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Self-organized criticality (SOC) reveals a mechanism by which a system is autonomously evolved  

to be in a critical state without needing parameter tuning. Whereas various biological systems are 

found to be in critical states and the significance of SOC is being re-estimated, a simple model in a 

general platform has not been established. Here, we present SOC in asynchronously tuned 

elementary cellular automata (ECA), which was based on asynchronously updating and tuning the 

consistency between local dual modes of transitions. This duality was defined by adjunction, which 

can be ignored during synchronous updates. Duality coupled with asynchronous updating can 

demonstrate that SOC coincides with the criticality in a phase transition of asynchronous ECA with 

respect to density decay. 

 

Since Bak and his colleagues proposed the idea of self-organized criticality (SOC) [1-3], the 

importance of SOC has increased, particularly in biological systems [4-6]. It has been found that 

various biological systems might be at the edge of chaos [7-10], which can be estimated and verified 

for an actual biological network by means of an approximation with a Boolean function [11-13]. The 

origin of criticality is still unknown, but it is typically evaluated with respect to the fitness or 

function of an environment. In this sense, time constants of dynamics that select a network are much 

larger than time constants of dynamics within a network. The idea of SOC is characteristic of the 

comparative time constant that occurs between dynamics in and over systems. Thus, SOC is the 

intrasystemic mechanism used to both create and maintain a system. Therefore, SOC, instead of 

inter-systemic external selections, is a candidate for evolving a system [14-15]. 

The mechanism of SOC is not clear. Whereas actual biological systems are employed with local 

interactions, most SOC systems require global information for the system to operate [1, 2]. Then, the 

task at hand is to establish simple and general SOC frameworks in which an SOC mechanism can be 

implemented. Elementary cellular automata (ECA) [16-18] are hopeful candidates for this purpose. 



Class 4 automata appear to be at the edge of chaos [7] and their computational universality is being 

investigated [18, 19]. As previous research has found phase transitions in ECA that have 

asynchronous updates [20-22], the mechanism of SOC can be implemented in the form of local 

interactions. 

Here, we demonstrate that asynchronously tuned automata can implement SOC. We introduce 

asynchronous updating by updating orders defined by a bijective map, by defining local 

consistencies by adjunction in synchronous updates, and by generating asynchronous tuning and 

removing local inconsistencies of cellular automata. 

Given a configuration consisting of n cells, each of which is either a zero or one, an ECA can be 

described by the function f:{0, 1}
3
{0, 1} which is called a local rule [16]. The time development 

of a configuration is defined by adapting a local rule to a configuration with periodic boundary 

conditions. Configuration in a time development is indexed by a natural number, t. 

Asynchronous updating is introduced by an updating order defined by a bijective map, Ord
t
:{1, 2, 

…, n}{1, 2, …, n}, which is randomly determined at each time step [23]; Ord
t
(k){1, 2, …, 

n}{Ord
t
(1), Ord

t
(2), …, Ord

t
(k-1)} is chosen with equal probability. The kth cell in a configuration 

at the tth  step is updated by the Ord
t
(k)th order. If the state of the kth cell at the tth time step is 

represented by ak
t
, asynchronous updating is described by: 
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Note that (1d) means a local synchronous update. 

Because asynchronous updating was randomly implemented, asynchronous ECA defined by 

equation (1) behaves like the Fates’ asynchronous ECA, with updating having a probability p and 

maintaining a state having a probability 1-p [20]. However, our asynchronous scheme can reveal 

more variety in a term consisting of actual local transitions. In the Fates’ ECA, updated transitions 

that are inconsistent with a local rule are constrained under the condition ak
t + 1

 =  ak
t
, whereas 

updated transitions that were inconsistent with a local rule in our asynchronous scheme were not 

constrained. 

To define local consistencies in ECA, we introduced duality or adjunction into ECA. Any 

concept is described as a pair of intent and extent [24-26]. In set theory, a set y is described as a 

collection of elements with respect to extent, and it is expressed as xy. A set y is described as a 

characteristic that any elements in y have with respect to intent, and it is expressed as A(x). In this 

sense, intent is a replacement of extent and vice versa. When a pair of intent and extent values of a 



set of natural numbers smaller than n, (A(x), {1, 2, …, n}), is compared with an even number, (B(x), 

{2, 4, …, n}), the order of intents A(x)<B(x) defined by the number of characters representing an 

intent is reversed by the order of the extent {1, 2, …, n}>{2, 4, …, n}, which are defined by 

cardinality. A series of intents is reversed by a series of extents in a term of the order. A pair of 

extents and intents, including their order (i.e., structure), is called duality. 

Duality is described as an adjunction in category theory [27, 28]. A category C consists of objects 

A, B, … and arrows f:AB, g:BC, … that satisfy a particular condition. Between two categories, 

C and D, a functor, F:CD, can be defined. Two functors, F:CD and G:DC, are called adjoint 

functors if they satisfy the equivalence F(C)DCG(D), where C and D are objects in 

categories C and D, respectively. One-to-one correspondence between F(C)D and CG(D) is 

called adjunction. 

If objects and arrows are defined by sets and maps, functors A×(-) and (-)
A
 are adjoint functors. If 

these adjoint functors are applied to BC, a particular adjunction, A×BCBC
A
, is obtained, 

where C
A
 represents a set of functions from A to C. Adjunction is found in the ECA local rule if B = 

C = B = {0, 1} and A = B×B. Adjunction results in fp: (B×B)×BBfa:BB
B×B

. Given a local rule 

of ECA, ak
t + 1

 = f(ak-1
t
, ak

t
, ak + 1

t
) is expressed as a truth table: 

 

 000d0   001d1   010d2   011d3   100d4   101d5   110d6   111 d7,  (2) 

 

with di{0, 1}. A passive mode of the rule fp: (B×B)×BB is fp((ak-1
t
, ak + 1

t
), ak

t
) = f(ak-1

t
, ak

t
, ak + 1

t
). 

The truth table (2) is replaced by: 

 

((0, 0), 0)d0,   ((0, 1), 0)d1,   ((1, 0), 0)d4,   ((1, 1), 0)d5 and           (3a) 

     ((0, 0), 1)d2,   ((0, 1), 1)d3,   ((1, 0), 1)d6,   ((1, 1), 1)d7.           (3b) 

 

Table (2) is divided into (3a) and (3b) depending on the value of ak
t
. Here, it is interpreted that ak

t
 

passively changes into ak
t + 1

 using information regarding its nearest neighbors, ak-1
t
 and ak + 1

t
. 

An active mode of the rule is also defined if it is expressed as fa:BB
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Table (2) is replaced by: 

 

          0  {(0, 0)d0,  (0, 1)d1,   (1, 0)d4,   (1, 1)d5} and                 (4a) 

          1  {(0, 0)d2,  (0, 1)d3,   (1, 0)d6,   (1, 1)d7}.                   (4b) 

 

where a bracket represents a map in B
B×B

. Here, it is interpreted that ak
t
 actively changes into ak

t + 1
 

by itself through observing ak-1
t
 and ak + 1

t
. A rearrangement of Table (2) results in Table (3) or (4). A 



passive mode of a local rule can be uniquely replaced by an active mode and vice versa. These 

modes are only different in their interpretation of a given local rule. 

Now, we define asynchronously tuned automata in ECA. Although passive and active modes are 

not different with respect to their next state in synchronous updates, they can differ with respect to 

their next state in asynchronous updates. The active mode is applied to the 1d condition and the 

passive mode is applied to the 1a-c conditions; the passive mode is invariant through time and 

among all cells, and the active mode is locally tuned to be interpreted as the passive mode. 

“Asynchronously Tuned ECA” (AT_ECA) is defined by a given passive mode rule, active mode rule, 

and tuning rule. Given a local rule in equation 2 (i.e., a fixed set of d0, d1, …, d7), a passive mode in 

AT_ECA is defined by ak
t + 1

 = ds, where 
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The active mode of the kth cell at the tth time step in the AT_ECA is defined by: 
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where es,k
0
 = ds and s = 0, 1, …, 7. The active mode is applied only under the condition Ord

t
(k-1) > 

Ord
t
(k) < Ord

t
(k + 1), which means that ak

t + 1
 = fa(ak

t
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t
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t
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t
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t
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Depending on the local order of updates, each cell is updated in either the active or passive mode. 

After updating, the tuning rule is applied to each cell. The tuning rule is defined by: 
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If Ord
t
(k-1) > Ord

t
(k) < Ord

t
(k + 1), no tuning happens at kth cell. This result means that if a cell is 

updated in the passive mode, then the active mode is reset in Equations 7a and 7b or it is tuned to be 

in the state produced by the passive mode in Equation 7c. 

Given a rule number of ECA, a passive mode of the AT_ECA is uniquely determined and an 

active mode is temporally changed in rest and in tuning. Therefore, the AT_ECA is also coded by a 

rule number proposed by Wolfram [16]. 



One hundred and fifty-five of the 256 AT_ECA had class 4-like or cluster-like behaviors 

consisting of local periodic patterns and traveling waves among local patterns (Table 1). We called 

this class of ECA rules the “Critical Class”. Fig. 1 illustrates some time developments of the 

AT_ECA with various Critical Class rules accompanied with time developments in synchronous 

updates. A rule that had class 3 when it was synchronously updated can have class 4-like patterns in 

asynchronously tuned updates. All class 3 rules in the synchronous updates belonged to the Critical 

Class. Class 3 rules and some rules showing class 1 or class 2 rules in synchronous updates can have 

a class 4-like pattern. It reveals that asynchronous tuning can drive a chaotic system (class 3) toward 

a more locally stable system and a stable system (class 1 or 2) toward a more chaotic system. 

To estimate the behavioral changes that occurred from synchronous ECA to AT_ECA, metric 

entropy during time developments was measured [16, 29, 30]. When the frequency of a 4-bit 

configuration is interpreted as a probability of corresponding configurations, the entropy at each step 

can be obtained. Given a random configuration of N cells, M steps are discarded and metric entropies 

of T steps are measured, and the mean and standard deviations of metric entropy over T steps are 

obtained. Fig. 2a presents the standard deviations () versus the mean entropies () for the local 

rules whose behaviors in the AT_ECA resembled the class 4-like pattern (i.e., the Critical Class); N = 

500, M = 5, and T = 200. Fig. 2b presents the same plot for time development produced by the same 

rules but for the synchronously updated system. Compared with patterns generated by the 

synchronously updated system, the patterns generated by the AT_ECA were characteristic of high  

values independent of  values. 

One hundred of the 255 rules did not exhibit conspicuous differences between patterns generated 

by synchronous updates and patterns generated by the AT_ECA (Table 1, Fig. 3). We called this class 

of rules the “Ordinary Class”. In Fig. 3, a curve obtained in Fig. 2a is superimposed onto a 

distribution of a pair of  and  values for rules of the Ordinary Class. Note that pairs of  and  for 

patterns generated by the synchronous updates and the AT_ECA are distributed under the curve. In 

other words, this curve revealed a class 4-like cluster pattern; a pattern whose  and  pair does not 

exceed this curve is either the stable or chaotic pattern. 

In a strict sense, the Critical Class can exhibit critical phenomena in the phase transition with 

respect to the power law in the decay of density. Focusing on cellular automata, phase transitions 

and/or critical phenomena are investigated in directed bond percolations [31-33]. Each 

one-dimensional site has two states: a media state, rk
t
 (open (1) or closed (0)), and a moisture state, 

mk
t
 (wet (1) or dry (0)). The moisture states of sites are updated according to the rule: mk

t + 1
 = 1 if 

rk-1
t
 = 1 and mk-1

t
 = 1 or rk + 1

t
 = 1 and mk + 1

t
 = 1; otherwise, mk

t + 1
 = 0, where rk

t
 can be open with 

probability p. This protocol mimics the fact that water drops percolate through porous (i.e., open) 

parts that are generated randomly in a media. This model illustrates a phase transition with respect to 

the probability of percolation, Perc, such that if water drops set in the t = 0 layer reach the t = n layer, 



Perc = 1; otherwise, Perc = 0. Actually, Perc = 0 if p  pc and Perc = 1 if pc < p, where pc is a critical 

value. It is well known that the density of a water drop, d(pc, t), decays to zero and that this decrease 

follows a power law d(pc, t)~t
-

;  = 0.1595. 

The value of the exponent of decay,  = 0.1595, has a universality for other critical phenomena in 

cellular automata. As mentioned above, Fates’ asynchronous ECA are updated with probability p or 

keep their previous state with probability 1-p. Some ECA updated according to this protocol exhibit 

class 4-like cluster patterns and phase transitions in a density term (i.e., a number of state 1 cells are 

normalized by the system size). When one ECA rule is chosen, a critical value for the probability of 

asynchronous updates is chosen, pc, and a time development is generated. In this case, the decrease 

in density follows a power law with an exponent  = 0.1595 [22]. 

Even if a particular exponent of the power law has universality among a wide variety of phase 

transitions, the question regarding the origin of criticality remains unanswered as long as the power 

law is interpreted with respect to the phase transitions.  In our system, most of the AT_ECA 

generating class 4-like patterns were autonomously tuned to be close to the critical point with  = 

0.1595. 

Fig. 4 presents density versus time in a log-log scale; the system size (N) was 1,000 and there 

were 100 trials (K). Each plot was obtained as the mean value of 100 trials, and each line 

corresponds to rules 22, 28, 54, 60, 70, 102, 124, 147, and 150. The black line illustrates that the 

power law decreases with  = 0.1595. This decrease in density coincides with the power law 

decrease of  = 0.1595 for rule 150 in the AT_ECA. Any other rules updated in the AT_ECA were 

also located close to the power law decay of  = 0.1595. Fig. 5 also presents the density versus time 

in a log-log scale, where rules 151, 156, 157, 182, 195, 198, 199, and 218 are updated in the 

AT_ECA. Other simulating conditions were the same as the conditions for the data presented in Fig. 

4. The density decays of rules 151, 156, 157, and 182 were fitted to the line  = 0.1595. Other rules 

were also located close to the line. 

These results indicate that the AT_ECA are autonomously tuned to a narrow band around the 

critical state. This behavior is a type of SOC. Whereas evolutionary biological systems are known to 

be stable at the edge of chaos, the origin of criticality is still unknown. Adaptive roles or fitness 

states that differ from the dynamics by which a system is generated and maintained in ontogeny 

might drive a system that is at the edge of chaos. In other words, because the time constant to 

maintain a system is different from the time constant to evolve a system, behavior following a 

particular order parameter is controlled by the former time constant and behavior tuning an order 

parameter is controlled by the latter. Systems have two types of time scales in this context, which 

suggests the presence of severe natural selection. 

In contrast, SOC suggests that the critical state is easily achieved by the intrinsic mechanism of 

dynamics whose time constant is relevant for the dynamics to evolve a system. In a Bak and 



Sneppen model for an evolutionary ecosystem, dynamics to maintain a system coincide with 

dynamics to evolve a system. Thus, a critical state is achieved as a steady state. Dynamics to evolve 

a system can consider an entire system as an element. On the other hand, dynamics to maintain a 

system can consider the component of a system as an element. In fact, two types of dynamics are 

mixed in the Bak and Sneppen model, and the property as a whole is linked with a local property. 

The species with the lowest fitness (global property) is abandoned, along with the nearest 

neighboring species (local property) in terms of the food chain. An adequate balance of the local 

property with the global property autonomously drives the system to a critical state. 

The AT_ECA is a type of SOC but it might yield another mechanism for SOC. The Bak and 

Sneppen model and other SOC models can balance the local property with the global property. 

Because these models have common mechanisms by which the driving force toward global 

consistency is perturbed by local interactions, consistency as an entire system is assumed. In contrast, 

the AT_ECA never implements global consistency but instead implements a dynamics between 

consistency and inconsistency, where consistency is defined as a consistent transition between the 

active and passive modes. The AT_ECA has no global information, such as the species with the 

lowest fitness in an ecosystem. Active and passive modes are equivalent to each other in the form of 

adjunction as long as the system is updated synchronously. Because the adjunction in synchronous 

updates can yield consistency in a system, asynchronous updates can derive inconsistency and tuning 

and resetting can entail methods to remove inconsistencies. Regardless of the manner in which 

tuning and resetting is actualized, consistency cannot be achieved because of the asynchronous 

updates; thus, another inconsistency is generated. Therefore, the endeavor to remove inconsistencies 

is successively continued, which is the main mechanism of SOC. 

Mathematical duality, called adjunction, is typically used to construct a simple conjugate pair. 

Even if an adjunction pair of equations is equivalent to each other, one is complex to solve and the 

other can be solved easily. In this case, a simple conjugate is constructed to solve the equation. 

However, duality itself is not typically used. In our findings, adjunction played an essential role in 

generating and removing inconsistencies derived by asynchronous updates, which can lead to SOC. 

Adjunction coupled with asynchronous updates may highlight a general mechanism of SOC and/or 

critical phenomena in biological systems. 
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Table 1. Classification of Critical Class (Bold) and Ordinary Class (Non-Bold) rules of the AT_ECA. 

Numbers represent Wolframs’s rule number of ECA. A set of rules included in a bracket is an 

equivalence class under the symmetries 0/1 and left/right. Note that rules in an equivalent class can 

belong to different classes. Specifically, rule 160 exhibits class 1 behavior for the Ordinary Class and 

rule 260 exhibits class 4 behavior for the Critical Class. 

 

0 (255),           1 (127),           2 (191 16 247),      3 (63 17 119), 

4 (223),           5 (95),            6 (159 20 215),      7 (31 21 87) 

8 (239 64 253),     9 (111 65 125),     10 (175 80 245),     11 (47 81 117),  

12 (207 68 221),    13 (79 69 93),      14 (143 84 213),     15 (85), 

18 (183),          19 (55),           22 (151),           23, 

24 (231 66 189),    25 (103 67 61),     26 (167 82 181),     27 (39 83 53), 

28 (199 70 157),    29 (71),           30 (135 86 149),     32 (251), 

33 (123),          34 (187 48 243),    35 (59 49 115),      36 (219), 

37 (91),           38 (155 52 211),    40 (235 96 249),     41 (107 97 121), 

42 (171 112 241),   43 (113),          44 (203 100 217),    45 (75 101 89), 

46 (139 116 209),   50 (179),          51,                54 (147), 

56 (227 98 185),    57 (99),           58 (163 114 177),    60 (195 102 153), 

62 (131 118 145),   72 (237),          73 (109),           74 (173 88 229), 

76 (205 76 205),    77,               78 (141 92 197),     90 (165), 

94 (133),          104 (233),         105,               106 (169 120 225), 

108 (201),         110 (137 124 193),   122 (161),         126 (129), 

128 (254),         130 (190 144 246),   132 (222),         134 (158 148 214), 

136 (238 192 252),  138 (174 208 244),   140 (206 196 220),  142 (212), 

146 (182),         150,               152 (230 194 188),  154 (166 210 180), 

156 (198),         160 (250),          162 (186 176 242),  164 (218), 

168 (234 224 248),  170 (240),          172 (202 228 216),   178, 

184 (226),         200 (236),          204,              232 

 

 

 

  



Figure Legends 

 

Figure 1. A pair of patterns generated by ECA (right) and the AT_ECA (left). Each pattern proceeds 

vertically. The accompanied number represents a Wolfram’s rule number for ECA. 

 

Figure 2. The standard deviation of the spatial metric entropy versus the mean entropy for the pattern 

generated by ECA (right) and the AT_ECA (left) for the Critical Class rules. The curve is fitted to the 

AT_ECA plots. Each cross represents each rule. Pairs of  and  are distributed along a curve that is 

convex toward the top of the figure and is drawn by a broken line. 

 

Figure 3. The standard deviation of the spatial metric entropy versus the mean entropy for the pattern 

generated by ECA (right) and the AT_ECA (left) for the Ordinary Class rules. The curve fitted for 

the AT_ECA plot of the Critical Class is superimposed. 

 

Figure 4. Density versus time on a log-log scale for some Critical Class rules (rule numbers are 

represented in the graph). Plots for rule 150 are fit to a line with an exponent of -0.1595. 

 

Figure 5. Density versus time in a log-log scale for some Critical Class rules (rule numbers are 

represented in the graph). Plots for rules 151, 156, 157, and 182 are fit to a line with an exponent of 

-0.1595. 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 

 

 

 

 

 

 

 

 

 

 

 

 


