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ABSTRACT 

 

In a previous paper [21], we provided a formal definition for the concept of computational irreducibility (CIR), 

i.e. the fact for a function f from N to N  that it is impossible to compute f(n) without following approximately 

the same path than computing successively all the values f(i) from i=1 to n. Our definition is based on the 

concept of E-Turing machines (for Enumerating Turing Machines) and on the concept of approximation of 

E-Turing machines for which we also gave a formal definition. We precise here these definitions through some 

modifications intended to improve the robustness of the concept. We introduce then a new concept: the 

Computational Analogy and prove some properties of computationally analog functions. Computational Analogy 

is an equivalence relation which allows partitioning the set of computable functions in classes whose members 

have the same properties regarding to their computational irreducibility and their computational complexity. 

Keywords. Unpredictability – Irreducibility – Computational Complexity – Emergence 

 

 

 

1. Introduction 

The notion of Computational Irreducibility (CIR) seems to 

have been first put forward by Wolfram. Given a physical 

system whose behavior can be calculated by simulating 

explicitly each step of its evolution, is it always possible to 

predict the outcome without tracing each step? Is there 

always a shortcut to go directly to the n
th

 step? Wolfram 

conjectured
 
[16, 17, 18] that in most cases the answer is 

no. While many computations admit shortcuts that allow 

them to be performed more rapidly, others cannot be sped 

up. Computations that cannot be sped up by means of any 

shortcut are called computationally irreducible. 

This question has been widely analyzed in the context of 

cellular automata by Wolfram [15, 17]. A cellular 

automaton is computationally irreducible if in order to 

know the state of the system after n steps there is no other 

way than to evolve the system n times according to the 

equations of motion. The intuition behind this definition is 

that there is no other way to reach the n
th

 state than to go 

through the (n-1) previous ones.  

In this context, Israeli and Goldenfeld in [9] have shown 

that some automata that are apparently computationally 

irreducible have nevertheless properties that are 

predictable. But these properties are obtained by coarse 

graining and don’t account for small scales details. 

Moreover some automata (rule 30 for example) seem to be 

impossible to coarse grain.   

Reisinger et al. in [14] show that computational 

irreducibility seems to be contingent upon the 

representation of a given problem. To do so, they consider 

a game for which the initial rules are computationally 

reducible and they build an isomorphic representation 

leading to a process that appears to be computationally 

irreducible. As they notice, a more definitive claim would 

be to take one of Wolfram's computationally irreducible 

cellular automata, formulate an isomorphic representation 

of it, and then determine whether transition rules of the 

equivalent system are computationally reducible. 

Whatever the answers to the questions raised by Israeli and 

Goldenfeld or by Reisinger et al. are, what is of interest for 

us in this paper is to provide a robust formal definition of 

the very concept of computational irreducibility which is 

lacking. Indeed, as we explained in [21], Wolfram’s 

intuition needs to be rigorously formalized since stated as 

above, it is not robust. There are two underlying intuitions 

that seem to be equally important in the concept of CIR. 

The first one is the question of the speed of computation. If 

a process is CIR then it should not be possible to compute 

its n
th

 state in a time shorter than the time needed to 

compute successively the (n-1) previous states before 

computing the n
th

. The second one, is even more 
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demanding. After all, it could well be possible that the 

time to compute the n
th

 state be not shorter than the sum of 

the times needed to compute successively all the previous 

states but that the computation of the n
th

 state doesn’t need 

to really go through the computation of theses states. But 

for a process to be CIR, the necessity to actually compute 

these previous states is required. Of course, the second 

condition implies the first one. In the following, we will 

address both conditions. 

In [21], we provided a first formal definition for the 

concept of computational irreducibility which we 

re-expressed in the more general framework of functions f 

from N to N as the fact that it is impossible to compute f(n) 

without following approximately the same path than 

computing successively all the values f(i) from i=1 to n. 

Our definition is based on the concept of E-Turing 

machines (for Enumerating Turing Machines) and on the 

concept of approximation of E-Turing machines for which 

we also gave a formal definition.  

In the present paper, we precise these definitions and bring 

some modifications intended to improve the robustness of 

the concept.  We refer the reader to the original paper for 

the motivations of the initial definitions. Here, we also 

introduce a new concept: the Computational Analogy.  

In the part 1, we justify the computation model we use 

throughout this paper. In the part 2, we precise the 

definition of the E-Turing machines and their 

approximations and we give more details on the definition 

of the concept of Computational Irreducibility. In the part 

3, we introduce Computational Analogy, discuss its 

meaning and prove some theorems for functions that are 

computationally analog, relatively to their computational 

irreducibility and their computational complexity. 

2. Part 1 : The computational model 

In this paper, we adopt the computational model of Turing 

machines [6, 7, 8, 13] with k ≥ 2 tapes. So, let’s begin by 

justifying our choice to use the k-tape Turing machines as 

a good computational model. We are looking for a general 

model of computation allowing to deal with the questions 

of efficiency and of speed of computation in a robust way. 

It is well known that the model of Turing machines is a 

powerful though very fundamental model of computation. 

The main point with the Turing machines model is that it 

is very simple and that through the Church-Turing thesis, it 

allows the computation of any computable function. 

Several kinds of Turing machines exist depending on the 

number of tapes they have. While they are all equivalent 

regarding the functions they allow to compute, they are not 

equivalent regarding the speed of computation. For 

example, the problem of deciding if a string is a 

palindrome is O(n
2
)

1
 in the 1-tape Turing machines model 

and O(n) in the 2-tape Turing machines model [7, 13]. Is 

increasing the number of tapes allowing to improve 

without limit the speed of the computation of a given 

problem? This answer is no. A first result
 
[13] 

says that we 

can't expect more than a quadratic saving through allowing 

an arbitrary number of tapes.  

Theorem 2.1. Given any k-tape Turing machine M 

operating within time T(n), it is possible to construct a 

1-tape Turing machine M' operating within time O(T(n)
2
) 

and such that for any input x, M(x)=M'(x). 

The meaning of this result is that the best k-tape machine 

that can be designed for doing a computation will never 

operate in less that       if the best 1-tape Turing 

machine doing the same computation operates in a time 

T(n).  

A second result [13] is known as linear speed-up: 

Theorem 2.2. For any k-tape Turing machine M operating 

in time T(n) there exists a k'-tape Turing machine M' 

operating in time f'(n)=T(n)+n (where  is an arbitrary 

small positive constant) which simulates M.  

This linear speed-up means that the main aspect of 

complexity is captured through the function T(n) 

irrespectively of any multiplicative constant. 

DTIME(T(n)) is the class of functions
2
 computable by a 

k-tape Turing machine in T(n) steps. This result means that 

DTIME(T(n)) = DTIME(T(n)) and so it's legitimate to 

define DTIME(T(n)) as the class of functions computable 

by a Turing machine in O(T(n)) steps. If a function f is 

computable in time T(n) and log(f(n)) (hence the length of 

its binary representation) is o(T(n)) then f is also 

computable in time T(n) for every  > 0. 

Hence, in the k-tape Turing machines model, the speed of 

computation can be expressed through the O(T(n)) 

notation which is justified. That is what we will do all over 

the paper as is usual in the field of computational 

complexity. 

More results about the so called “speed-up theorems” are 

given in our previous paper [21].  

Usually, in the theory of computation, one is only 

interested in knowing if a function is computable and if so, 

in knowing the computational complexity of getting the 

output from the input. What is done during the 

computation is rarely considered and, except for the person 

writing the program itself, the Turing machine is a kind of 

                                                           
1
 We refer the reader to the appendix A at the end of the paper for the 

definition of the standard asymptotic notations. 
2 More precisely the class of decision problems. 
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black box furnishing an output from an input.  But in this 

paper, we are interested in a particular aspect of 

computation that is not often addressed: the intermediate 

results. As we stated in the introduction, a cellular 

automaton is computationally irreducible if in order to 

know the state of the system after n steps there is no other 

way than to evolve the system n times according to the 

equations of motion. Similarly for a function, to be CIR 

means that the computation of f(n) requires the previous 

computation of all the f(i) for i < n.  CIR functions are 

defined not by an explicit formula giving directly the value 

of f(n) from the value of n but by recursive rules giving the 

way to go from f(i) to f(i+1)
3
. So, following these rules, the 

computation of f(n) starts by the computation of f(1) 

followed by the computation of f(2) from f(1) then of f(3) 

from f(2) and so on, till the computation of f(n) from 

f(n-1). So, in order to be able to characterize that sort of 

computation, our computational model should allow 

identifying the intermediate computation steps. For that, 

we will consider special 3-symbols (0, 1, #) Turing 

machines such that each of these intermediate results will 

be successively written on the output tape with the symbol 

“#” written at its left. More precisely, a program that 

follows a recursive rule for computing step by step through 

the iteration of the same rule “knows” when it switches to 

the next iteration. What we demand in our specific model 

of computation is that the intermediate result which is the 

input of the next iteration be written on the output tape at 

the right of the symbol “#”.  The final result will appear on 

the output tape at the right of the last symbol “#”.  The 

output tape will be a one way tape (i.e. the head will be 

allowed to go only in the right direction). We’ll see 

throughout the paper why this kind of special Turing 

machines is useful for our purpose
4
. 

In the following f, g, h, F, G, H will always be functions 

from N to N and M, P, Q will always be Turing machines 

as described above. 

3. Part 2 : The Computational  Irreducibility 

Given a Turing machine M computing f(n) in time 

T(M(n)),
 
let's denote by Rn,1, …, Rn,i, …, Rn,T(M(n)) the 

content of the output tape of M during the computation of 

f(n) after 1 step of computation, …, i steps of computation 

and T(M(n)) steps of computation. So (Rn,1, …, Rn,i, …, 

Rn,T(M(n))) is the sequence of the configurations of the 

output tape during the computation of f(n). 

                                                           
3 Of course, that doesn’t mean that each function defined like that is CIR. 
4 The goal is to be able to distinguish the different results when reading 

the output tape. Instead of using a special symbol to separate the results, 

an equivalent method would be to use a self delimiting way to write them. 

Definition 3.1 (E-Turing machine): A Turing machine Mf 

will be called a E-Turing machine for f if:   

(i) Mf computes f (i.e. for every input n, Mf computes f(n) 

and  halts). It's important to notice that it is the same 

Turing machine which on input n computes f(n): f is 

uniformly computed by Mf . 

(ii) during the computation of f(n), there exist increasing 

kn(i) for i=1 to n-1, such that f(i) is written on the output 

tape         
 at the right of the last symbol “#”.  

A E-Turing machine for a function f (in the following we 

will always denote Mf such a Turing machine) is a 

program which, in a certain sense, enumerates the 

successive values f(i) for i  n. So, during the computation 

of f(n), f(1) then f(2) and so on until f(n) successively 

appear on the output tape of Mf. It is of course possible to 

build E-Turing machines for any computable function. 

Let f be a computable function. Here are two examples of a 

E-Turing machine for f.  

a) Assume first that M is a Turing machine which on every 

input n computes f(n). Let's now consider the Turing 

machine Mf  which on every input n, calls M with input 1 

then, when M has computed f(1), write “#” and f(1) on the 

output tape, calls again M with input 2 and so on until the 

last call to M with input n and which halts when M has 

computed f(n) after having written “#” and f(n) on the 

output tape. Mf  is clearly a E-Turing machine for f. When 

computing f(n), Mf will follow exactly the same initial 

segments than the initial segments followed for all k < n 

when computing f(k). The computation of f(n) is the 

continuation of the computation of f(k) for k < n.  One can 

also notice that the computation of f for each value n starts 

from scratch (i.e. the values of f(k) for k < n are not used 

for computing f(n)). This way to build a E-Turing machine 

is possible for any computable function. 

b) Assume now that f is such that it is possible to compute 

f(n) from f(n-1). Let M' be a Turing machine which on 

input f(n-1) computes f(n). Let's now consider the Turing 

machine M'f  which on every input n, starts by computing 

f(1), write “#” and f(1) on the output tape, then calls M’ to 

compute f(2) from the input f(1)), write “#” and f(2) on the 

output tape and so on till f(n). M'f  is a E-Turing machine 

for f. The computation of f(n) by Mf can be seen as the 

successive computations of f(i) from f(i-1) till reaching 

f(n). As in the first example, when computing f(n), M’f 

follows exactly the same initial segments than the initial 

segments followed for all k < n when computing f(k). Here 

again, the computation of f(n) is the continuation of the 

computation of f(k) for k < n. 
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Because the initial path is the same when computing f(n) 

and f(m) for n>m, these two examples of E-Turing 

machines can be thought as doing a computation such that 

on any input n, they halt after having run through an initial 

segment of length T(Mf(n)) of one unique infinite virtual 

computation of f(i) for i = 1 to ∞. That means also that the 

kn(i) are independent of n. But this is not necessarily the 

case for all E-Turing machines. 

The computation of f(n) from f(n-1) can be faster than the 

computation of f(n) from n. In this case, M'f will be much 

faster than Mf. We'll see that this is the case if f is CIR 

because a Turing machine computing a CIR function f 

does need to know f(n-1) (or a value that is near in a sense 

that we will precise) to compute f(n). We give here, some 

examples of functions more and more "difficult":  

- For computing f(n) = 3
n
 from the input n, a Turing 

machine will go through some of the intermediate values 

f(i) for i < n but not necessarily all. For instance, 3
2n

  can 

be computed as 3
n
 x

 
3

n
 and 3

2n+3
 will need the computation 

of 3
n+1

  or the computation of  3
n 

 and 3
3
. But if f(n-1) is 

given as input, the computation of f(n) is immediate and 

fast. 

- For computing f(n) = n!, a Turing machine will go 

through n intermediate values if its starts either with n or 

with (n-1)! as input. Indeed even from (n-1)! it is needed to 

know n for computing n! and a natural way (but not the 

only one) to "extract" the value n from (n-1)! is to compute 

all the increasing values of the factorial function and to 

count how many have been computed till reaching (n-1)!. 

The computation from n can be done in any possible order 

since the multiplication of the n first natural numbers can 

be done from any combination of these numbers. That 

means that even if a Turing machine computing n! from n 

will have to perform n operations, it will not necessarily 

computes all the k! for k<n before. So, it seems that every 

natural Turing machine computing n! with either n or 

(n-1)! alone as input will have to perform n operations 

without having to be necessarily a E-Turing machine. But 

that will not be the case with the input (n, (n-1)!) from 

which the computation will be very fast. 

-  For computing f(n) defined by: "the first bit of the sum 

of the k
th 

bit of 3
k
 for all k  n", from the input n, a Turing 

machine will go through all the intermediate values f(i) for 

i < n but will be simply unable to compute f(n) from f(n-1) 

alone because there is no way to extract the value of n 

from f(n-1) and this value is needed to compute f(n). So, it 

seems that every Turing machine computing f(n) with n as 

input will be a E-Turing machine and f(n) could well be 

CIR. From the input (n, f(n-1)) the computation will be 

fast. 

The time T(Mf(n)) to compute f(n) with a E-Turing 

machine Mf is the sum of the times between the apparition 

on the output tape of f(i) and f(i+1)  (from i=1 to n-1) plus 

the initial time to get f(1) appearing.   

Let's denote             
  
         the time between 

the apparition of f(i-1) and the apparition of f(i) during the 

computation of f(n) for any n>i.  

We have              
 
    (we suppose by convention 

that    is the time for f(1) to appear on the output tape). 

Since Mf is a Turing machine,    is the number of steps 

done by the machine and so is a strictly positive integer. 

So T(Mf(n)) ≥ n. But in the following we will be interested 

only in functions f such that T(Mf(n)) = Ω(nlogn). 

This seems a reasonable assumption and it’s obviously true 

of any function f such that f(n) ≥ n since writing an output 

n in binary or in any other basis ≥ 2, needs at least a time 

logn and a E-Turing machine performs n such operations 

before halting. So the time for a E-Turing machine 

computing such a function is necessarily greater than 

i=1 to n logi = log(n!) = (nlogn). So T(Mf(n)) = Ω(nlogn). 

This is true in particular (see below), for the simulation of 

a large number of non trivial one dimensional elementary 

cellular automata with nearest neighbors (which are Ω(n
2
)) 

and in the majority of the simulations of more complex 

cellular automata (for example Conway’s game of life is 

Ω(n
3
)). Of course, we’ll consider as well CIR functions for 

which f(n) < n. This is the case of the two candidates given 

below, at the end of part 2, but it is highly probable that 

they satisfy nonetheless T(Mf(n)) = Ω(nlogn). 

The question of knowing whether there is an 

asymptotically optimal program for doing a given 

computation is a difficult and open question in general. We 

mean by asymptotically optimal program, a program p 

such that for any other program p’ doing the same 

computation T(p(n))=O(T(p’(n))).  On the one hand, it is 

well known that the so called Blum’s speedup theorem [1] 

shows that for some decision problems, any program that 

solves the problem will be much slower than some other 

program solving the same problem. In these cases, there 

exists an infinite sequence of programs solving the 

problem such that each program in the sequence is much 

faster than the program it follows and (up to a 

multiplicative constant) there is no asymptotically optimal 

program. But these problems are artificially constructed to 

prove the theorem. On the other hand, Levin’s Optimal 

Search Theorem [11] proves that for a wide class of 

problems there is an asymptotically optimal program. 

These are problems for which verifying a solution is easy 

while producing a solution might be difficult. More 

precisely, these are problems for which the time 

complexity of checking a solution is asymptotically faster 
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than the time complexity of producing a solution. Now, it 

is widely thought that no “natural problem” is subject to 

Blum speedup and that, in general, asymptotically optimal 

algorithms exist for them. In particular, this is the case for 

the cellular automata that are the initial source of 

inspiration for the subject of this paper. Indeed, to show 

that a program P is asymptotically optimal, it is enough to 

show that there is a lower bound, say h(n), on the time 

complexity of any program Q for this problem, 

T(Q(n))=(h(n)), and to prove that T(P(n))=O(h(n)). In 

this case, P is an asymptotically optimal program. For 

example, in the case of the simulation of non trivial one 

dimensional elementary cellular automata with nearest 

neighbors, it is clear that any algorithm computing the n 

initial configurations will have in the worst case to perform 

in (n
2
) and that there are algorithms performing in O(n

2
) 

(see [21] for details on this point). So, these algorithms 

will be asymptotically optimal. Hence, any Turing 

machine representing these algorithms will be an 

asymptotically optimal program for the given cellular 

automaton. This is what we call in the following of this 

paper an Efficient E-Turing machine. In the following, 

we’ll make the assumption that there always exist an 

asymptotically optimal Turing machine that we will note 

M*f and an Efficient E-Turing machine that we will note 

Mf
eff

 for any function f we consider. Put differently, let’s 

say that we restrict our scope to the subset of the 

computable functions set made of functions that satisfy 

this requirement (which is hopefully a very large subset). 

We give now the formal definition of an Efficient 

E-Turing machine for a function, which will be a 

fundamental building block for what follows.  

Definition 3.2 (Efficient E-Turing machine):  We will say 

that a E-Turing machine Mf
eff

 for f is an efficient E-Turing 

machine for f if for any other E-Turing machine Mf for f: 

T(Mf
eff

(n)) = O(T(Mf(n))) i.e. there are constants c > 0, 

n0 > 0 such that n > n0, T(Mf
eff

 (n))  cT(Mf(n)). 

As explained above, the intuition is that asymptotically it 

is not possible for a E-Turing machine to compute faster 

than an efficient E-Turing machine.  

It’s clear from the definition that for any two efficient 

E-Turing machines Mf
eff

, M’f
eff

, and for any two 

asymptotically optimal Turing machine M*f, M’*f, we 

have: T(Mf
eff

 (n))=(T(M’f
eff

 (n))) and 

T(M*f (n))=(T(M’*f (n))). So for any function H, 

H(n)=O(T(Mf
eff

 (n))) is equivalent to H(n)=O(T(M’f
eff

 (n))) 

and H(n)=O(T(M*f (n))) is equivalent to 

H(n) = O(T(M’*f  (n))). In the following, Mf
eff

 will always 

denote an efficient E-Turing machine for f and 

T(Mf
eff

(n)) will denote the time for an efficient E-Turing 

machine to compute f(n). M*f will always denote an 

asymptotically optimal Turing machine computing f and 

T(M*f(n)) will denote the time for an asymptotically 

optimal Turing machine to compute f(n). According to 

what is said above, there will be no need to precise which 

particular efficient E-Turing machine or which 

asymptotically optimal Turing machine is considered.    

We recall that in the following we always suppose that 

there exist an asymptotically optimal Turing machine M*f 

and an efficient E-Turing machine Mf
eff

 for f. 

Definition 3.3 (approximation of a E-Turing machine): A 

Turing Machine M will be said to be a P-approximation
5
 

of a E-Turing machine for f if and only if there are a 

function F such that F(n)=O(T(M*f(n))/n) and a Turing 

machine P such that for every n:  

(i) on input n, M computes a result rn such that P computes 

f(n) from n and rn in a number of steps F(n) and halts.  

(ii) during the computation, there exist non decreasing 

kn(i) for i=1 to n-1, such that a result r’n,i is written on the 

output tape          at the right of the last symbol “#”and 

that P computes f(i) from n, i and r’n,i in a number of 

steps F(i) and halts
6
.  

Actually, if we note rn = r’n,n, P computes always from the 

triplet (n, i, r’n,i) here abbreviated en n, rn when i=n.  

Intuitively, an approximation of a E-Turing machine for f 

is a Turing machine doing a computation that is near the 

computation made by a E-Turing machine for f.  

Let's notice that each E-Turing machine for f is of course 

an approximation of a E-Turing machine for f. The 

associated Turing machine P is simply the identity (a 

Turing machine which computes n from the input n)
 7
. 

An approximation P of a E-Turing machine for f can be a 

E-Turing machine for r if the r’n,i don’t depend on n and if 

r’i = ri for all i (that means that the intermediate results are 

the values actually computed by P). But it is not 

necessarily always the case. In particular, it can happens 

that the intermediate results r’n,i from which P computes 

f(i) are different for different values of n. In this case, the 

path that M follows for computing rn is different for 

different values of n and the ri for i<n are not necessarily 

computed. 

The concept of approximation of a E-Turing machine for f 

is actually a concept obtained from the concept of 

                                                           
5
 In the following, we will often say simply “approximation” for 

“P-approximation”. 
6
 In the following, we will often omit to mention again the inputs n, i 

which will be implied. 
7
 Under the condition that F(n) = O(T(M*f(n))/n)  =  (l(f(n)). 
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E-Turing machine by relaxing the constraints of the 

definition along three dimensions. The first one is the fact 

that on input n an approximation doesn’t compute exactly 

f(n) but a value r(n) such that it is possible to go from r(n) 

to f(n) through a very short computation. The second one is 

that the intermediate results don’t need to be all the f(i) for 

i<n but values rn,i from which it is possible to compute f(i) 

through a very short computation and the third one is that 

it is even not necessary that the intermediate values be the 

same on every computation for different n.  

Another point to notice is that we don't claim that it is 

necessary to be able to build the Turing machine P which 

is associated to an approximation through an effective 

mean.  We only ask that such a machine exists.   

We can intuitively justify the value chosen for F(n). F(n) is 

the time that the computation of f(n) takes from the value 

rn  that is computed by the approximation. We have in 

mind the case of CIR functions for which computing f(n) 

demands to compute all the previous values. For these 

functions, since we want rn to be “near” in a certain sense 

of f(n), the time to go from rn to f(n) must be very short 

compared to the time to compute f(n) from n and at most 

comparable to the time to compute f(n) from f(n-1). That’s 

the reason why F(n)= O(T(M*f(n))/n). Indeed, if f is CIR, 

we’ll see that this is the average time to compute f(n) from 

f(n-1).  The factor 1/n in T(M*f(n))/n takes into account the 

fact that there are n necessary phases to compute f(n) with 

a E-Turing machine for f and that we want P to compute in 

a time shorter or equal to each one of these phases.    

Another way to understand the value of F(n), coming from 

the picture of cellular automata,  is to think that rn is “near” 

f(n) (and then the computation of f(n) from rn is fast) if 

there are only a bounded number of operations to perform 

on some bits of rn to go from rn to f(n). Indeed, in this 

framework, a bit of f(n) or of  rn is a cell of the cellular 

automaton. That means that F(n) is O(l(rn)) where l(rn) is 

the length of rn. A reasonable assumption is that the length 

of rn should not exceed much the length of f(n) so 

l(rn) = O(logf(n)). That means that F(n) is O(logf(n)).  Now 

as we saw before T(Mf
eff

(n)) = Ω(n logf(n)) so 

logf(n) = O(T(Mf
eff

 (n))/n) then F(n) must be 

O(T(Mf
eff

 (n))/n). Now for CIR functions, we anticipate 

that T(Mf
eff

 (n)) = (T(M*f(n))) so F(n) = O(T(M*f(n))/n) 

is equivalent to F(n) = O(T(Mf
eff

 (n))/n). For functions that 

are not CIR and, on the opposite, satisfy 

T(M*f(n)) = o(T(Mf
eff

 (n))), the value 

F(n) = O(T(M*f(n))/n)  is the smaller of the two. 

Is it possible to be more demanding and to ask that F(n) be 

smaller than that ? The answer is “no” as it is easy to see 

on the example of one dimension cellular automata. F(n) is 

the time for P to compute f(n) from rn so, in order for P to 

read rn and to write f(n), F(n) must be at least equal to 

l(f(n)). For non trivial automata, l(f(n)) = O(n). If these 

automata are CIR, then T(Mf
eff

 (n)) = (T(M*f(n))) = 

O(n
2
) and so F(n) = O(T(M*f(n))/n) = O(n). One can see 

that demanding a smaller value for F(n) would result in the 

fact that no machine P can exist since the time to write f(n) 

is (n).  By the way, one can notice that for these 

automata that are not CIR and for which T(M*f(n)) = o(n
2
), 

there will be no machine P and hence no approximation of 

E-Turing machine for these automata. Indeed, in this case 

F(n) = O(T(M*f(n))/n) = o(n) which is too small a value 

for any P to write f(n). Of course, this is true only for 

functions such that l(f(n)) > n which is not mandatory. In 

particular, this is false for trivial automata whose 

configurations vanish after some iterations or for which the 

successive configurations are restricted to one cell. So, the 

above reasoning is not a proof but only an intuitive 

justification of the value of F(n). 

Definition 3.4 (Computation of f(n) based on an 

approximation): Let M be a P-approximation of a 

E-Turing machine for f. Let's consider the computation of  

f(n) done initially through M with input n and continued 

when M has computed rn by P which computes f(n) from n 

and rn in a time F(n) and halts. This computation will be 

said to be a computation of f(n) based on the 

P-approximation M. 

Definition 3.5 (Turing machine computing f based on an 

approximation): Let M be a P-approximation of a 

E-Turing machine for f and let’s consider the Turing 

machine M' which, for every n, computes f(n) through a 

computation based on the P-approximation M. M’ will be 

said to be a Turing machine computing f based on the 

approximation M.  

If M is a E-Turing machine for f, M and M’ are identical 

and M’ is of course a E-Turing machine for f. Otherwise,  

M’ is also an approximation of a E-Turing machine for f. 

The Turing machine P’ associated to M’ is the same than 

P, i.e. P’ computes f(i) from n, i and r’n,i in a number of 

steps F(i), except that for the computation on input n, n 

and r’n,n, P’ is the identity while P computes f(n). 

As shown in theorem 3.1, the important point is that it is 

possible to build a E-Turing machine for f from any 

approximation of a E-Turing machine for f.  

Theorem 3.1:  From any M approximation of a E-Turing 

machine for f it is possible to build a E-Turing machine M' 

for f (we'll call it the daughter of M) computing in a time 

T(M'(n)) = (T(M(n))). 

Proof: Since M is an approximation of a E-Turing 

machine for f, there are a Turing machine P and a function 

F associated as mentioned in the definition 3.3. Let's 
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consider the Turing machine built according the following 

way: on input n, M' does exactly the same computation 

than M but for each i<n, after having computed rn,i  which 

computes f(i) through P with input n, i, rn,i  in a time  F(i), 

writes “#” and f(i) on its output tape and resumes the 

computation and, at last, computes f(n) from n and rn. It's 

clear that M' is a E-Turing machine for f. M' computes in a 

time: T(M'(n)) = T(M(n)) +        
    + O(1) 

= T(M(n)) +        
          

   + O(1) 

Now it is possible to compute f(n) by M followed by P 

(that is a computation of f based on the approximation M) 

so T(M*f(n)) = O(T(M(n)) + F(n))  

T(M*f(n)) = O[T(M(n)) +       
          Hence  

T(M*f(n)) = O(T(M(n))). Then  

T(M'(n)) = T(M(n)) +                  
    

Now                    
   if F is a convex function 

and F(n) = (logn)
8
. Since any function O(T(M(i))) is a 

convex function (logn), we have 

T(M'(n)) = T(M(n)) + O(T(M(n))) = O(T(M(n))) 

As T(M(n)) < T(M'(n)) we get T(M(n)) = (T(M'(n))) 

In the following, we will note   this particular form of 

composition of the two Turing machines M and P that we 

described above. So M' = P   M. The composition   is 

defined for a pair (P, M) when the second argument is an 

approximation of a E-Turing machine for a given function 

f and the first one is the associated Turing machine 

computing f(i) from the intermediate results of M. Of 

course, this composition is not to be confused with the 

usual composition PoM which runs first the program M 

and then the program P with the result of the computation 

of M as input. An important difference is the computation 

time. The computation time of PoM is the sum of the 

respective computation times: 

T((PoM) (n)) = T(P(output of M(n))) + T(M(n)).  

While the computation time of P   M is:  

                           
 
             + O(1) 

       
               + O(1) 

Theorem 3.2:  No approximation of a E-Turing machine 

for f can compute faster than an efficient E-Turing 

machine for f. More precisely, if M is an approximation of 

a E-Turing machine for f then T(Mf
eff

 (n)) = O(T(M(n))).   

Proof: Let M’ be the daughter of M. Since M’ is a 

E-Turing machine for f, T(Mf
eff

 (n)) = O(T(M’(n))). By 

theorem 3.1 we have T(M'(n)) = (T(M(n))). So 

T(Mf
eff

 (n)) = O(T(M(n))). 

 

                                                           
8
 See the proof in the appendix B. 

Theorem 3.3:  Let M’ be a Turing machine computing f 

based on an approximation M.  

Then:    T(M'(n))= (T(M(n))). 

Proof:  M' will compute in a time T(M'(n)) such that 

T(M(n)) ≤ T(M'(n))  ≤ T(M(n)) + F(n)  

= T(M(n)) + O(T(M*f(n))/n) 

= T(M(n)) + O(T(M(n))/n) = O(T(M(n))) 

So T(M(n)) = (T(M'(n))) 

In summary, one can say that an approximation of a 

E-Turing machine for f, its daughter and any Turing 

machine computing f based on this approximation compute 

all in the same time. 

Definition 3.6 (strongly CIR (resp CIR) function):  A 

function f(n) from N to N will be said to be strongly CIR 

(resp CIR) if and only if for any Turing machine M 

computing f there is a P-approximation of a E-Turing 

machine for f, M’ such that for every n (resp. for infinitely 

many n), the computation of f(n) by M is based on M’.   

The intuition is that if a function is strongly CIR, for each 

n there is no other way to compute f(n) than to compute 

before all the values f(i) for i<n (or values that are near in 

the sense given in the definition of an approximation of a 

E-Turing machine). There is no shortcut allowing to get 

directly the value of f(n) without having computed before 

f(n-1) or a value that is near f(n-1) and so forth for the 

previous values. If a function is CIR (but not strongly 

CIR), for infinitely many n there is no other way to 

compute f(n) than to compute before all the values f(i) for 

i<n (or values that are near).   

The reason why it’s useful to introduce this distinction 

between strongly CIR and CIR can be explained through 

the following example. Assume that f is strongly CIR. So 

there is no other way to compute f(n) than to compute 

before all the values f(i) for i<n (or values that are near) 

and that is true for every n. Let’s now consider the 

function g such that g(2i-1)=f(i) and g(2i)=1. It’s clear that 

computing g for any even value is very easy and doesn’t 

imply having to compute any other result before. So, g is 

not strongly CIR. But, the intuition is nevertheless that g is 

irreducible in some way. So, the notion of strongly CIR 

needs to be weakened to cover functions like g and many 

others that similarly need infinitely often (but not always) 

to go through the computation of all the previous values 

for computing them. 

Theorem 3.4: If a function f is strongly CIR then no 

Turing machine computing f can compute f(n) faster than 

an efficient E-Turing machine for f. So for any Turing 

machine M computing  f,  T(Mf
eff

(n)) = O(T(M(n))). 
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Proof: If f is strongly CIR, then any Turing machine M 

computing  f is based on an approximation of a E-Turing 

machine for f. Let M’ be this approximation. From 

theorem 3.2, T(Mf
eff

(n))=O(T(M’(n))). From theorem 3.3, 

T(M(n))= (T(M’(n))).  

So T(Mf
eff

(n)) = O(T(M(n))). 

This result is slightly weakened in the theorem 3.5 if f is 

simply CIR. In this case, for any Turing machine 

computing f, there are infinitely many values of f(n) that it 

is not possible to compute faster than the computation by 

an efficient E-Turing machine for f. 

Theorem 3.5: If a function f is CIR then for any Turing 

machine M computing f there are constants c > 0, n0 > 0 

such that N > n0, n > N, T(Mf
eff

 (n))  cT(M(n)). 

Proof: If f is CIR, then for any Turing machine M 

computing f there is a P-approximation of a E-Turing 

machine for f, M’, such that for infinitely many n, the 

computation of f(n) by M is based on M’. From 

theorem 3.2, T(Mf
eff

(n)) = O(T(M’(n))). So, there are 

constants c > 0, n0 > 0 such that n > n0, 

T(Mf
eff

 (n))  cT(M’(n)). But N, n > N such that the 

computation of f(n) by M is based on M’. For such n 

T(M(n)) > T(M’(n)). So for those n that are superior to n0, 

T(Mf
eff

 (n))  cT(M(n)). 

Theorem 3.6: If a function f is strongly CIR then 

T(M*f(n)) = (T(Mf
eff

(n))). 

Proof: If f is strongly CIR, then by theorem 3.4 for any 

Turing machine M computing f, T(Mf
eff

(n)) = O(T(M(n))). 

So T(Mf
eff

(n)) = O(T(M*f(n))). By definition for any 

Turing machine M computing  f,  T(M*f(n)) = O(T(M(n))). 

So T(M*f(n)) = O(T(Mf
eff

(n))). 

Hence T(M*f(n)) = (T(Mf
eff

(n))). 

Definition 3.7 and theorems 3.4, 3.5 and 3.6 address the 

two key points of the underlying intuitions for the concept 

of CIR: the speed of computation and the path followed 

during the computation. 

Let’s give two examples of functions that seem to be good 

candidates to be strongly CIR (but of course, a rigorous 

proof remains to be found).  

1. Let B={0,1} and B* be the set of all finite strings over 

B, let L be a recursive language and assume an 

enumeration of the words of B*
 (for example the index in 

the length-increasing lexicographic ordering). Define the 

function f by f(n) is the number of words wi (for i≤n in the 

chosen enumeration) of B*
 in L. Then it seems that, in 

general, there is no other way to compute f(n) than to 

decide for each i≤n if the word wi belongs or not to L and 

to count the number of positive answers. 

2. Knowing if an initial configuration of Conway’s game 

of life will be eternal or not is an undecidable problem. So 

let f(n) be the number of initial configurations of index 

smaller than n+1 in a given enumeration that are still living 

after n iterations. Here again, it seems that there is no other 

way to compute f(n) than to test each one of the relevant 

configurations during n steps and therefore, so doing, to go 

through the computation of all the f(i) for i<n. 

4. Part 3 : The Computational Analogy 

 

Let M be an approximation of a E-Turing machine for f. M 

computes a function r but is not necessarily a E-Turing 

machine for r. Nevertheles, it is clear that each E-Turing 

machine for r is an approximation of a E-Turing machine 

for f. But it is possible that no E-Turing machine for f be 

an approximation of a E-Turing machine for r. It would be 

the case if, while the time to go from n, r(n) to f(n) through 

P  is O(T(M*f (n))/n), there is no Turing machine able to 

compute r(n) from n, f(n) in a time O(T(M*r(n))/n) where 

M*r is an asymptotically optimal Turing machine for r. 

But if one E-Turing machine for f is an approximation of a 

E-Turing machine for r then every E-Turing machine for f 

will be an approximation of a E-Turing machine for r. In 

this case, each E-Turing machine for f is an approximation 

of a E-Turing machine for r and vice versa, each E-Turing 

machine for r is an approximation of a E-Turing machine 

for f. So it's possible to define a relation of "computational 

analogy" CA (which will be proved to be an equivalence 

relation): 

Definition 4.1 (Equivalence Relation: Computational 

Analogy):  f and g will be said to be computationally 

analog (noted f  CA g) if: 

(i) there exists a Turing machine M that is both a E-Turing 

machine for f and an approximation of a E-Turing 

machine for g 

(ii) there exists a Turing machine M' that is both a 

E-Turing machine for g and an approximation of a 

E-Turing machine for f 

That means that there is a Turing machine P
f->g

 which 

computes g(n) from n, f(n) for every n in a time 

F(n) = O(T(M*g(n)/n))  (and vice versa).  So: 

Theorem 4.1:  (f  CA g) is equivalent to: there is a Turing 

machine P
f->g

 which computes g(n) from n, f(n) for every n 

in a time F(n) = O(T(M*g(n)/n)) and there is a Turing 

machine P
g->f

 which computes f(n) from n, g(n) for every n 

in a time G(n) = O(T(M*f(n)/n)). 

In the following, when f CA g, we will always denote by 

P
g->f

 and P
f->g

 these Turing machines.  
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Theorem 4.2:  Let M*f (resp. M*g) be an asymptotically 

optimal Turing machine computing f (resp. g). If f CA g 

then T(M*f(n)) = (T(M*g(n))). 

Proof: The Turing machine (P
f->g

 o M
*
f) computes g in a 

time T(M*f (n)) + F(n) with F(n) = O(T(M*g(n)/n)).   

Since M*g is an asymptotically optimal Turing machines 

computing g, T(M*g(n)) = O(T(M*f(n))) + O(T(M*g(n))/n) 

so T(M*g(n)) = O(T(M*f(n))). The same reasoning with 

(P
g->f

 o M*g) proves that T(M*f(n)) = O(T(M*g(n))). Then 

T(M*f(n)) = (T(M*g(n))).  

Theorem 4.3: Let M
eff

f (resp. M
eff

g) be an asymptotically 

optimal Turing machine computing f (resp. g).  If  f CA g  

then T(Mf
eff

(n)) = (T(Mg
eff

(n))) 

Proof: The Turing machine P
f->g

   Mf
eff

 which is a 

E-Turing machine for g computes in a 

time T(P
f->g

   Mf
eff

(n)) = T(Mf
eff

(n))+       
          

   . 

Since Mg
eff

 is an efficient E-Turing machine 

T(Mg
eff

(n)) = O(T(P
f->g

   Mf
eff

(n))). 

Hence T(Mg
eff

(n)) = O(T(Mf
eff

(n)) +    
    

     

 
  

   ). 

Now        
          

   = O(T(M*g(n))) (see appendix 

B). 

So T(Mg
eff

(n)) = O(T(Mf
eff

(n))) + O(T(M*g(n))). Now  

T(M*g(n))= (T(M*f(n))) by theorem 4.2 and T(M*f(n)) = 

O(T(Mf
eff

(n))) then T(Mg
eff

(n))=O(T(Mf
eff

(n))). 

The same reasoning for f shows that 

T(Mf
eff

(n)) = O(T(Mg
eff

(n))).  

Hence T(Mf
eff

 (n)) = (T(Mg
eff

 (n))). 

Theorem 4.4: (f CA g) is equivalent to:  any 

approximation of a E-Turing machine for f is an 

approximation of a E-Turing machine for g and vice versa. 

Proof: Consider first the direct sense: Let M be a 

P-approximation of a E-Turing machine for f. P computes 

in a time O(T(M*f (n))/n). According to theorem 4.1, there 

is a Turing machine P
f->g

 which computes g(n) from f(n) 

for every n in a time F(n) = O(T(M*g(n))/n).  

It’s then clear that M is a (P
f->g

 o P)-approximation of a 

E-Turing machine for g because (P
f->g

 o P) computes in a 

time O(T(M*f (n))/n)+ O(T(M*g(n))/n) = O(T(M*g(n))/n) 

since by theorem 4.2, T(M*f(n)) = (T(M*g(n))). Consider 

now the reverse sense: a E-Turing machine for f is an 

approximation of a E-Turing machine for f so it is an 

approximation of a E-Turing machine for g (and vice 

versa). 

The very meaning of f CA g is that f and g share the same 

approximations of E-Turing machines. 

Theorem 4.5:  CA is an equivalence relation 

Proof: This is obvious by theorem 4.4. 

The quotient set of the computable functions
9
 set by this 

equivalence relation is made of equivalence classes of 

computationally analog functions (CA functions) that 

share properties about their computational complexity 

(their asymptotically optimal programs compute in the 

same time as well as their efficient E-Turing machines, by 

theorems 4.2 and 4.3) and their computational 

irreducibility as we are now going to show. 

Theorem 4.6:  Assume f CA g. If f is strongly CIR then g 

is strongly CIR. 

Proof: Let M be a Turing machine computing every g(n). 

Since f CA g, there is a Turing machine P
g->f 

which 

computes f(n) from n, g(n) for every n in a time 

F(n) = O(T(M*f(n))/n). (P
g->f

oM) is a Turing machine 

computing every f(n). Now f is strongly CIR, so, there are 

a Turing machine S which is an approximation of a 

E-Turing machine for f, a Turing machine Q and a function 

H(n) = O(T(M*f(n))/n) such that for every n, the 

computation of f(n) made by (P
g->f

oM) is based on S (i.e. is 

actually the same than the computation of f(n) made by S 

followed by Q which computes in a time H(n)). Since 

f CA g, by theorem 4.4, S is also an approximation of a 

E-Turing machine for g. So during the computation of f(n) 

there are data rn,i (computed by S) appearing successively 

in an increasing order from i=1 to n on the output string of 

S such that there is a Turing machine Q’ that on input rn,i, 

computes g(i) in a number of steps H’(i) (where 

H’(n)=O(T(M*g(n))/n)). Since (P
g->f

oM) and (QoS) are the 

same Turing machine, that means that some of these rn,i 

appear during the computation of M and some appear 

during the computation of P
g->f

.  Let’s assume that all the 

rn,i  for i=1 to k, appear during the computation of M and 

that all the rn,i  for i=k+1 to n, appear during the 

computation of P
g->f

.   Let’s now consider the Turing 

machine Q’’ gotten from Q’ through the following change:  

- on input n, i, rn,i  for i=1 to k, Q’’ does the same 

computation than Q’ (i.e. computes g(i) in a time H’(i)). 

- on input n, i, rn,k  for i=k+1 to n, Q’’ starts by computing 

rn,i then computes g(i) from r(i) as Q’ does. 

Since P
g->f

 computes f(n) from n, g(n) in a time 

G(n) = O(T(M*f(n)/n)), all the rn,i  for i=k+1 to n, will 

appear in a time less than G(n). So the computation of g(i) 

from n, i, rn,k  (for i=k+1 to n), will be done in a time H”(i)  

smaller than G(n) + H’(i). Since G(n) = O(T(M*f(n)/n)),  

which is equal to O(T(M*g(n))/n) by theorem 4.2, and 

since H’(n)=O(T(M*g(n))/n)) we get H”(n) = 

O(T(M*g(n))/n).  

Let’s notice that the list of intermediate results r’n,i from 

which Q” computes g(i) is the same than the list of rn,i for 

                                                           
9
 Let’s recall  that we restrict our scope to the computable functions that 

satisfy the requirement that there are an asymptotically optimal program 

and an Efficient E-Turing machine for them. 
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i=1 to k and is equal to rn,k  for i=k to n. That means that M 

is based on a Q”-approximation of a E-Turing machine for 

g (the Turing machine computing all the rn,i for i=1 to k) 

and so g is strongly CIR.  

Theorem 4.7:  Assume f  CA g. If f is CIR then g is CIR. 

Proof: Let M be a Turing machine computing every g(n). 

Since f CA g, there is a Turing machine P
g->f 

which 

computes f(n) from n, g(n) for every n in a time 

F(n) = O(T(Mf*(n)/n)). (P
g->f

oM) is a Turing machine 

computing every f(n). Now f is CIR so there is an 

approximation S of a E-Turing machine for f such that for 

infinitely many n the computation of f(n) by (P
g->f

oM) is 

based on S. Let’s consider the function f’ obtained from f 

by: f’(n) = f(p) where p is the n
th

 value for which the 

computation of f by (P
g->f

oM) is based on S. It’s clear that 

f’ is strongly CIR since for every n, the computation of 

f’(n) is based on the approximation S’ which does exactly 

the same computation than S excepted that on input n, S’ 

computes the result that S computes on input p where p is 

the n
th

 value for which the computation of f by (P
g->f

oM) is 

based on S. Let g’ be the function defined similarly from 

g: g’(n) = g(p) where p is the n
th

 value for which the 

computation of f by (P
g->f

oM) is based on S. It’s clear that 

f’ CA g’. So, g’ is strongly CIR. Then g is CIR. 

 

5. Conclusion 

We have provided a formal definition of Computational 

Irreducibility that clarifies the intuition about this concept 

and that allows to understand that a function is CIR if there 

is a class of close paths that it is necessary to follow in 

order to compute it. In a broad sense, that means that if a 

function is computationally irreducible, there is only one 

road (the width of the road being the size of the class of the 

close paths that one can use) to compute this function. In a 

way, all these paths have the same length. This explains 

the fact that it is not possible to go faster than following 

one these paths to compute the function. We have also 

defined an equivalence relation between functions that 

share the same road. Roughly speaking, Computational 

Analogy allows to get a quotient set which can be viewed 

as a map of the computable functions set (or at least a large 

subset of this set whose elements satisfy the conditions for 

the above concepts to be applicable) for which classes are 

grouping elements having similar properties relatively to 

their time of computation and their computational 

irreducibility. 

An open problem is still to prove that one function among 

the possible candidates is really CIR. The cellular 

automaton rule 110 which has been shown to be universal 

(see [4]), the first candidate we mention at the beginning of 

part 2 or the two other examples we proposed at the end of 

part 2 are good examples of functions that we would like 

to prove CIR.  

On a more philosophical point of view, Computational 

Irreducibility can help clarifying the concept of emergence 

and can be used to understand why certain phenomena 

appear to be emergent. We have proposed in [19] and [20] 

that “understanding” a process implies having a mental 

model of it that we can use to simulate its behavior. 

Emergent phenomena are effects or properties appearing at 

the macro level (collective) of a system and that are caused 

by the micro level (individual) but very difficult and even 

seemingly impossible to predict even from the complete 

knowledge of the rules of the micro level. Now if the 

process running at the micro level is CIR or if the rules 

leading from the micro level to the macro level are CIR 

then the global behavior of the system will be neither 

predictable (without simulating it) nor understandable. In 

this case, what happens will be seen as “emergent”. For 

example, the fact that some patterns (pulsar, glider, glider 

gun ...) are usually considered as emergent in Conway’s 

game of life could be explained by the fact that the 

underlying rules are CIR. Similarly, phenomena that are 

sometimes interpreted as downward causation could be 

merely CIR processes interpreted as causal effects between 

the two levels of description. 

 

That’s a point that we will address with greater extension 

in a forthcoming paper. 
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Appendix A: the asymptotic notations 

The asymptotic notations are useful for comparing the 

order of magnitude of different functions. We recall here 

the standard notations. 

 

 f(n) = O(g(n)) if there are constants c > 0, n0 > 0 such 

that n > n0, |f(n)|  c|g(n)|.  

 

 f(n) = o(g(n)) if limn-> f(n)/g(n) = 0. 

 

 f(n) = (g(n)) if there are constants c > 0, n0 > 0 such 

that n > n0, |f(n)| ≥ c|g(n)|.  

 

 f (n) = ω(g(n)) if limn-> f(n)/g(n) = . 

 

 f(n) ∽ g(n) if limn-> f(n)/g(n) = 1. 

 

 f(n) = (g(n)) if there are constants c > 0, c' > 0, n0 > 0 

such that n > n0,  cg(n)   f(n)  c'g(n))  

 

 

 

Appendix B  

We prove here that                    
   if F is a 

convex function and F(n) = (logn).  

   
   

 
    

 

 

   

    
   

 
    

 

 

 

   

           
 

 
        pour y > 1 

Now if F is convex       
 

 
     ( y-1) F’(y)   y F’(y) so  

    

 
       

    

 
 

 
    

 
  

 

 

                    

Now if  log x = O(F(x)) then 
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