modulo may seem like compmperations. However there is a simple

model simulating such behaviour. Allow bits posia in a circle and an arrow pointing to any bit.

Each bit is assigned a rule how to rotate the aifatg value is 1. In one step the arrow rotates
according to the rules and the values of all latg] at the end of the step the bit pointed by the
arrow is inverted.

BVl e " o o o sl Rl e " S S e ol o ol e e A S P o k!

This Figure above shows the diagrams for 17, 18, B bit machines similar to the previous
figure. The picture is scaled 1 to 10 in the vaitiirection. 1000 steps are shown.

The table below shows the size of the loop (the sizthe pattern on the diagram) the machine
enters eventually when started with the initialbzeslues of all bits.

Bits | Loop size Bits | Loop size Bits | Loop size
3 6 13 66 23 18812
4 2 14 50 24 6
5 8 15 162 25 48000
6 6 16 2 26 544
7 50 17 346 27 54
8 2 18 18 28 62
9 18 19 1700 29 128116

10 10 20 10 30 30
11 112 21 12 31 635908
12 6 22 118 32 2

Bigger values of the loop size correspond to moragiex behaviour of the model.

In another example

0000
0000

0001
0001

0010
1010

0011
1011

0100
1100

0101 0110
0001] ...

the second row has one bit modified by the formula
(P[Al XORp[B]) —pl[Al,

whereA is the value of the first two bitB, is the value of the last two bits, apf] is the bit taken
by index.

The operations applied to bits are reversible,refgrencing makes the whole process irreversible.
Even if it feels like this process can do calcaatiit is still difficult to bring it into play tanake a
framework able to do desirable computations.

2. Bit Copying Language

It turns out that by taking the converse approatietis to combine a bit copying operation, which
is irreversible, with referencing — the programneatmputation is possible at the bit level.

A bit copying instruction always erases one bit. fst inspection it would seem that the entire
amount of information in the system is forever @dg until no changes are made. However this is
not the case. For example, in the procés®ver do (a—b, c—a, b—c), wherea, b, andc are bits,
and arrow means copy, the bits will circle in tbegd forever. This would be interpreted as a steady
but not static state. To do something more intergdets add a meaningful representation to each
collection of bits by associating an address wabhe

Let us define the imperative language, in which #fbstract machine operates on an array of
memory bits addressed from zero. Bits are grouptmwords of a particular size, memory cells.
For example, 8-bit words:

Memory | 01010101 00001111
Address| O 8

10101010
16

11001100
24

00110011 ...
32 40

Each instruction consists of three operadB:C, where each operand is one word. The instruction
copies the bit addressed Byinto the bit addressed 8, then jumps the process control to the
addres<C. The operand is read after the bit copying is done. This alldles instruction to be self-
modifiable (even though just one bit can be modifé a single point in time).

Since each word represents a bit address in theomyethe exact way of address interpretation can
be left undefined without sacrificing the concdpt.this implementation, however, it is assumed
little-endian binary bit representation.

Another undefined up to implementation feature asvhiio consider grouping memory bits into
words: physical — all words are aligned on mematiysize address, or logical — words are grouped
counting from the current address. In the secors# ¢he operand is allowed to specify any
address, not only multiple to the memory cell size.

This sole instruction does not do any more thah gopying a bit from one place to another, and

yet this simple single instruction is enough to m#ke language able to execute pre-programmed
sequence of operations. The abstract machine odlyidoes something more than copying bits: it

references bits and transfers the process cordrtthd next address of execution. However this

work may not need logic operatioABID or OR, and is done outside of the execution model, which
means it can be emulated by the same bit copyincess.

3. Assembly

To simplify the presentation of the language indian let us use the following assembly notation.
Each word is denoted &s V'’ x, whereL is an optional label serving for addressing thesmary
cell, V is the value of this memory,is the optional bit offset within the word (memamgil). Each
instruction is written on a separate line. For eplm

AOB1A
A:18 B:70

There are two instructions above. The first indicuc copies the lowest bit of the céll (whose
value is 18) into the second bit of the dBlllwhose value is 7), then jumps to the instruction
addressed bg, which is the next instruction. After the firsisinuction is executed the value of the
cell Bis changed to 5. For example, in 8-bit word mentbege two instructions are

2433241870.
If the bit offset is omitted it is considered to @eSo,A is the same a&'0 .
If the operandC is absent it is assumed to have the value oféecell address, i. e.
AB
is the same as
ABC
C: ..

which is the same as

AB?

Question mark?) is the address of the next memory cell, i.e.dbldress of the first bit of the
following word. Let's denoten?) as a multiple to cell size counted from the coirqgosition. So,

(0?) means the address of this positiah?) is the same a®] and is the next cell,2(?) is one
after the next cell; and 27?) is one before the previous cell. For examplejnk&uction

AB-2?
is the same as
CAABC

and is an infinite loop (assuming that it does modify C), as the bit referenced l#yis copied to
the bit referenced bB and the control is transferred to the addressefcellC:A, which is the
beginning of the original instruction. Remembetrt thas the value an@ is the address @&:A.

Given an assembly text one needs an environmemn@irtoa program, which is written in this
language. Therefore two steps are necessary: 1piBothe text into binary code as an array of
bits to form instructions; 2) Execute the binaryded instructions on the abstract machine. A
program called an assembler does the first stepaaremulator can do the second.

4. Macro Commands

To make a program description shorter and moreatdadlet us define a macro substitution
mechanism as in the following example:

.copy AB

:aef copy XY
X'0Y0

X1Y'1l

X wY' w
.end

The first line is the macro command which is subtd by the body of macro definition starting
with ".def " and ending with 'end ". The name after.def " becomes the name of the macro
and all subsequent names are formal argumentsetonttro. After macro substitution the code
becomes:

A0B0

A'1B1

A wB’ w

Herew is the index of the highest bit. It is equal te gize of memory cell minus one. Lets denote
the word size ag/, W=w+1.

Two other useful macro definitions are shift ant. rehift. shifts bits in the memory cell by 1
from lower to higher, and the lowest bit is seDtdt is the same as arithmetic multiplication hy 2
or the C programming language operatigg=1".

.def shiftL X : ZERO

X'(wl) X' w

X'(w2) X'(wl)
X'1 X2

X'0 X'1

ZERO X
.end

ZEROis defined at some place 2BRO:0. It appears after the colon at the end of macfmitien
argument list to signify that this name is defirmdside the macro definition. This is necessary
because the assembler tries to resolve all nantbgwihe body of macro definition or to tie them
to the formal arguments. Note, that the last irtsion copies the lower bit of theEROmemory
cell to the lower bit oK.

shiffR is the same ashiftt but works in the opposite direction. It corresperid integer
division by 2, or the C shift operator>=1".

Roll macros are similar to shift macros with theeption that they copy the end bit back to the
front. They can be defined in terms of the shiftroadefinitions:

.defrollR X : TMP
X TMP

.ShiftR X

TMP X' w
.end

.defrollL X : TMP
X' wTMP
.shiftL X

TMP X

.end

TheTMPmemory cell is a placeholder and is defined irxernal library.

The macros copy, shift, and roll are useful, butkldhe logic to be able to perform useful
calculations.

5. Conditional jump

Consider the following code:

.def jump01 A b
A'b 2?' k
0J0
A'b 2?' k
1J1
A'b 27 k
2732

A'b 27 k
(w-2) J'(
A'b 27 k
(w-1) J(
A'b 27 k

wJ" wJ:0
.end

Ww-2)
w-1)

The offsetk is defined such that2W. Since a word is an address of a bit in the meprtbere are

k bits corresponding to the offset within a wordeTst of the word’s bits specify the address of a
memory cell. For example, for a 32-bit wdeds 5 because modifications in the sixth bit arghlbr
change the address of the memory cell, but nobttset inside the memory cell. Note, that when
writing to the offsek updates the sixth bit K=5.

-7 -

The first line moves the bli of the memory celA to thek-th bit of the first operand of the next
instruction. After this is done the first operandtioe next instruction is zero or equal\a The
next instruction copies the value of the first ditthe cell addressed either zeroWirto the cell
labelledJ — which is the last memory cell in this list otructions, and which is the address where
the process control will go after the last instiuctis executed. The subsequent lingsb|

27" k)(1J1)] copy the second bit to tRecell, and so on.

When the last bit is copied, the c&lholds the same value as the cell with addressedfifist word
in the memory) or the cell with addréas(the second word in the memory) depending on véreth
A’ b was 0 or 1.

By marking the first two memory cells in the progras special, in the sense that they can be used
only for this operation, it is possible to writg@neric test for a particular bit.

Z0:0Z1:.0

.deftest AbBOB1:20Z1
.copy LO Z0

.copy L1 Z1

JumpOl1 A b

LO:BO L1:B1

.end

This code defines a macro that tests thdolmf memory cellA and jumps to either addreB§ or
B1if the bit is O or 1 correspondingly.

Testing a bit is a core requirement of all the biglevel computation described below. In most of
these cases testing a bit involves checking thestwr highest bit in the word:

.def testL A BO B1

test AOBOB1

.end

.def testH A BO B1

test A wB0 B1
.end

6. Arithmetic

One of the most basic operations, which will beureyl for definitions of other more complex
constructions, is the increment operation. To im@et a memory celA one can combine the roll,
shift, and test macros in the following way:
.copy ONE ctr
begin: .testL A testO testl
test0: ONE A rollback
testl: ZERO A
.testH ctr next rollback
next: .shiftL ctr
JollR A
0 0 begin

rollback: .testL ctr roll End

roll: .shiftR ctr
.JrollL A
0 0 rollback

End:00
ctr:0 0

The first line initialises the countetr to 1. The lowest bit of the operads swapped, and the
operand and counter are rolled until either operdihds zero or the counter bit 1 reaches the
highest bit position, which means that @allbits of the operand were processed. After this the
operand can be rolled back to the original bit posi

In the code abovEEROandONEare defined a8ERO:0 andONE:1. The instructioro 0 label
is used as an unconditional jump to addreiss. It copies the first bit in the memory to itself,
and does not change its value.

Addition can be defined in a similar way with theception that there are four operands. These are
in order: first number, second number, result, dredadder (for passing over an extra bit). The
lowest bits of the adder and first and second nusmaee added giving two bits, one of which goes
to the lowest bit of the result, and the other gtmeshe second bit of the adder. Then all four
operands are rolled and the process continueseXae& code for addition commaadd is given

in Appendix B1.

Subtraction can simply be defined as

.defsub XY Z
.invyY

.incY

.add XY Z
.end

whereinc is incrementadd is addition Z=X+Y) described above, andv is the inversion
operation, which simply inverts all bits in a memaell. The inversion operation is simpler than
increment. See Appendix B2 for tm» code definition.

7. Process Control and Pointers

To test for particular values of variables one gsa the following definitions:

.def ifeq X Y yes no
Sub XY Z

.ifzero Z yes no
Z:00

.end

.def ifzero Z yes no
.testH Z cont no
cont: .copy Z A
inv A

inc A

.testH A yes no
A:00

.end

.def iflt A B yes no

SubABZ
.testH Z no yes
Z00

.end

The first macroifeq checks if both arguments equal to each other byntg the result of the
subtraction. The second macifeero tests whether its argument is equal to zero. Tis
performed in the following way. Test the highest(biegative value), if this bit is zero — negate th
argument (in a simple binary signed representatieersion and increment produce the same result
as negation) and re-test the highest bit. Note, tiva argument is copied before it is negated
because it should not be changed. The third mificro tests if the first argument is less than the
second.

To write the classical “Hello, World!” program, higerating a pointer over an array of cells, one
needs to define the tricky operation of pointeredienencing. Consider the following program:

Z0:0Z1:0

start: .deref p X
.testH X print -1
print: .out X
.add p Wp
0 O start
p:H X:0
H:72 101 108
108 111 44
3287111
114 108 100
3310-1

The labelH is the address of a string holding the ASCII ctate'Hello, World!” followed by the
end-of-line sentinebp is a pointer — a cell initialized with the addre$she string.

The first instruction does not do anything sinceoipies the bit addressed 0 to itself. It is neagss
because the conditional jump (which uses the tiivetwords of the memory) is part of other macro
commands. The next command dereferemcey copying the value of the cell, whose address is
stored inp, into the cellX (this operation is discussed below). ChecX i§ negative. If it is go to
the address of (1), otherwise continue execution to the next linkee Biddress (1) is special in the
sense that it is assumed that the program hailte i€ontrol is passed to the address)(In fact,
this is similar to how halt is defined in other dnstruction set languages, for example, Subleq [2]
The next line prints the ASCII character in cell[The specific implementation of printing will be
discussed later in the input/output sectionX kivas not negative, the pointgerhas not reached the
end of array and still points to a valid array ed@mn The pointer is incremented by the size of the
memory cell and this process is continued untilithking instruction is executed.

It is possible to copy a memory cell referencedabgther memory cell by setting up an iterative
instruction with the source and target addressed @apeat this instruction fokV times
incrementing the addresses each time, so the whotd is copied. For example, like in the
following code:

.copy ONE ctr
.copy P A
.copyLB

begin: A:0 B:0
.testH ctr next End

-10 -

next: .shiftL ctr
.nc A
.inc B
0 0 begin

End: ...
L:X ctr:0

This block of code does the same as C programnaingulage statemed=*P. The counter is
prepared as in the previous examples. The poirda@revis copied to the first operand of the
iterative instruction4:0 B:0), then the address of the result cell is copi¢al he second operand
of the iterative instruction. Now the iterative tingtion is executedlV number of times with each
execution incrementing the addresses — valuesadflerands.

This approach can be used for copying a valueammemory cell pointed by another pointer. It is
just a matter of swapping ti#eandB operands in the iterative instruction.

8. More Arithmetic

Multiplication is quite simple once shift and adlit are implemented
.copy ZERO zZ

begin: .ifzero X End L1
L1: .testL X nextL2
L2: addzZYZz
next: .shiftR X

.shiftL Y

0 0 begin

End:00
This code shifts the first multiplier to the leficathe second multiplier to the right at the saime t

accumulating the result by adding the second mlidtiff the lowest bit of the first multiplier is.1
This algorithm is expressed in a simple formula:

X [12%x2Y, if X even;
XxY =)
(X=2)/2x2y +Y, if X odd.

Division is slightly more complex. Given two numbkef andY, increaseY by 2 until the next
increase give¥ greater theiX. At the same time as increasi¥igincrease a variablé by 2, which
is initialised to 1. NowZ holds the part of the result of division - thetriesto be calculated further
usingX-Y andY, which is done iteratively accumulating Zls. At the last step wheXx, X is the
remainder. Code of the division is presented inexujx B3.

The division operation is imperative for printinggmbers as decimal strings. The algorithm
implementing this divides the value by 10 and stdhe remainders into an array. When the value
becomes 0, it iterates backwards over the arrajipg numbers in ASCII code.

.testH X begin negate

negate: .inv X

! The algorithm does not properly handle negativeag This is sacrificed for the sake of simplicity

-11 -

inc X
.out minus

begin: .div Xten X Z
torefZ p
.add p Wp
.ifzero X print begin

print: .sub p Wp
.derefpz
.add Z2do z
.out Z
.ifeq p q End print

End:0 O

Z:0 d0:48 ten:10
p:A g:A minus:45
A000

The first section, labelledegate , checks whether the argument is less than O.,Itlsn the
argument is negated and the minus sign is prinié@. second section repeatedly divides the
argument and stores the results into the atrhy a dereferencing operation through the poipter
The commandliv divides X by 10, stores the result back ¥oand the remainder td. The
following commandoref writes the value of into the cell pointed bp. This process continues
until X is zero. In the next section marked by the lgbek the pointerp runs back until it is
equal toq, which is initialised toA, which is the beginning of the array. The commaackf
copies the value from the arrayZoThen the ASCII code (48) for character O is adaled the byte

is printed. [It is assumed that the memory cetiasless than 8-bit byte.]

9. Input and Output

At this point, it is possible to write a programathcan add, subtract, multiply, divide, iterate,
dereference, and jump. To produce an output onvean input, one has to definehat is the
output and input. This is called the pragmaticshef language or the environment of the abstract
machine, which implements the language. Any dediniof input to or output from the abstract
machine will be a burden of the environment, orour case the emulator of the language (or
processor if implemented as hardware). Since thgram can copy only bits, it is natural to define
a stream of bits as bits copied to or from a pal@icaddress. One special addresk) (has already
been introduced as the halt address — a programih#ie process control is passed to the address
(- 1). One can use the same address without ambiguity:

o
0]
—h
o

utH

LIIITITT
GRWNES
PR RRhs

o LI
No

)
>
o

.definH

(BN
IIX
NF— O

-12 -

D
NoURW

aTIIIIczx

Note, that only the lower eight bits are copiedata from the word. This is for practical reasons.
With this definition it is possible to write a wosize independent assembly code, which inputs and
outputs characters as 8-bit symbols.

The emulator keeps buffers of up to eight bits. Wt program outputs a bit, it is placed into the
buffer. When the buffer is full, a character in AS€Code is flushed to the standard emulator’s
output from the buffer. When the program copiedt d&rbm the input, it is removed from the input
buffer; and if the buffer is empty a characteraad and its bits are placed into the buffer.

Below is a program, which prints the first twehaetorials.
Z0:0 21:0

start:.prn X
.mul XYY
.out ex
.out eq
.prnY
.out eol
.inc X

.ifeq X TH -1 start

X:1Y:1ex:33
e0l:10 eq:61 TH:13

The macrgrn is a printing command described in the previousiee. The output of the program
is

11=1

21=2

3!=6

41=24

5!1=120

6!=720
71=5040
8!=40320
91=362880
10!=3628800
11!=39916800
121=479001600

This program runs sufficiently quickly on a modewmputer with the current implementation of
the assembler, emulator, and a collection of mdefored commands. The word size is 32 bits and
the size of the program (after assembling) is ath@L@00 instructions.

10. Functions and Library

It is handy to put all macro definitions into onke + a library, and use it with any program. For
this, a third keyword command is defined (the othaer aredef andend):

-13-

.include library_file_name

Any program using the library is required to inauil and start with the linez0:0 Z1:0). For
example,

Z0:0Z1:0

.out H
.outi
00-1

H:72i:105
.include lib

prints “Hi”.

If all the command definitions described in thigppawere defined as macros, the resulting code
for any program even a simple one would be enormblus is because macros are heavily defined
through other macros. It means that any commae#dpanded or inlined at every place where it is
used. This is done though all the hierarchy of maeafinitions (see Appendix A). To deal with this
problem a command can be defined as the actual wodeing with its own arguments. Such
pieces of code are called functions. The macrondefn copies the formal arguments to the
function’s arguments and passes the process caattioé function entry point. The caller code also
has to pass its current address to enable thegg@omtrol to be returned back to the caller code.
Once the control is returned back from the functibbe macro definition can copy the result back
to the arguments if necessary. Obviously thesetiume cannot be recursive because there is no
concept of stack

For example, the subtractisnb macro and function are defined:

.defsub XY Z:sub f Xsub f Ysub f RET sub_f
.copy X sub_f X
.copy Ysub f Y
.copy L sub_ f RET
O0Osub_f
L:JO
J:..copy sub_f XZ
.end

:;sub_f: .sub_f defsub f X sub f Y
sub f RET:0sub f X:0sub f Y:0

sub internal macro definition
.defsub f def XY :sub f RET

.copy sub_f RET Return
invyY

incY

.add XY X

End:0 O Return:0

.end

First, there is a macro definition, which copiesotarguments into global arguments for the
function. Next is the global definition of the enpoint for the function. The body of the function
is defined again through the macro just to keepititernal names outside of the global scope.

2 |t does not mean that this concept cannot bedntred. This has been implemented for Higher Subleq.

-14 -

Ignore for now that a colon precedes the labelttier function entry point. The next line defines
memory cells for the return value and the two argots. Two are enough, because the result is
passed back inside the first function argument. fidad line is a comment. Then there is the body
of the function. Its first command is to copy tle¢urn address to its last instruction — uncondéion
jump back to the caller’s codle

Functions allow the same code to be executed niltimes instead of replicating code in every
place where an operation is required. However tlegeside effect: since the entry point is global
(not inside the macro definition) the code for thiection will be present in the program even isthi
function is not used. This is undesirable. Smatigpams have to remain small after assembling,
and should not include the whole library. To copthwhis situation an additional mechanism has
been added to the assembler. It marks a commandnsamction or a macro command as
conditional if the line begins with a colon. If ieme — the label — becomes an unresolved symbol,
the command is added to the program. So this is tbyline éub_f), in the example above,
begins with the colon.

Conclusion

In this paper two goals have been achieved. Otfgatsanother OISC language has been invented
that seems to have a much simpler instruction tharcurrently known OISC languadebecause
it does not explicitly require logic gates.

The other goal has been to prove that bit copyipgrations coupled with referencing (or
addressing) is enough to build a model allowingiffgscomplete calculationslt turns out that it is
not only possible in principle, but also practigadichievable. Simple programs written in this bit-
to-bit copying language, work within reasonabledigpace resource limits. For example, using the
emulator on my PC a program can calculate the fiattof 12 within seconds. The program
multiplies numbers from 1 to 12, and then uses raodiivision to print digits of the result.

The language presented in this paper has beenrimepted. Its assembler, emulator, and the
library can be downloaded from [7].

® This copy command can be saved if the outer maanccopy directly to this memory cell.

* In February 2010 Marc Scibetta published on hib pege a model incorporating bit-inversion and mdional
jump.

> Only assembly language with a few library macrmomnds can be regarded exactly as Turing-comietause
they do not have the memory cell size boundaryckvlimits the address space. Bit copying instrutdiare loosely
Turing-complete or more precisely they are of Lihe8ounded Automaton computational class, whicthesclass the
real computers belong to. Formal proof can be fanrjd] where an interpreter of a Turing-completaduage DBFI
described in [6] is presented. Keymaker (esolamgsuser) argued that the instruction language cbalthade Turing-
complete if addressing is relative, not absoluteeeéms that it is possible to redefine the languagise relative
addressing, but that is outside of the scope effihper.

-15 -

Appendix A

This diagram represents dependencies between dascind macros in the library in the current
implementation [7]. Direct dependencies, which aso indirect, are omitted. Different
implementation algorithms would result in differel@pendency diagrams, but general dependency
levels would be the same.

Appendix B

Bl .add
This code defines the addition operation as desdrib the section “Arithmetic”™:

.copy ONE ctr
.copy ZERO adr

begin: .copy ZERO btr
.testL adr testx inctestx

inctestx: .inc btr
testx: .testL X testy inctesty

inctesty: .inc btr
testy: .testL Y testz inctestz

inctestz: .inc btr
testz: btrZ
btr'l adr'l

.testH ctr rollcont rollback

rollcont: .shiftL ctr
.rolIR adr
.JrolIR X
JolIRY
.rollR Z
0 0 begin

-16 -

rollback: .testL ctr roll End
roll: .shiftR ctr
.rollL Z
0 O rollback
End:00
ctr:0 adr:0 btr:0
The ancillary variablectr is used to count the number of rolls applied te #nguments. The
variableadr is the adder, which is used for passing overtbitthe next bit position. The variable

btr is the sum of three bits taken from the samedsitpn of the two summing arguments and the
adder.

B2 .inv
The code inverting bits in one word is straightfardictr is as usual an ancillary variable.

.copy ONE ctr
begin: .testL ARG copyl copyO

copyl: ONE ARG 47
copyO: ZERO ARG

.testH ctr rollcont rollback
rollcont: .shiftL ctr

.rolIR ARG

0 0 begin
rollback: .testL ctr roll End
roll: .shiftR ctr

.rollL ARG

0 0 rollback

End:0 O

B3 .div

Below is the working code implementing the divisialgorithm described in the section “More
Arithmetic”. Its arguments areX — dividend,Y — divisor, Z — result of integer divisionR —
remainder.

.copy ZERO zZ
testH X L1 End
L1: .testHYL2End
L2: .ifzero Y End begin
begin: .ift XY L3 L4

L3: .copy XR
00 End

L4: .copyY bl
.copy ONE i1

next: .copy bl bp

.copy ilip
.shiftL b1

-17 -

.shiftL i1
.iflt X b1 rec L5

rec: .sub Xbp X
.addZip z
0 0 begin

L5: .testH bl next End
End:0 0

b1:0 bp:0 0
i1:0ip:00

Acknowledgements

| would like to thank my daughter, Sophia Mazonke, helping me with English grammar. | also
would like to thank James Tebneff for valuable camis, which greatly improved the clarity of
this paper.

References

1. Douglas W. Jones, The Ultimate RISC, ACM SIGARC#&mMmputer Architecture News, archive
Volume 16, Issue 3 (June 1988) Pages: 48 - 55

2. Subleq, http://esolangs.org/wiki/Subleq

3. Higher Subleq, compiler from a simple C-likedaage into Subleq code,
http://mazonka.com/subleg/hsq.html

4. Stephen Wolfwam, “A New Kind of Science”, 20@hapter 3, Section 9 “Register Machines”

5. R. Rojas, "Conditional Branching is not Necegdar Universal Computation in von Neumann
Computers”, Journal of Universal Computer Scienve®, 2, N. 11, 1996, pp. 756-767

6. Oleg Mazonka, Daniel B. Cristofani, “A Very Sh&elf-Interpreter”, arXiv:cs/0311032v1.

7. BitBitJump, http://mazonka.com/bbj/

-18 -

