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Abstract. A computational abstract machine based on two operations: referencing and bit 
copying is presented. These operations are sufficient for carrying out any computation. They 
can be used as the primitives for a Turing-complete programming language. The interesting 
point is that the computation can be done without logic operations such as AND or OR. The 
compiler and emulator of this language with sample programs are available on the Internet. 

 
 
 
 

Introduction 
 
In a quest to build an imperative language with the smallest possible number of instructions several 
One Instruction Set Computer (OISC) languages have been invented. One example, the ultimate 
RISC architecture [1], utilizes a single instruction, copy memory to memory. The complex 
behaviour of such machine is achieved by mapping the machine registers on memory cells. For 
example, a memory cell with the address zero is the instruction pointer, so copying to this address 
effectively realizes unconditional jump. Arithmetic operations are also achieved by using special 
registers in memory performing more complex operations on hardware level. 
 
Another example, Subleq [2], does not have memory mapped registers. Its computational power 
based on program self-modification and its sufficiently complex instruction. The abstract machine 
is defined as a process working on an infinite array of memory cells with each instruction having 
three operands. The processor reads from the memory three operands, subsequent cells A B C , 
subtracts the value of the cell addressed by A from the value of the cell addressed by B and stores 
the result in the same cell addressed by B. If the result is less than or equal to zero, the execution 
jumps to the address C and the processor reads the next instruction from there, otherwise next 3 
operands are read from the memory. This language is proven to be Turing-complete. There are a 
few variations of this language, which are similar in principle. A compiler from a simple C-like 
language has been written, which compiles a program into Subleq processor code [3]. Attempts to 
reduce the complexity of the atomic operation had been undertaken. For example, Rojas [5] proves 
that conditional branching is not necessary for universal computation given the ability of code self-
modification. 
 
Although OISC languages have just one instruction, the instruction does a number of manipulations 
or computations under the hood. Hence there is a question: which language has the simplest 
instruction and is it possible to make a language with a simpler instruction?  
 
Another interesting question relates to logic operations. It is commonly known that any classical 
computations are usually done using bit logic operations: AND, OR, XOR, and NOT. These 
operations are neither a complete set nor a minimal set required for computation. OR and XOR can 
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easily be expressed via AND and NOT and vice versa. However it is commonly assumed that one 
needs at least AND or OR like operations to make real computations. It is not possible to combine 
OR and XOR operations to erase a single bit. Therefore they are unable to produce classical 
computations. Hence a question arises: is it possible to make programmed computation without 
using logical operations like AND and OR? 
 
 

1. Referencing as Computational Operation 

Surprisingly, OR and XOR reversible operations can produce irreversible results if they are used in 
combination with referencing. In the following table: 
 

000 001 010 011 100 101 110 111 
100 011 011 111 110 100 010 101 

 
the first row has initial three bits. The second row has the same bits with one inverted (NOT 
operation applied). The one inverted is the one referenced by all three, as the index of the bit equal 
to binary representation taken modulo 3. As one can see two initial states (001 and 010) produce 
the same final result (011), which makes this entire operation irreversible. 
 
A machine, similar to register machines described in Stephen Wolfram’s NKS [4], can be realized 
using continuous process of bit inversion on the same set of bits. For example, 3 bit machine 
produce a sequence (000) (100) (110) (010) (011) (111) (101) (100) ...  
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The figure above shows Wolfram diagrams for 2, 3, 4, 5, 6, and 7 bit machines. On the right side of 
each diagram bits represented as dark (for 1) and white (for 0) squares. On the left side a small 
square shows the interpreted value of the bits – the address of the next bit to be inverted. The 
address is calculated as the binary representation of some integer taken modulo number of bits.  
 
Taking binary value and modulo may seem like complex operations. However there is a simple 
model simulating such behaviour. Allow bits positioned in a circle and an arrow pointing to any bit. 
Each bit is assigned a rule how to rotate the arrow if its value is 1. In one step the arrow rotates 
according to the rules and the values of all bits, and at the end of the step the bit pointed by the 
arrow is inverted. 

 
This Figure above shows the diagrams for 17, 18, and 19 bit machines similar to the previous 
figure. The picture is scaled 1 to 10 in the vertical direction. 1000 steps are shown. 
 
The table below shows the size of the loop (the size of the pattern on the diagram) the machine 
enters eventually when started with the initial zero values of all bits. 
 

Bits Loop size Bits Loop size Bits Loop size 
3 6 13 66 23 18812 
4 2 14 50 24 6 
5 8 15 162 25 48000 
6 6 16 2 26 544 
7 50 17 346 27 54 
8 2 18 18 28 62 
9 18 

 

19 1700 

 

29 128116 
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10 10 20 10 30 30 
11 112 21 12 31 635908 
12 6 22 118 32 2 

 
Bigger values of the loop size correspond to more complex behaviour of the model. 
 
In another example 
 

0000 0001 0010 0011 0100 0101 0110 
0000 0001 1010 1011 1100 0001 ... 

 
the second row has one bit modified by the formula  
 

( p [A] XOR p [B] ) → p [A],  
 
where A is the value of the first two bits, B is the value of the last two bits, and p[] is the bit taken 
by index. 
 
The operations applied to bits are reversible, but referencing makes the whole process irreversible. 
Even if it feels like this process can do calculation, it is still difficult to bring it into play to make a 
framework able to do desirable computations. 
 
 

2. Bit Copying Language 

It turns out that by taking the converse approach – that is to combine a bit copying operation, which 
is irreversible, with referencing – the programmable computation is possible at the bit level. 
 
A bit copying instruction always erases one bit. On first inspection it would seem that the entire 
amount of information in the system is forever reducing until no changes are made. However this is 
not the case. For example, in the process: forever do (a→b, c→a, b→c), where a, b, and c are bits, 
and arrow means copy, the bits will circle in the loop forever. This would be interpreted as a steady 
but not static state. To do something more interesting lets add a meaningful representation to each 
collection of bits by associating an address with each. 
 
Let us define the imperative language, in which the abstract machine operates on an array of 
memory bits addressed from zero. Bits are grouped into words of a particular size, memory cells. 
For example, 8-bit words: 
 

Memory 01010101 00001111 10101010 11001100 00110011 ... 
Address 0 8 16 24 32 40 

 
Each instruction consists of three operands: A B C, where each operand is one word. The instruction 
copies the bit addressed by A into the bit addressed by B, then jumps the process control to the 
address C. The operand C is read after the bit copying is done. This allows the instruction to be self-
modifiable (even though just one bit can be modified at a single point in time). 
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Since each word represents a bit address in the memory, the exact way of address interpretation can 
be left undefined without sacrificing the concept. In this implementation, however, it is assumed 
little-endian binary bit representation.  
 
Another undefined up to implementation feature is how to consider grouping memory bits into 
words: physical – all words are aligned on memory cell size address, or logical – words are grouped 
counting from the current address. In the second case the operand C is allowed to specify any 
address, not only multiple to the memory cell size. 
 
This sole instruction does not do any more than just copying a bit from one place to another, and 
yet this simple single instruction is enough to make the language able to execute pre-programmed 
sequence of operations. The abstract machine obviously does something more than copying bits: it 
references bits and transfers the process control to the next address of execution. However this 
work may not need logic operations AND or OR, and is done outside of the execution model, which 
means it can be emulated by the same bit copying process.  
 
 

3. Assembly 

To simplify the presentation of the language instruction let us use the following assembly notation. 
Each word is denoted as L:V’ x, where L is an optional label serving for addressing this memory 
cell, V is the value of this memory, x is the optional bit offset within the word (memory cell). Each 
instruction is written on a separate line. For example: 
 
        A’0 B’1 A 
        A:18 B:7 0 
 
There are two instructions above. The first instruction copies the lowest bit of the cell A (whose 
value is 18) into the second bit of the cell B (whose value is 7), then jumps to the instruction 
addressed by A, which is the next instruction. After the first instruction is executed the value of the 
cell B is changed to 5. For example, in 8-bit word memory these two instructions are  
 
        24 33 24 18 7 0.  
 
If the bit offset is omitted it is considered to be 0. So, A is the same as A’0 . 
 
If the operand C is absent it is assumed to have the value of the next cell address, i. e. 
 
        A B 
 
is the same as 
 
        A B C 
        C: ... 
 
which is the same as 
 
        A B ? 
 
Question mark (?) is the address of the next memory cell, i.e. the address of the first bit of the 
following word. Let’s denote (n?) as a multiple to cell size counted from the current position. So, 
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(0?) means the address of this position; (1?) is the same as (?) and is the next cell; (2?) is one 
after the next cell; and (-2?) is one before the previous cell. For example, the instruction 
 
        A B -2? 
 
is the same as 
 
        C:A B C 
 
and is an infinite loop (assuming that it does not modify C), as the bit referenced by A is copied to 
the bit referenced by B and the control is transferred to the address of the cell C:A , which is the 
beginning of the original instruction. Remember that A is the value and C is the address of C:A . 
 
Given an assembly text one needs an environment to run a program, which is written in this 
language. Therefore two steps are necessary: 1) Compile the text into binary code as an array of 
bits to form instructions; 2) Execute the binary coded instructions on the abstract machine. A 
program called an assembler does the first step, and an emulator can do the second. 
 
 

4. Macro Commands 

To make a program description shorter and more readable let us define a macro substitution 
mechanism as in the following example: 
 
        .copy A B 
        ... 
        .def copy X Y 
        X’0 Y’0 
        X’1 Y’1 
        ... 
        X’ w Y’ w 
        .end 
 
The first line is the macro command which is substituted by the body of macro definition starting 
with ".def " and ending with ".end ". The name after ".def " becomes the name of the macro 
and all subsequent names are formal arguments to the macro. After macro substitution the code 
becomes: 
 
        A’0 B’0 
        A’1 B’1 
        ... 
        A’ w B’ w 
 
Here w is the index of the highest bit. It is equal to the size of memory cell minus one. Lets denote 
the word size as W, W=w+1. 
 
Two other useful macro definitions are shift and roll. shiftL  shifts bits in the memory cell by 1 
from lower to higher, and the lowest bit is set to 0. It is the same as arithmetic multiplication by 2, 
or the C programming language operation "<<=1".  
 
        .def shiftL X : ZERO 
        X'( w-1) X' w 
        X'( w-2) X'( w-1) 
        ... 
        X'1 X'2 
        X'0 X'1 
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        ZERO X 
        .end 
 
ZERO is defined at some place as ZERO:0. It appears after the colon at the end of macro definition 
argument list to signify that this name is defined outside the macro definition. This is necessary 
because the assembler tries to resolve all names within the body of macro definition or to tie them 
to the formal arguments. Note, that the last instruction copies the lower bit of the ZERO memory 
cell to the lower bit of X. 
 
shiftR  is the same as shiftL  but works in the opposite direction. It corresponds to integer 
division by 2, or the C shift operator ">>=1". 
 
Roll macros are similar to shift macros with the exception that they copy the end bit back to the 
front. They can be defined in terms of the shift macro definitions: 
 
        .def rollR X : TMP 
        X TMP 
        .shiftR X 
        TMP X' w 
        .end 
 
        .def rollL X : TMP 
        X' w TMP 
        .shiftL X 
        TMP X 
        .end 
 
The TMP memory cell is a placeholder and is defined in an external library. 
 
The macros copy, shift, and roll are useful, but lack the logic to be able to perform useful 
calculations. 
 
 

5. Conditional jump 

Consider the following code: 
 
        .def jump01 A b 
        A'b 2?' k 
        0 J'0 
        A'b 2?' k 
        1 J'1 
        A'b 2?' k 
        2 J'2 
        ... 
        A'b 2?' k 
        ( w-2) J'( w-2) 
        A'b 2?' k 
        ( w-1) J'( w-1) 
        A'b 2?' k 
        w J' w J:0 
        .end 
 
The offset k is defined such that 2k=W. Since a word is an address of a bit in the memory, there are 
k bits corresponding to the offset within a word. The rest of the word’s bits specify the address of a 
memory cell. For example, for a 32-bit word k is 5 because modifications in the sixth bit and higher 
change the address of the memory cell, but not the offset inside the memory cell. Note, that when 
writing to the offset k updates the sixth bit if k=5. 
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The first line moves the bit b of the memory cell A to the k-th bit of the first operand of the next 
instruction. After this is done the first operand of the next instruction is zero or equal to W. The 
next instruction copies the value of the first bit of the cell addressed either zero or W to the cell 
labelled J  – which is the last memory cell in this list of instructions, and which is the address where 
the process control will go after the last instruction is executed. The subsequent lines [(A'b 

2?' k)(1 J'1) ] copy the second bit to the J  cell, and so on. 
 
When the last bit is copied, the cell J  holds the same value as the cell with address 0 (the first word 
in the memory) or the cell with address W (the second word in the memory) depending on whether 
A’ b was 0 or 1. 
 
By marking the first two memory cells in the program as special, in the sense that they can be used 
only for this operation, it is possible to write a generic test for a particular bit. 
 
        Z0:0 Z1:0 
        .def test A b B0 B1 : Z0 Z1 
        .copy L0 Z0 
        .copy L1 Z1 
        .jump01 A b 
        L0:B0 L1:B1 
        .end 
 
This code defines a macro that tests the bit b of memory cell A and jumps to either address B0 or 
B1 if the bit is 0 or 1 correspondingly. 
 
Testing a bit is a core requirement of all the higher-level computation described below. In most of 
these cases testing a bit involves checking the lowest or highest bit in the word: 
 
        .def testL A B0 B1 
        .test A 0 B0 B1 
        .end 
        .def testH A B0 B1 
        .test A w B0 B1 
        .end 
 
 

6. Arithmetic 

One of the most basic operations, which will be required for definitions of other more complex 
constructions, is the increment operation. To increment a memory cell A one can combine the roll, 
shift, and test macros in the following way: 
 
        .copy ONE ctr 
 
begin:  .testL A test0 test1 
 
test0:  ONE A rollback 
test1:  ZERO A 
        .testH ctr next rollback 
 
next:   .shiftL ctr 
        .rollR A 
        0 0 begin 
 
rollback: .testL ctr roll End 
 



- 9 - 

roll:   .shiftR ctr 
        .rollL A 
        0 0 rollback 
 
        End:0 0 
        ... 
        ctr:0 0 
 
The first line initialises the counter ctr  to 1. The lowest bit of the operand A is swapped, and the 
operand and counter are rolled until either operand bit is zero or the counter bit 1 reaches the 
highest bit position, which means that all w bits of the operand were processed. After this the 
operand can be rolled back to the original bit position. 
 
In the code above ZERO and ONE are defined as ZERO:0 and ONE:1. The instruction 0 0 label  
is used as an unconditional jump to address label.  It copies the first bit in the memory to itself, 
and does not change its value. 
 
Addition can be defined in a similar way with the exception that there are four operands. These are 
in order: first number, second number, result, and the adder (for passing over an extra bit). The 
lowest bits of the adder and first and second numbers are added giving two bits, one of which goes 
to the lowest bit of the result, and the other goes to the second bit of the adder. Then all four 
operands are rolled and the process continues. The exact code for addition command add  is given 
in Appendix B1. 
 
Subtraction can simply be defined as 
 
        .def sub X Y Z 
        .inv Y 
        .inc Y 
        .add X Y Z 
        .end 
 
where inc  is increment, add  is addition (Z=X+Y) described above, and inv  is the inversion 
operation, which simply inverts all bits in a memory cell. The inversion operation is simpler than 
increment. See Appendix B2 for the inv  code definition. 
 
 

7. Process Control and Pointers 

To test for particular values of variables one can use the following definitions: 
 
        .def ifeq X Y yes no 
        .sub X Y Z 
        .ifzero Z yes no 
        Z:0 0 
        .end 
 
        .def ifzero Z yes no 
        .testH Z cont no 
        cont: .copy Z A 
        .inv A 
        .inc A 
        .testH A yes no 
        A:0 0 
        .end 
 
        .def iflt A B yes no 
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        .sub A B Z 
        .testH Z no yes 
        Z:0 0 
        .end 
 
The first macro ifeq  checks if both arguments equal to each other by testing the result of the 
subtraction. The second macro ifzero  tests whether its argument is equal to zero. This is 
performed in the following way. Test the highest bit (negative value), if this bit is zero – negate the 
argument (in a simple binary signed representation inversion and increment produce the same result 
as negation) and re-test the highest bit. Note, that the argument is copied before it is negated 
because it should not be changed. The third macro iflt  tests if the first argument is less than the 
second. 
 
To write the classical “Hello, World!” program, by iterating a pointer over an array of cells, one 
needs to define the tricky operation of pointer dereferencing. Consider the following program: 
 
        Z0:0 Z1:0 
 
start:  .deref p X 
        .testH X print -1 
print:  .out X 
        .add p W p 
        0 0 start 
 
        p:H X:0 
        H:72 101 108 
        108 111 44 
        32 87 111 
        114 108 100 
        33 10 -1 
 
The label H is the address of a string holding the ASCII code for “Hello, World!” followed by the 
end-of-line sentinel. p is a pointer – a cell initialized with the address of the string. 
 
The first instruction does not do anything since it copies the bit addressed 0 to itself. It is necessary 
because the conditional jump (which uses the first two words of the memory) is part of other macro 
commands. The next command dereferences p by copying the value of the cell, whose address is 
stored in p, into the cell X (this operation is discussed below). Check if X is negative. If it is go to 
the address of (-1), otherwise continue execution to the next line. The address (-1) is special in the 
sense that it is assumed that the program halts if the control is passed to the address (-1). In fact, 
this is similar to how halt is defined in other one instruction set languages, for example, Subleq [2]. 
The next line prints the ASCII character in cell X. [The specific implementation of printing will be 
discussed later in the input/output section.] If X was not negative, the pointer p has not reached the 
end of array and still points to a valid array element. The pointer is incremented by the size of the 
memory cell and this process is continued until the halting instruction is executed. 
 
It is possible to copy a memory cell referenced by another memory cell by setting up an iterative 
instruction with the source and target addresses and repeat this instruction for W times 
incrementing the addresses each time, so the whole word is copied. For example, like in the 
following code: 
 
        .copy ONE ctr 
        .copy P A 
        .copy L B 
 
begin:  A:0 B:0 
        .testH ctr next End 
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next:   .shiftL ctr 
        .inc A 
        .inc B 
        0 0 begin 
 
        End: ... 
        L:X ctr:0 
 
This block of code does the same as C programming language statement X=*P . The counter is 
prepared as in the previous examples. The pointer value is copied to the first operand of the 
iterative instruction (A:0 B:0 ), then the address of the result cell is copied into the second operand 
of the iterative instruction. Now the iterative instruction is executed W number of times with each 
execution incrementing the addresses – values of the operands. 
 
This approach can be used for copying a value into a memory cell pointed by another pointer. It is 
just a matter of swapping the A and B operands in the iterative instruction. 
 
 

8. More Arithmetic 

Multiplication is quite simple once shift and addition are implemented1: 
 
        .copy ZERO Z 
 
begin:  .ifzero X End L1 
L1:     .testL X next L2 
L2:     .add Z Y Z 
next:   .shiftR X 
        .shiftL Y 
        0 0 begin 
 
        End:0 0 
 
This code shifts the first multiplier to the left and the second multiplier to the right at the same time 
accumulating the result by adding the second multiplier if the lowest bit of the first multiplier is 1. 
This algorithm is expressed in a simple formula: 
 





+×−
×

=×
.,22/)1(

;,22/

oddXifYYX

evenXifYX
YX  

 
Division is slightly more complex. Given two numbers X and Y, increase Y by 2 until the next 
increase gives Y greater then X. At the same time as increasing Y, increase a variable Z by 2, which 
is initialised to 1. Now Z holds the part of the result of division - the rest is to be calculated further 
using X-Y and Y, which is done iteratively accumulating all Z's. At the last step when X<Y, X is the 
remainder. Code of the division is presented in Appendix B3. 
 
The division operation is imperative for printing numbers as decimal strings. The algorithm 
implementing this divides the value by 10 and stores the remainders into an array. When the value 
becomes 0, it iterates backwards over the array printing numbers in ASCII code. 
 
        .testH X begin negate 
 
negate: .inv X 

                                                 
1 The algorithm does not properly handle negative values. This is sacrificed for the sake of simplicity. 
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        .inc X 
        .out minus 
 
begin:  .div X ten X Z 
        .toref Z p 
        .add p W p 
        .ifzero X print begin 
 
print:  .sub p W p 
        .deref p Z 
        .add Z d0 Z 
        .out Z 
        .ifeq p q End print 
 
        End:0 0 
        ... 
        Z:0 d0:48 ten:10 
        p:A q:A minus:45 
        A:0 0 0 
        ... 
 
The first section, labelled negate , checks whether the argument is less than 0. If so, then the 
argument is negated and the minus sign is printed. The second section repeatedly divides the 
argument and stores the results into the array A by a dereferencing operation through the pointer p. 
The command div  divides X by 10, stores the result back to X and the remainder to Z. The 
following command toref  writes the value of Z into the cell pointed by p. This process continues 
until X is zero. In the next section marked by the label print  the pointer p runs back until it is 
equal to q, which is initialised to A, which is the beginning of the array. The command deref  
copies the value from the array to Z. Then the ASCII code (48) for character 0 is added and the byte 
is printed. [It is assumed that the memory cell is not less than 8-bit byte.] 
 
 

9. Input and Output 

At this point, it is possible to write a program that can add, subtract, multiply, divide, iterate, 
dereference, and jump. To produce an output or receive an input, one has to define what is the 
output and input. This is called the pragmatics of the language or the environment of the abstract 
machine, which implements the language. Any definition of input to or output from the abstract 
machine will be a burden of the environment, or in our case the emulator of the language (or 
processor if implemented as hardware). Since the program can copy only bits, it is natural to define 
a stream of bits as bits copied to or from a particular address. One special address (-1) has already 
been introduced as the halt address – a program halts if the process control is passed to the address 
(-1). One can use the same address without ambiguity: 
 
        .def out H 
        H'0 -1 
        H'1 -1 
        H'2 -1 
        H'3 -1 
        H'4 -1 
        H'5 -1 
        H'6 -1 
        H'7 -1 
        .end 
 
        .def in H 
        -1 H'0 
        -1 H'1 
        -1 H'2 
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        -1 H'3 
        -1 H'4 
        -1 H'5 
        -1 H'6 
        -1 H'7 
        .end 
 
Note, that only the lower eight bits are copied to and from the word. This is for practical reasons. 
With this definition it is possible to write a word size independent assembly code, which inputs and 
outputs characters as 8-bit symbols. 
 
The emulator keeps buffers of up to eight bits. When the program outputs a bit, it is placed into the 
buffer. When the buffer is full, a character in ASCII code is flushed to the standard emulator’s 
output from the buffer. When the program copies a bit from the input, it is removed from the input 
buffer; and if the buffer is empty a character is read and its bits are placed into the buffer. 
 
Below is a program, which prints the first twelve factorials. 
 
 Z0:0 Z1:0 
 
start:.prn X 
 .mul X Y Y 
 .out ex 
 .out eq 
 .prn Y 
 .out eol 
 .inc X 
 
 .ifeq X TH -1 start 
 
 X:1 Y:1 ex:33 
 eol:10 eq:61 TH:13 
 
The macro prn  is a printing command described in the previous section. The output of the program 
is 
 
1!=1 
2!=2 
3!=6 
4!=24 
5!=120 
6!=720 
7!=5040 
8!=40320 
9!=362880 
10!=3628800 
11!=39916800 
12!=479001600 
 
This program runs sufficiently quickly on a modern computer with the current implementation of 
the assembler, emulator, and a collection of macro-defined commands. The word size is 32 bits and 
the size of the program (after assembling) is about 10,000 instructions. 
 
 

10. Functions and Library 

It is handy to put all macro definitions into one file – a library, and use it with any program. For 
this, a third keyword command is defined (the other two are def  and end ): 
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.include library_file_name  
 
Any program using the library is required to include it and start with the line (Z0:0 Z1:0 ). For 
example, 
 
        Z0:0 Z1:0 
 
        .out H 
        .out i 
        0 0 -1 
 
        H:72 i:105 
 
        .include lib 
 
prints “Hi”. 
 
If all the command definitions described in this paper were defined as macros, the resulting code 
for any program even a simple one would be enormous. This is because macros are heavily defined 
through other macros. It means that any command is expanded or inlined at every place where it is 
used. This is done though all the hierarchy of macro definitions (see Appendix A). To deal with this 
problem a command can be defined as the actual code working with its own arguments. Such 
pieces of code are called functions. The macro definition copies the formal arguments to the 
function’s arguments and passes the process control to the function entry point. The caller code also 
has to pass its current address to enable the process control to be returned back to the caller code. 
Once the control is returned back from the function, the macro definition can copy the result back 
to the arguments if necessary. Obviously these functions cannot be recursive because there is no 
concept of stack2. 
 
For example, the subtraction sub  macro and function are defined: 
 
.def sub X Y Z : sub_f_X sub_f_Y sub_f_RET sub_f 
        .copy X sub_f_X 
        .copy Y sub_f_Y 
        .copy L sub_f_RET 
        0 0 sub_f 
        L:J 0 
        J:.copy sub_f_X Z 
.end 
 
:sub_f: .sub_f_def sub_f_X  sub_f_Y 
sub_f_RET:0 sub_f_X:0 sub_f_Y:0 
 
# sub internal macro definition 
.def sub_f_def X Y : sub_f_RET 
 
        .copy sub_f_RET Return 
 
        .inv Y 
        .inc Y 
        .add X Y X 
 
        End:0 0 Return:0 
 
.end 
 
First, there is a macro definition, which copies two arguments into global arguments for the 
function. Next is the global definition of the entry point for the function. The body of the function 
is defined again through the macro just to keep the internal names outside of the global scope. 

                                                 
2 It does not mean that this concept cannot be introduced. This has been implemented for Higher Subleq. 
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Ignore for now that a colon precedes the label for the function entry point. The next line defines 
memory cells for the return value and the two arguments. Two are enough, because the result is 
passed back inside the first function argument. The next line is a comment. Then there is the body 
of the function. Its first command is to copy the return address to its last instruction – unconditional 
jump back to the caller’s code3. 
 
Functions allow the same code to be executed multiple times instead of replicating code in every 
place where an operation is required. However there is a side effect: since the entry point is global 
(not inside the macro definition) the code for the function will be present in the program even if this 
function is not used. This is undesirable. Small programs have to remain small after assembling, 
and should not include the whole library. To cope with this situation an additional mechanism has 
been added to the assembler. It marks a command: an instruction or a macro command as 
conditional if the line begins with a colon. If its name – the label – becomes an unresolved symbol, 
the command is added to the program. So this is why the line (sub_f ), in the example above, 
begins with the colon. 
 
 

Conclusion 

In this paper two goals have been achieved. One is that another OISC language has been invented 
that seems to have a much simpler instruction than the currently known OISC languages4; because 
it does not explicitly require logic gates. 
 
The other goal has been to prove that bit copying operations coupled with referencing (or 
addressing) is enough to build a model allowing Turing-complete calculations5. It turns out that it is 
not only possible in principle, but also practically achievable. Simple programs written in this bit-
to-bit copying language, work within reasonable time-space resource limits. For example, using the 
emulator on my PC a program can calculate the factorial of 12 within seconds. The program 
multiplies numbers from 1 to 12, and then uses modular division to print digits of the result. 
 
The language presented in this paper has been implemented. Its assembler, emulator, and the 
library can be downloaded from [7].  
 
 

                                                 
3 This copy command can be saved if the outer macro can copy directly to this memory cell. 
4 In February 2010 Marc Scibetta published on his web page a model incorporating bit-inversion and a conditional 
jump. 
5 Only assembly language with a few library macro commands can be regarded exactly as Turing-complete, because 
they do not have the memory cell size boundary, which limits the address space. Bit copying instructions are loosely 
Turing-complete or more precisely they are of Linearly Bounded Automaton computational class, which is the class the 
real computers belong to. Formal proof can be found in [7] where an interpreter of a Turing-complete language DBFI 
described in [6] is presented. Keymaker (esolangs.org user) argued that the instruction language could be made Turing-
complete if addressing is relative, not absolute. It seems that it is possible to redefine the language to use relative 
addressing, but that is outside of the scope of this paper. 



- 16 - 

Appendix A 

 
This diagram represents dependencies between functions and macros in the library in the current 
implementation [7]. Direct dependencies, which are also indirect, are omitted. Different 
implementation algorithms would result in different dependency diagrams, but general dependency 
levels would be the same.  
 
 

Appendix B 

B1 .add 
This code defines the addition operation as described in the section “Arithmetic”: 
 
        .copy ONE ctr 
        .copy ZERO adr 
 
begin:  .copy ZERO btr 
        .testL adr testx inctestx 
 
inctestx: .inc btr 
testx:  .testL X testy inctesty 
 
inctesty: .inc btr 
testy:  .testL Y testz inctestz 
 
inctestz: .inc btr 
testz:  btr Z 
        btr'1 adr'1 
 
        .testH ctr rollcont rollback 
 
rollcont: .shiftL ctr 
        .rollR adr 
        .rollR X 
        .rollR Y 
        .rollR Z 
        0 0 begin 
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rollback: .testL ctr roll End 
 
roll:   .shiftR ctr 
        .rollL Z 
        0 0 rollback 
 
        End:0 0 
        ... 
        ctr:0 adr:0 btr:0 
 
The ancillary variable ctr  is used to count the number of rolls applied to the arguments. The 
variable adr  is the adder, which is used for passing over bits to the next bit position. The variable 
btr  is the sum of three bits taken from the same bit position of the two summing arguments and the 
adder. 
 

B2 .inv 
The code inverting bits in one word is straightforward. ctr  is as usual an ancillary variable. 
 
        .copy ONE ctr 
  
begin:  .testL ARG copy1 copy0 
 
copy1:  ONE ARG 4? 
copy0:  ZERO ARG 
 
        .testH ctr rollcont rollback 
 
rollcont: .shiftL ctr 
        .rollR ARG 
        0 0 begin 
 
rollback: .testL ctr roll End 
 
roll:   .shiftR ctr 
        .rollL ARG 
        0 0 rollback 
 
        End:0 0 
 

B3 .div 
Below is the working code implementing the division algorithm described in the section “More 
Arithmetic”. Its arguments are: X – dividend, Y – divisor, Z – result of integer division, R – 
remainder. 
 
        .copy ZERO Z 
 
        .testH X L1 End 
L1:     .testH Y L2 End 
L2:     .ifzero Y End begin 
 
begin:  .iflt X Y L3 L4 
 
L3:     .copy X R 
        0 0 End 
 
L4:     .copy Y b1 
        .copy ONE i1 
 
next:   .copy b1 bp 
        .copy i1 ip 
        .shiftL b1 
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        .shiftL i1 
 
        .iflt X b1 rec L5 
 
rec:    .sub X bp X 
        .add Z ip Z 
        0 0 begin 
 
L5:     .testH b1 next End 
 
        End:0 0 
        ... 
        b1:0 bp:0 0 
        i1:0 ip:0 0 
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