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In this paper we present a single-soliton two-component cellular au-
tomata (CA) model of waves as mobile self-localizations, also known
as: particles, waves, or gliders; and its version with memory. The
model is based on coding sets of strings where each chain represents a
unique mobile self-localization. We will discuss briefly the original soli-
ton models in CA proposed with filter automata, followed by solutions
in elementary CA (ECA) domain with the famous universal ECA Rule
110, and reporting a number of new solitonic collisions in ECA Rule
54. A mobile self-localization in this study is equivalent a single soliton
because the collisions of these mobile self-localizations studied in this
paper satisfies the property of solitonic collisions. We also present a
specific ECA with memory (ECAM), the ECAM Rule φR9maj:4, that
displays single-soliton solutions from any initial codification (including
random initial conditions) for a kind of mobile self-localization because
such automaton is able to adjust any initial condition to soliton struc-
tures.

Keywords: soliton, elementary cellular automata, memory, localiza-
tions, collisions, computability
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2 Genaro J. Mart́ınez et al.

1. Introduction

A soliton can be defined in an informal as follows: when two soli-
tary waves travel in opposite directions and collide, they emerge after
collision with the same shape and velocity asymptotically. The phe-
nomenon of solitary wave first recognized by English engineer John
Scott Russell [59],1 and first formalized by Diederick J. Korteweg and
Gustav de Vries in 1895 [25]. However, in 1965 the physician Martin
Kruskal coined the phenomenon of solitary wave as “soliton.”

Solitons in one-dimensional (1D) CA have their own interest and his-
tory, they have been extensively studied since 1986 by Kennet Steiglitz
and colleagues as you can see in [56, 61, 26, 57]. This has been based on
a variant of classic CA, known as parity rule filter automata (PRFA).
A PRFA mainly uses newly computed site values as soon as they are
available and they are analogous to Infinite Impulse Response (IIR)
digital filters, while conventional CA correspond to Finite Impulse Re-
sponse (FIR) [56]. Incidentally, yet more sophisticated solitons with
PRFA were obtained by Siwak in [60] showing large and multiple si-
multaneous solitonic collisions sequentially (i.e. not parallel mapping).
We can also see, turbulence solitons in 1D CA explored by Aizawa,
Nishikawa, and Kaneko in [8].

Studies of 1D soliton CA are important because it allows for fast-
prototyping of soliton logic. For practical implementations of soliton
logic, see overview developed by Blair and Wagner in [13], leads to novel
designs of optical parallel computers. An interesting implementation
showing the wave propagation equation in lattice gas simulated with
a partitioned CA was developed by Margolus, Toffoli, and Vichniac in
[53, 64]. Solitons have found relevant and numerous applications, some
of them are in: fiber optics, breather waves, non-linear Schrödinger
equation, magnets, and recently in proteins and DNA, bio-solitons [19,
1, 52, 20, 24].

Historically, complex CA have been related to the presence of mobile
self-localizations (referred as well as: gliders, particles, or waves). The
most famous CA is the two-dimensional (2D) CA Conway’s the Game
of Life [22], but we can also find a number of samples in 1D supporting
mobile self-localizations, as we can see in [2, 12, 27, 46, 51, 55]. Some
of them process explicitly signals (not mobile self-localizations) by De-
lorme and Mozayer in [21] or solve the firing squad synchronization

1You can find original scanned Russell’s papers from Eilbeck’s website “John
Scott Rusell and the solitary wave”, http://www.ma.hw.ac.uk/~chris/scott_

russell.html, 1998.
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On soliton collisions in complex ECA: Rules 54 and 110 and beyond 3

problem by Umeo in [66]. Indeed, we can see how a number of CA
have been exploited as physical models in [33, 67, 68, 14].

This paper is organized as follows. Section 2 gives a general in-
troduction on CA and basic notation. Section 3 presents experimental
soliton solutions in CA including solitons in complex ECA rules 54 and
110, and we will reporting in this paper the soliton reactions emerging
in Rule 54 from multiple collisions. Later in Sec. 3.3 we displays a
new ECAM able to solve experimentally the most simple single-soliton
two-component solution from any initial configuration. Finally we will
discuss some computing capacities based on solitons. In the last section
we will discuss final remarks (Sec. 4).

2. One-dimensional cellular automata

2.1 Elementary cellular automata (ECA)

A CA is a quadruple 〈Σ, ϕ, µ, c0〉 evolving on a specific d-dimensional
lattice, where each cell xi, i ∈ N , takes a state from a finite alphabet
Σ such as x ∈ Σ. A sequence s ∈ Σn of n cell-states represents a string
or a global configuration c on Σ. We write a set of finite configurations
as Σn. Cells update their states via an evolution rule ϕ : Σµ → Σ, such
that µ represents a cell neighbourhood that consists of a central cell
and a number of neighbours connected locally. There are |Σ|µ different
neighbourhoods and if k = |Σ| then we have kk

n

different evolution
rules.

t + 1

ϕ

...
...

Figure 1. Dynamic in ECA on an arbitrary one-dimensional array and hypo-

thetical evolution rule ϕ.

An evolution diagram for a CA is represented by a sequence of con-
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4 Genaro J. Mart́ınez et al.

figurations {ci} generated by the global mapping Φ : Σn → Σn, where
a global relation is given as Φ(ct)→ ct+1. Thus c0 is the initial config-
uration. Cell states of a configuration ct are updated simultaneously
by the evolution rule as:

ϕ(xti−r, . . . , x
t
i, . . . , x

t
i+r)→ xt+1

i . (1)

where i indicates cell position and r is the radius of neighbourhood µ.
Thus, the elementary CA class represents a system of order (k = 2, r =
1) (in Wolfram’s notation [68]), the well-known ECA. To represent a
specific evolution rule we will write the evolution rule in a decimal
notation, e.g. ϕR110. Thus Fig. 1 illustrates how evolution dynamics
work in one dimension for ECA.

2.2 Elementary cellular automata with memory (ECAM)

Conventional CA are memoryless: the new state of a cell depends on
the neighbourhood configuration solely at the preceding time step of
ϕ. CA with memory are an extension of CA in such a way that every
cell xi is allowed to remember its states during some fixed period of its
evolution. CA with memory have been proposed originally by Alonso-
Sanz in [7, 9, 10, 11].

Hence we implement a memory function φ, as follows:

φ(xt−τi , . . . , xt−1
i , xti)→ si, (2)

where τ < t determines the degree of memory and each cell si ∈ Σ
is a state function of the series of states of the cell xi with memory
backward up to a specific value τ . Later to execute the evolution we
will apply the original rule on the cells s as:

ϕ(. . . , si−1, si, si+1, . . .)→ xt+1
i (3)

to get an evolution with memory. Thus in CA with memory, while the
mapping ϕ remains unaltered, historic memory of all past iterations is
retained by featuring each cell as a summary of its past states from φ.
We can say that cells canalise memory to the map ϕ [10].

Let us consider the memory function φ as a majority memory,

φmaj → si,

where in case of a tie given by Σ1 = Σ0 from φ hence we take the last
value xi. Thus, φmaj function represents the classic majority function
(for three values [50]), then we have that:

φmaj(a, b, c) : (a ∧ b) ∨ (b ∧ c) ∨ (c ∧ a) (4)

Complex Systems, volume (year) 1–1+



On soliton collisions in complex ECA: Rules 54 and 110 and beyond 5

that represents the cells (xt−τi , . . . , xt−1
i , xti) and defines a temporal ring

s before getting the next global configuration c. Of course, this eval-
uation can be for any number of values of τ . In this way, a number
of functional memories may be used and not only majority, such as:
minority, parity, alpha, . . ., etc. (see [10, 11]).

φm:τ

t

ϕ

...

t + 1

...
... temporal ring s storing memory

ϕ

selecting memory
for

φm:τ

ϕ

loop

selecting memory
for

...

ϕ

ϕ

Figure 2. Dynamics in ECAM on an arbitrary one-dimensional array and

hypothetical evolution rule ϕ and memory function φm with τ = 3.

Evolution rules representation for ECAM is given in [29, 39, 40], as
follows:

φCARm:τ (5)

where CAR is the decimal notation of a particular ECA rule and m
is the kind of memory used with a specific value of τ . This way, for
example, the majority memory (maj) incorporated in ECA Rule 30
employing five steps of a cell’s history (τ = 5) is denoted simply as
φR30maj:5. The memory is functional as the CA itself, see schematic
explanation in Fig. 2. However, computationally a memory function
has a quadratic complexity calculating its evolution space.

3. Solitons in one-dimensional cellular automata

A soliton is a solitary wave with non-linear behaviour that preserves its
form and speed, interacting with some kind of perturbation. The latter
can be another wave or some obstacle, continuing its travel affecting

Complex Systems, volume (year) 1–1+



6 Genaro J. Mart́ınez et al.

only its phase and position since each collision. For example a water
wave travelling and interacting with others waves, they can be found
also in optics, sound, and molecules [19].

The solitary wave described by Scott become formally represented
by the Korteweg-de Vries equation [25] as:

ut + uxxxx + uux = 0 (6)

where the function u measure high-wave and x-position at time t, and
every subindex represent partial differences. Second term represent
scattering-wave and the last term is the non-linear term [26].

However, we will indicate that soliton models related to CA do not
find some direct relations matching some differential equation solu-
tions. Nevertheless, Steiglitz has been displayed some properties with
Manakov systems and PRFA in [32, 57] in the search of computable
systems collision-based soliton [61]. In addition, Adamatzky in [5] has
designed a way to manipulate solitons to implement logic gates. On
the other hand, Chua has developed explicitly an extended analysis
on how ECA can be described precisely as differential equations and
cellular complex networks (CCN) in [16].

Although many studies were done in ECA here we cannot find much
about the soliton phenomena for each rule. Complex ECA are direct
candidates to explore such reactions from the interaction of their mobile
self-localizations. Some explorations were described in [6, 8, 12, 14,
15, 27, 51, 67]. Solitons in CA are characterized as a set of cells self-
organized emerging on the evolution space, such complex patterns have
a form, volume, velocity, phase, period, mass, and shift. Of course,
not all these mobile self-localizations may work as solitons because
they depend on its interaction with other structures. Consequently a
classification is necessary from the evolution space because they cannot
be inferred from the local rule.

While a PRFA was designed to yield solitonic collisions calculat-
ing the new values as soon as they are available, their mobile self-
localizations present a strong orientation to the left. This is a natural
consequence of its function to calculate the next cell which evaluate the
(i−r)t+1 cells [56]. The main and most important difference with con-
ventional ECA is that those mobile self-localizations working as solitons
shall be searched explicitly and cannot be deduced to evolve the sys-
tem. Thus not all complex ECA are able to produce collisions as soli-
tons although they could evolve some kind of mobile self-localizations.
Steiglitz has researched amply the PRFA with the goal of reaching un-
conventional computing devices based-soliton collision, as we can see
in [61, 63, 26, 57].

In the next subsections, we will discuss particular cases with com-
plex ECA and ECAM, displaying exact codifications to get soliton col-

Complex Systems, volume (year) 1–1+



On soliton collisions in complex ECA: Rules 54 and 110 and beyond 7

lisions between mobile self-localizations and we will also present some
computable capacities. In the ECA domain, we have selected and re-
searched only complex rules 54 and 110, because none other ECA rules
present a universe with such diversity of mobile self-localizations and
consequently an ample diversity of collisions as well. In the ECAM do-
main we will present a single case that solve experimentally the most
simple single-soliton two-component solution from any initial configu-
ration, the evolution rule φR9maj:4.

3.1 Solitons in ECA Rule 110

ECA Rule 110 is a complex cellular automaton evolving with a compli-
cated system of mobile self-localizations. Its local function is defined
as follows:

ϕR110 =

{
1 if 001, 010, 011, 101, 011
0 if 000, 100, 111

. (7)

Figure 3 illustrates the complex dynamics from a typical random
initial condition selecting the evolution rule ϕR110. Here we can see
how a number of mobile self-localizations emerge on its evolution space
and how a number of them collide.

Figure 3. Random evolution in Rule 110 on a ring of 644 cells to 375 genera-

tions. White cells represent state 0 and black cells state 1 starting on a 50%

of density. A filter is selected to get a better view of mobile self-localizations

on its periodic background.

See detailed studies of Rule 110 and mobile self-localizations in:

Complex Systems, volume (year) 1–1+



8 Genaro J. Mart́ınez et al.

glider system2 [46, 48, 41], universality [17, 69, 42, 54, 18, 49, 40],
collisions and Rule 110 objects [44, 47]. So generalities can be explored
from the Rule 110 repository.3

We will focus on mobile self-localizations that present solitonic re-
actions. Localizations that have such property are classified in Fig. 4,
following Cook’s notation [17], here we can see stationary, shift-right,
and shift-left (displacements) localizations.

Rule 110 has an unlimited number of collisions as a consequence of
some extendible mobile self-localizations [44, 46]. In this way, first we
have constructed a set of configurations c coding each localization and
yielding the solitonic reaction desired.

To drive collisions and localizations, we will use the set of regular
expressions ‘f1 1’ localizations-based to code initial configurations in
Rule 110, for full details please see [48].4

Figure 4. Set of mobile self-localizations with solitonic properties in Rule 110.

mobile self-localization shift period speed volume

A 2 3 2/3 ≈ 0.666666 6

B 2 4 −1/2 = −0.5 8

C1 0 7 0/7 = 0 9-23

C2 0 7 0/7 = 0 17

Ē 8 30 −4/15 ≈ −0.266666 21

F 4 36 −1/9 ≈ −0.111111 15-29

Gn 14 42 −1/3 ≈ −0.333333 24-38

Table 1. Mobile self-localizations properties such as solitons.

Table 1 shows a number of properties to each mobile self-localization

2Gliders in Rule 110 http://uncomp.uwe.ac.uk/genaro/rule110/

glidersRule110.html.
3Rule 110 repository: http://uncomp.uwe.ac.uk/genaro/Rule110.html.
4Regular language glider-based in Rule 110: http://uncomp.uwe.ac.uk/genaro/

rule110/listPhasesR110.txt.
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On soliton collisions in complex ECA: Rules 54 and 110 and beyond 9

(Fig. 4), such as: shift, period, speed, and volume (that can be related
as its mass as well). All of them shall help us to synchronize collisions
given a specific phase, where each mobile self-localization may present
different contact points and collide with others mobile self-localizations.
To produce a specific collision between mobile self-localizations at a
given point we must have a full control over initial conditions, including
distance between gliders and their phases at the moment of collision.

The notation proposed to codify initial conditions in Rule 110 by
phases is as follows:

#1(#2, fi 1) (8)

where #1 represents a particular mobile self-localization (given in Ta-
ble 1) and #2 represents its phase if it has a period greater than four
(for full details please see [48]). Variable fi indicates the phase currently
used where the second subscript j (forming notation fi j) indicates that
selected master set of regular expressions.

In [44] we have calculated experimentally the whole set of binary
collisions between mobile self-localizations in Rule 110, colliding all 1-
1 mobile self-localizations. Thus in [37, 36] we have reported all soliton
reactions in Rule 110.

This way, 18 solitons (between two mobile self-localizations, i.e. bi-
nary) in Rule 110 can be coded in phases, as follows.

(a) Soliton 1: A(f1 1)-6e-G(C,f1 1) −→ {G,A}
(b) Soliton 2: C1(A,f1 1)-3e-Ē(B,f1 1) −→ {Ē, C1}
(c) Soliton 3: C1(A,f1 1)-3e-Ē(C,f1 1) −→ {Ē, C1}
(d) Soliton 4: F (A,f1 1)-3e-B(f4 1) −→ {B,F}
(e) Soliton 5: C2(A,f1 1)-3e-Ē(C,f1 1) −→ {Ē, C2}
(f) Soliton 6: C1(A,f1 1)-2e-F (B,f1 1) −→ {F,C1}
(g) Soliton 7: C2(A,f1 1)-2e-F (A,f1 1) −→ {F,C2}
(h) Soliton 8: A(f1 1)-4e-Ē(A,f1 1) −→ {Ē, A}
(i) Soliton 9: A(f1 1)-4e-Ē(B,f1 1) −→ {Ē, A}
(j) Soliton 10: A(f1 1)-4e-Ē(C,f1 1) −→ {Ē, A}
(k) Soliton 11: A(f1 1)-4e-Ē(H,f1 1) −→ {Ē, A}
(l) Soliton 12: F (A,f1 1)-e-Ē(A,f1 1) −→ {Ē, F}

(m) Soliton 13: F (A,f1 1)-e-Ē(C,f1 1) −→ {Ē, F}
(n) Soliton 14: F (A,f1 1)-e-Ē(D,f1 1) −→ {Ē, F}
(o) Soliton 15: F (A,f1 1)-e-Ē(E,f1 1) −→ {Ē, F}
(p) Soliton 16: F (G,f1 1)-e-Ē(A,f1 1) −→ {Ē, F}
(q) Soliton 17: F (G,f1 1)-e-Ē(B,f1 1) −→ {Ē, F}
(r) Soliton 18: F (G,f1 1)-e-Ē(H,f1 1) −→ {Ē, F}

Complex Systems, volume (year) 1–1+



10 Genaro J. Mart́ınez et al.

(a)

(b) (c)

(d)

(f)

(h)

(e)

(g)

(i) (j) (k)

(m)

(p)

(l) (n) (o)

(r)(q)(s)

Figure 5. (a–r) Binary solitons in Rule 110, and one case (s) illustrating

multiple solitonic collision with six mobile self-localizations, synchronized

and evolving in 964 generations.

Of course, from these solitonic binary collisions we can codify and
synchronize most structures and therefore to get multiple solitonic re-
actions increasing its complexity. For example, we have the next codi-
fication:

(s) Multiple soliton: C1(B,f1 1)-e-C1(A,f1 1)-2e-C2(A,f1 1)-e-
F (A,f1 1)-e-Ē(A,f1 1)-3e-Ē(C,f2 1)−→ {Ē, Ē, F, C1, C1, C2}.

All these solitons in Rule 110 are displayed in Fig. 5. Each codifica-

Complex Systems, volume (year) 1–1+



On soliton collisions in complex ECA: Rules 54 and 110 and beyond 11

Figure 6. Pseudo-soliton in Rule 110.

collisions F → B̄ collisions F → B

F (A,f1 1)-e-B̄(A,f1 1) = {A,B, B̄, F} F (A,f1 1)-e-B(f1 1) = {B̄, F} *
F (A,f1 1)-e-B̄(B,f1 1) = {A, 2C3, C1} F (G,f1 1)-e-B(f1 1) = {B̄, F} *
F (A,f1 1)-e-B̄(C,f1 1) = {A,C2} F (H,f1 1)-e-B(f1 1) = {D2, A

2}
F (G,f1 1)-e-B̄(A,f1 1) = {C2, A

2} F (A2)-e-B = {B,F} (soliton)
F (G,f1 1)-e-B̄(B,f1 1) = {A,A3, A, Ē
F (G,f1 1)-e-B̄(C,f1 1) = {B,F} *
F (H,f1 1)-e-B̄(A,f1 1) = {A,C2}
F (H,f1 1)-e-B̄(B,f1 1) = {Ē, A5}
F (H,f1 1)-e-B̄(C,f1 1) = {Ē, A5}
F (A2,f1 1)-e-B̄(A,f1 1) = {C1}
F (A2,f1 1)-e-B̄(B,f1 1) = {A,B3, Ē}

Table 2. Reactions relation between B, B̄ and F mobile slef- localizations in

Rule 110.

Complex Systems, volume (year) 1–1+



12 Genaro J. Mart́ınez et al.

tion of (a) to (r) present the binary case, and (s) presents a multiple
solitonic collision with six localizations, where each is synchronized to
produce the soliton reaction.

Yet as an special case in Rule 110, we can find a collision named
as pseudo-soliton [37], that works recovering the original localization
after two collisions. This is performed with B, B̄ and F localizations.
Localizations B and B̄ have the same period and speed, but its volume
is different.

From “Atlas of binary collisions in Rule 110” [44] we have calculated
the whole set of binary collisions between mobile self-localizations, and
summarised them in Table 2. We have placed particular attention on
asterisks labels because they represent precisely the pseudo-soliton in
Rule 110. Hence we know that reaction F → B̄ = {B,F} and also that
F → B = {B̄, F}, thus a loop may be constructed to synchronize such
collisions. Figure 6 displays such construction, given its codification in
phases as:

F (G,f3 1)-2e-F (A,f1 1)-e-B(f1 1)-5e-B̄(B,f4 1).

3.2 Solitons in ECA Rule 54

ECA Rule 54 is a complex CA evolving with an “apparently” sim-
ple system of mobile self-localizations. Its local function is defined as
follows:

ϕR54 =

{
1 if 001, 010, 100, 101
0 if 000, 011, 110, 111

. (9)

Figure 7 illustrates the complex dynamics from a typical random
initial condition selecting the evolution rule ϕR54. Here we can see
how a number of mobile self-localizations emerge on its evolution space
and collide. Particularity, Rule 54 is able to evolve with emergence of
glider guns5 patterns since random initial conditions while this fact is
not common in Rule 110 or from others ECA rules.

Detailed analysis of various aspects of ECA Rule 54 can be found
in: localizations system6 [12, 23, 30, 31], computations [30], collisions
[30], algebraic properties [58, 35]. So generalities can be explored from
the Rule 54 repository.7

The set of mobile self-localizations in Rule 54 is significantly small
compared with Rule 110 (that has a base set of 12 mobile self-localizations).
Rule 54 has basically four primitive or basic mobile self-localizations

5A glider gun is a complex structure that emits periodically a localization, fa-
mously known in the Game of Life CA.

6Gliders in Rule 54 http://uncomp.uwe.ac.uk/genaro/rule54/glidersRule54.

html.
7Rule 54 repository: http://uncomp.uwe.ac.uk/genaro/Rule54.html.

Complex Systems, volume (year) 1–1+
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Figure 7. Random evolution in Rule 54 on a ring of 644 cells to 375 gen-

erations. White cells represent the state 0 and black cells the state 1, the

evolution start with a density at 50%. Also a filter is applied to get a better

view of mobile self-localizations and collisions on its periodic background.

(stationary, shift-right, and shift-left displacements) and three kinds
of glider guns [30]. This way, basic mobile self-localizations work to
produce solitons from multiple collisions. In Fig. 8 we present these
basic mobile self-localizations following the Boccara’s notation [12].

Figure 8. Set of mobile self-localizations with solitonic properties in Rule 54.

Particularly, solitons in Rule 54 cannot emerge from binary colli-
sions, they are found in multiple collisions. This way, solitons there
are on the domain of triple collisions and beyond [30]. Properties for
these mobile self-localizations are characterized in Table 3.

In this paper, we will report an unexplored set of solitonic collisions
in Rule 54. They are obtained for systematic analysis by reactions

Complex Systems, volume (year) 1–1+



14 Genaro J. Mart́ınez et al.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

(l) (m) (n)

Figure 9. Cataloge of soliton collisions in Rule 54.

across of multiple collisions.
This way, Fig. 9 presents 14 kinds of solitons constructed in Rule 54.

It is easy to recognise that you can derive 28 similar reactions in total,
because Rule 54 is a symmetric rule and therefore you can obtain the
next 14 symmetric collisions.

We can see that Fig. (a) and (b) display two pairs of mobile self-
localizations producing the same soliton reaction, however the collision
is different because while in (a) the first pair of mobile self-localizations

Complex Systems, volume (year) 1–1+



On soliton collisions in complex ECA: Rules 54 and 110 and beyond 15

glider shift period speed volume
−→w 2 2 1 2
←−w −2 2 −1 0-4

go 0 4 0 6-2

ge 0 4 0 7-3

Table 3. Basic mobile self-localizations properties in Rule 54.

delay its trajectory in (b) it advances for six cells. Thus here is possi-
ble controller intervals of mobile self-localizations trajectories. Similar
cases are presented in Fig. (c) and (d), but these reactions are between
three mobile self-localizations.

Figure (g) starts solitonic reaction with more than four mobile self-
localizations, but here we employ more space between intervals of mo-
bile self-localizations (see (f) and (h) as well). Hence we can use several
mobile self-localizations to preserve the soliton reaction. Noticeably,
Fig. (i), (j) and (k) display three different kinds of collisions to get
soliton reactions employing four mobile self-localizations.

The last set of collisions (Fig. (l), (m), and (n)) display more large
synchronisations of mobile self-localizations, with different intervals
and numbers of them. Of course, it is possible to design more so-
phisticated collisions working with a diversity of packages of mobile
and stationary self-localizations.

By the way, recently a soliton is discovered in ECA Rule 26 (Fig. 10).

Figure 10. Soliton in Class II ECA Rule 26.

3.3 Solitons in ECAM

In this section, we will present the simple single-soliton two-component
solution [63] for a specific ECAM. The main characteristic is that only
one mobile self-localization is processed. Thus a mobile self-localization
with shift-right and shift-left displacement always produce the same
reaction.

Complex Systems, volume (year) 1–1+
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Actually an extensive and systematic analysis is done for ECAM,
in “Designing Complex Dynamics with Memory” [28]. From here, we
have selected the ECAM rule φR9maj:4, because none another rule have
the same features.

(a) (b)

(c)

Figure 11. Typical snapshots of ECA Rule 9. (a) starts evolution with a

single cell in state one, (b) presents a random evolution at 50%, and (c)

other random evolution with small pixels, 360 cells for 331 generations.

Figure 11 shows the ECA base that shall be enriched with majority
memory function (see Sec. 2.2). We study ECA Rule 9 because it
displays basic interaction of solitons with simple collisions. As we can
see in (a) a single soliton travels along the evolution space, while in
(b) we can see a number of interactions during a short history, starting
from a random initial condition. Extending the evolution space in (c)
we can observe better how these solitons emerge in ECA Rule 9 and
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(a)

(b)

(c)

Figure 12. Typical snapshots of ECAM rule φR9maj:4. (a) starts with an initial

density of 10%, (b) presents an initial density of 80%, and (c) has an initial

density of 50%. All evolutions are filtered for the best visualization of mobile

self-localization interaction, the evolutions are on a ring of 776 cells for 315

generations.
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how they collide inside a fast stationary periodic attractor.
In [29, 38, 39], we have demonstrated how ECA when enriched with

memory with memory produces different dynamics. Here we will ex-
ploit this tool to get simple solitonic reactions.

Let use the majority memory with τ = 4 in ECA Rule 9. Obtaining
the ECAM rule φR9maj:4, that evolves with two mobile self-localizations
emerging on its evolution space: GφR9maj:4 = {−→p ,←−p }. The localization’s
properties are easy to calculate. The −→p mobile self-localization has a
volume of 5 × 6 cells, a mass of 12 cells, and moves 2 cells in 5 gen-
erations (shift-right displacement). While ←−p mobile self-localization
has a volume of 5 × 3 cells, a mass of 7 cells, and moves 2 cells in 5
generations (shift-left displacement).

Mobile self-localizations emerging in ECAM φR9maj:4 preserve the
solitonic reaction since any collision. Well, here really there are two
different collisions (two contact points [56] or phases [48] in every mo-
bile self-localization) between −→p and ←−p mobile self-localizations, but
at the first collision the soliton is preserved because the sequence is
fused in a string of four cells in state one, while the second reaction
fuse a string of eight cells in state one. Although finally they open in
both mobile self-localizations again late of exactly seven generations.

Thus the automaton φR9maj:4 adjusts every string to always evolve
with the same mobile self-localization and soliton reactions, as follows
the next relation of collisions:

−→p →←−p = {←−p ,−→p }, and

−→p ←←−p = {←−p ,−→p }.

Figure 12 illustrates three different random initial conditions where
the ECAM rule φR9maj:4 always evolve in solitonic collisions. First
evolution (Fig. 12a) starts with an initial density of 10% for state one,
the result implies a high production of←−p mobile self-localizations with
very few −→p mobile self-localizations, preserving always the solitonic
collisions inside bigger fields of ←−p . In the opposite case, the second
evolution (Fig. 12b) has an initial density of 80% for state one and
produce again, high concentrations of ←−p mobile self-localizations with
some −→p mobile self-localizations but newly the solitonic reaction is al-
ways preserved. The final evolution (Fig. 12c) displays a 50% of states
one and zero, generating a similar distribution of both mobile self-
localizations. In all cases, the ECAM rule φR9maj:4 evolve any initial
condition in solitons. Thus you can begin with any number of mobile
self-localizations in φR9maj:4 and the solitons are always produced. A
characteristic that no conventional ECA have. However, we will men-
tion that such behaviour can be reproduced identically in other kinds
of CA, the reversible block CA (or also known as partitioned 1D CA
as well) explored by Wolfram in [69] (chapter 9).
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3.4 Computing with CA solitons

Solitons are useful to preserve information such as in the fibre-optic
communications field. A particular interest is known if such solitons
could emulate an equivalent Turing machine. Steiglitz et. al have
designed a number of results trying to reach this goal, please see
[26, 57, 61, 63], and logic gates with solitons in [5, 13]. In [38] for
example, authors have developed a very simple substitution system
as an implementation of the function addToHead(), based in soliton
reactions, where also such mechanisms can be designed as a simple
collider [40]. Figure 13 displays such operations between two mobile
self-localizations in the ECAM φR30maj:8 [29, 38].

During the last decade we have seen a number of significant advances
in work with solitons for modelling unconventional computing devices,
you can see the next references [3, 4, 5, 13, 26, 38, 57, 60, 63]. As a
result, we can see how solitons could be important to develop com-
putable devices in the construction of equivalent Turing machines. We
also want to recall the results obtained in ECA Rule 110, where a cyclic
tag system was developed to perform a computation based-collisions
with a large number of mobile self-localizations on an incredible global
synchronization in millions of cells. Solitonic reactions were very useful
to write binary data and preserve information in the whole mechanism.
For full details please see [17, 18, 42, 49, 69].8

Figure 13. The ECAM φR30maj:8 presents a solitonic collision that can be coded

for any n,m ∈ Z+, such that, pnφR30maj:8 → qmφR30maj:8 is always a soliton.

Figure 14 summarizes the function of solitons in the construction of

8Details and large snapshots about cyclic tag system working in Rule 110 http:

//uncomp.uwe.ac.uk/genaro/rule110/ctsRule110.html
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Figure 14. Solitons working to yield, handle, and control bits in one cyclic

tag system working in Rule 110. This evolution begins with 793 cells to

1144 generations, the evolution is filtered suppressing its ether (periodic

background).

Complex Systems, volume (year) 1–1+



On soliton collisions in complex ECA: Rules 54 and 110 and beyond 21

a cyclic tag system in Rule 110. The first important fact is the solitonic
reaction between packages of A4 mobile self-localizations versus one Ē
mobile self-localization, this collision should introduce bits on the tape
of the cyclic tag system yielding a series of C2 mobile self-localizations,
also it might also avoid destroying extra Ē mobile self-localizations that
cannot infer on the computable system. Besides, when a binary digit is
into the tape (stationary C2 mobile self-localizations) hence a package
of Ē mobile self-localizations, coming from the right side shall preserve
the binary digit and across them with other solitonic collision, because
forward them self will be transformed in binary data. Here we can see
how solitons are useful to preserving information and recognising when
a value will be processed, deleted, or read (for full details please see
[49]).

4. Conclusions

We have reported a complete number of solitons in ECA Rule 110 from
binary collisions. For ECA Rule 54 we have reported a new number
of collisions that yield solitons, where they could be manipulated to
develop computable devices, or yet more, complex constructions based
solitonic reactions. So, finally we have characterized a simple single-
soliton two-component solution with a simple ECAM φR9maj:4, where
mobile self-localizations always work as solitons even starting from ran-
dom initial conditions, because each soliton is always constructed from
φR9maj:4.

With regards to memory effect in CA [10, 11]. Recently, we have
studied how a memory function helps to describe dynamics properties
that are not evident at the first instance [29, 28, 39, 38]. In present
paper, the majority memory selected in ECA Rule 9 opens a new evo-
lution rule ECAM φR9maj:4 able to simulate solitons. Of course, frag-
ments of the original evolution rule determine such dynamics.
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