
1

Computational Irreducibility and Computational Analogy

HERVE ZWIRN

UFR de Physique (LIED, Université Paris 7), CMLA (ENS Cachan, France) & IHPST(CNRS, France)

herve.zwirn@gmail.com

October 2013

ABSTRACT

In a previous paper [21], we provided a formal definition for the concept of computational irreducibility (CIR),

i.e. the fact for a function f from N to N that it is impossible to compute f(n) without following approximately

the same path than computing successively all the values f(i) from i=1 to n. Our definition is based on the

concept of E-Turing machines (for Enumerating Turing Machines) and on the concept of approximation of

E-Turing machines for which we also gave a formal definition. We precise here these definitions through some

modifications intended to improve the robustness of the concept. We introduce then a new concept: the

Computational Analogy and prove some properties of computationally analog functions. Computational Analogy

is an equivalence relation which allows partitioning the set of computable functions in classes whose members

have the same properties regarding to their computational irreducibility and their computational complexity.

Keywords. Unpredictability – Irreducibility – Computational Complexity – Emergence

1. Introduction

The notion of Computational Irreducibility (CIR) seems to

have been first put forward by Wolfram. Given a physical

system whose behavior can be calculated by simulating

explicitly each step of its evolution, is it always possible to

predict the outcome without tracing each step? Is there

always a shortcut to go directly to the n
th

 step? Wolfram

conjectured

[16, 17, 18] that in most cases the answer is

no. While many computations admit shortcuts that allow

them to be performed more rapidly, others cannot be sped

up. Computations that cannot be sped up by means of any

shortcut are called computationally irreducible.

This question has been widely analyzed in the context of

cellular automata by Wolfram [15, 17]. A cellular

automaton is computationally irreducible if in order to

know the state of the system after n steps there is no other

way than to evolve the system n times according to the

equations of motion. The intuition behind this definition is

that there is no other way to reach the n
th

 state than to go

through the (n-1) previous ones.

In this context, Israeli and Goldenfeld in [9] have shown

that some automata that are apparently computationally

irreducible have nevertheless properties that are

predictable. But these properties are obtained by coarse

graining and don’t account for small scales details.

Moreover some automata (rule 30 for example) seem to be

impossible to coarse grain.

Reisinger et al. in [14] show that computational

irreducibility seems to be contingent upon the

representation of a given problem. To do so, they consider

a game for which the initial rules are computationally

reducible and they build an isomorphic representation

leading to a process that appears to be computationally

irreducible. As they notice, a more definitive claim would

be to take one of Wolfram's computationally irreducible

cellular automata, formulate an isomorphic representation

of it, and then determine whether transition rules of the

equivalent system are computationally reducible.

Whatever the answers to the questions raised by Israeli and

Goldenfeld or by Reisinger et al. are, what is of interest for

us in this paper is to provide a robust formal definition of

the very concept of computational irreducibility which is

lacking. Indeed, as we explained in [21], Wolfram’s

intuition needs to be rigorously formalized since stated as

above, it is not robust. There are two underlying intuitions

that seem to be equally important in the concept of CIR.

The first one is the question of the speed of computation. If

a process is CIR then it should not be possible to compute

its n
th

 state in a time shorter than the time needed to

compute successively the (n-1) previous states before

computing the n
th

. The second one, is even more

mailto:herve.zwirn@gmail.com
http://mathworld.wolfram.com/Computation.html

2

demanding. After all, it could well be possible that the

time to compute the n
th

 state be not shorter than the sum of

the times needed to compute successively all the previous

states but that the computation of the n
th

 state doesn’t need

to really go through the computation of theses states. But

for a process to be CIR, the necessity to actually compute

these previous states is required. Of course, the second

condition implies the first one. In the following, we will

address both conditions.

In [21], we provided a first formal definition for the

concept of computational irreducibility which we

re-expressed in the more general framework of functions f

from N to N as the fact that it is impossible to compute f(n)

without following approximately the same path than

computing successively all the values f(i) from i=1 to n.

Our definition is based on the concept of E-Turing

machines (for Enumerating Turing Machines) and on the

concept of approximation of E-Turing machines for which

we also gave a formal definition.

In the present paper, we precise these definitions and bring

some modifications intended to improve the robustness of

the concept. We refer the reader to the original paper for

the motivations of the initial definitions. Here, we also

introduce a new concept: the Computational Analogy.

In the part 1, we justify the computation model we use

throughout this paper. In the part 2, we precise the

definition of the E-Turing machines and their

approximations and we give more details on the definition

of the concept of Computational Irreducibility. In the part

3, we introduce Computational Analogy, discuss its

meaning and prove some theorems for functions that are

computationally analog, relatively to their computational

irreducibility and their computational complexity.

2. Part 1 : The computational model

In this paper, we adopt the computational model of Turing

machines [6, 7, 8, 13] with k ≥ 2 tapes. So, let’s begin by

justifying our choice to use the k-tape Turing machines as

a good computational model. We are looking for a general

model of computation allowing to deal with the questions

of efficiency and of speed of computation in a robust way.

It is well known that the model of Turing machines is a

powerful though very fundamental model of computation.

The main point with the Turing machines model is that it

is very simple and that through the Church-Turing thesis, it

allows the computation of any computable function.

Several kinds of Turing machines exist depending on the

number of tapes they have. While they are all equivalent

regarding the functions they allow to compute, they are not

equivalent regarding the speed of computation. For

example, the problem of deciding if a string is a

palindrome is O(n
2
)

1
 in the 1-tape Turing machines model

and O(n) in the 2-tape Turing machines model [7, 13]. Is

increasing the number of tapes allowing to improve

without limit the speed of the computation of a given

problem? This answer is no. A first result

[13]

says that we

can't expect more than a quadratic saving through allowing

an arbitrary number of tapes.

Theorem 2.1. Given any k-tape Turing machine M

operating within time T(n), it is possible to construct a

1-tape Turing machine M' operating within time O(T(n)
2
)

and such that for any input x, M(x)=M'(x).

The meaning of this result is that the best k-tape machine

that can be designed for doing a computation will never

operate in less that if the best 1-tape Turing

machine doing the same computation operates in a time

T(n).

A second result [13] is known as linear speed-up:

Theorem 2.2. For any k-tape Turing machine M operating

in time T(n) there exists a k'-tape Turing machine M'

operating in time f'(n)=T(n)+n (where  is an arbitrary

small positive constant) which simulates M.

This linear speed-up means that the main aspect of

complexity is captured through the function T(n)

irrespectively of any multiplicative constant.

DTIME(T(n)) is the class of functions
2
 computable by a

k-tape Turing machine in T(n) steps. This result means that

DTIME(T(n)) = DTIME(T(n)) and so it's legitimate to

define DTIME(T(n)) as the class of functions computable

by a Turing machine in O(T(n)) steps. If a function f is

computable in time T(n) and log(f(n)) (hence the length of

its binary representation) is o(T(n)) then f is also

computable in time T(n) for every  > 0.

Hence, in the k-tape Turing machines model, the speed of

computation can be expressed through the O(T(n))

notation which is justified. That is what we will do all over

the paper as is usual in the field of computational

complexity.

More results about the so called “speed-up theorems” are

given in our previous paper [21].

Usually, in the theory of computation, one is only

interested in knowing if a function is computable and if so,

in knowing the computational complexity of getting the

output from the input. What is done during the

computation is rarely considered and, except for the person

writing the program itself, the Turing machine is a kind of

1
 We refer the reader to the appendix A at the end of the paper for the

definition of the standard asymptotic notations.
2 More precisely the class of decision problems.

3

black box furnishing an output from an input. But in this

paper, we are interested in a particular aspect of

computation that is not often addressed: the intermediate

results. As we stated in the introduction, a cellular

automaton is computationally irreducible if in order to

know the state of the system after n steps there is no other

way than to evolve the system n times according to the

equations of motion. Similarly for a function, to be CIR

means that the computation of f(n) requires the previous

computation of all the f(i) for i < n. CIR functions are

defined not by an explicit formula giving directly the value

of f(n) from the value of n but by recursive rules giving the

way to go from f(i) to f(i+1)
3
. So, following these rules, the

computation of f(n) starts by the computation of f(1)

followed by the computation of f(2) from f(1) then of f(3)

from f(2) and so on, till the computation of f(n) from

f(n-1). So, in order to be able to characterize that sort of

computation, our computational model should allow

identifying the intermediate computation steps. For that,

we will consider special 3-symbols (0, 1, #) Turing

machines such that each of these intermediate results will

be successively written on the output tape with the symbol

“#” written at its left. More precisely, a program that

follows a recursive rule for computing step by step through

the iteration of the same rule “knows” when it switches to

the next iteration. What we demand in our specific model

of computation is that the intermediate result which is the

input of the next iteration be written on the output tape at

the right of the symbol “#”. The final result will appear on

the output tape at the right of the last symbol “#”. The

output tape will be a one way tape (i.e. the head will be

allowed to go only in the right direction). We’ll see

throughout the paper why this kind of special Turing

machines is useful for our purpose
4
.

In the following f, g, h, F, G, H will always be functions

from N to N and M, P, Q will always be Turing machines

as described above.

3. Part 2 : The Computational Irreducibility

Given a Turing machine M computing f(n) in time

T(M(n)),

let's denote by Rn,1, …, Rn,i, …, Rn,T(M(n)) the

content of the output tape of M during the computation of

f(n) after 1 step of computation, …, i steps of computation

and T(M(n)) steps of computation. So (Rn,1, …, Rn,i, …,

Rn,T(M(n))) is the sequence of the configurations of the

output tape during the computation of f(n).

3 Of course, that doesn’t mean that each function defined like that is CIR.
4 The goal is to be able to distinguish the different results when reading

the output tape. Instead of using a special symbol to separate the results,

an equivalent method would be to use a self delimiting way to write them.

Definition 3.1 (E-Turing machine): A Turing machine Mf

will be called a E-Turing machine for f if:

(i) Mf computes f (i.e. for every input n, Mf computes f(n)

and halts). It's important to notice that it is the same

Turing machine which on input n computes f(n): f is

uniformly computed by Mf .

(ii) during the computation of f(n), there exist increasing

kn(i) for i=1 to n-1, such that f(i) is written on the output

tape
 at the right of the last symbol “#”.

A E-Turing machine for a function f (in the following we

will always denote Mf such a Turing machine) is a

program which, in a certain sense, enumerates the

successive values f(i) for i  n. So, during the computation

of f(n), f(1) then f(2) and so on until f(n) successively

appear on the output tape of Mf. It is of course possible to

build E-Turing machines for any computable function.

Let f be a computable function. Here are two examples of a

E-Turing machine for f.

a) Assume first that M is a Turing machine which on every

input n computes f(n). Let's now consider the Turing

machine Mf which on every input n, calls M with input 1

then, when M has computed f(1), write “#” and f(1) on the

output tape, calls again M with input 2 and so on until the

last call to M with input n and which halts when M has

computed f(n) after having written “#” and f(n) on the

output tape. Mf is clearly a E-Turing machine for f. When

computing f(n), Mf will follow exactly the same initial

segments than the initial segments followed for all k < n

when computing f(k). The computation of f(n) is the

continuation of the computation of f(k) for k < n. One can

also notice that the computation of f for each value n starts

from scratch (i.e. the values of f(k) for k < n are not used

for computing f(n)). This way to build a E-Turing machine

is possible for any computable function.

b) Assume now that f is such that it is possible to compute

f(n) from f(n-1). Let M' be a Turing machine which on

input f(n-1) computes f(n). Let's now consider the Turing

machine M'f which on every input n, starts by computing

f(1), write “#” and f(1) on the output tape, then calls M’ to

compute f(2) from the input f(1)), write “#” and f(2) on the

output tape and so on till f(n). M'f is a E-Turing machine

for f. The computation of f(n) by Mf can be seen as the

successive computations of f(i) from f(i-1) till reaching

f(n). As in the first example, when computing f(n), M’f

follows exactly the same initial segments than the initial

segments followed for all k < n when computing f(k). Here

again, the computation of f(n) is the continuation of the

computation of f(k) for k < n.

4

Because the initial path is the same when computing f(n)

and f(m) for n>m, these two examples of E-Turing

machines can be thought as doing a computation such that

on any input n, they halt after having run through an initial

segment of length T(Mf(n)) of one unique infinite virtual

computation of f(i) for i = 1 to ∞. That means also that the

kn(i) are independent of n. But this is not necessarily the

case for all E-Turing machines.

The computation of f(n) from f(n-1) can be faster than the

computation of f(n) from n. In this case, M'f will be much

faster than Mf. We'll see that this is the case if f is CIR

because a Turing machine computing a CIR function f

does need to know f(n-1) (or a value that is near in a sense

that we will precise) to compute f(n). We give here, some

examples of functions more and more "difficult":

- For computing f(n) = 3
n
 from the input n, a Turing

machine will go through some of the intermediate values

f(i) for i < n but not necessarily all. For instance, 3
2n

 can

be computed as 3
n
 x

3

n
 and 3

2n+3
 will need the computation

of 3
n+1

 or the computation of 3
n

 and 3
3
. But if f(n-1) is

given as input, the computation of f(n) is immediate and

fast.

- For computing f(n) = n!, a Turing machine will go

through n intermediate values if its starts either with n or

with (n-1)! as input. Indeed even from (n-1)! it is needed to

know n for computing n! and a natural way (but not the

only one) to "extract" the value n from (n-1)! is to compute

all the increasing values of the factorial function and to

count how many have been computed till reaching (n-1)!.

The computation from n can be done in any possible order

since the multiplication of the n first natural numbers can

be done from any combination of these numbers. That

means that even if a Turing machine computing n! from n

will have to perform n operations, it will not necessarily

computes all the k! for k<n before. So, it seems that every

natural Turing machine computing n! with either n or

(n-1)! alone as input will have to perform n operations

without having to be necessarily a E-Turing machine. But

that will not be the case with the input (n, (n-1)!) from

which the computation will be very fast.

- For computing f(n) defined by: "the first bit of the sum

of the k
th

bit of 3
k
 for all k  n", from the input n, a Turing

machine will go through all the intermediate values f(i) for

i < n but will be simply unable to compute f(n) from f(n-1)

alone because there is no way to extract the value of n

from f(n-1) and this value is needed to compute f(n). So, it

seems that every Turing machine computing f(n) with n as

input will be a E-Turing machine and f(n) could well be

CIR. From the input (n, f(n-1)) the computation will be

fast.

The time T(Mf(n)) to compute f(n) with a E-Turing

machine Mf is the sum of the times between the apparition

on the output tape of f(i) and f(i+1) (from i=1 to n-1) plus

the initial time to get f(1) appearing.

Let's denote

 the time between

the apparition of f(i-1) and the apparition of f(i) during the

computation of f(n) for any n>i.

We have

 (we suppose by convention

that is the time for f(1) to appear on the output tape).

Since Mf is a Turing machine, is the number of steps

done by the machine and so is a strictly positive integer.

So T(Mf(n)) ≥ n. But in the following we will be interested

only in functions f such that T(Mf(n)) = Ω(nlogn).

This seems a reasonable assumption and it’s obviously true

of any function f such that f(n) ≥ n since writing an output

n in binary or in any other basis ≥ 2, needs at least a time

logn and a E-Turing machine performs n such operations

before halting. So the time for a E-Turing machine

computing such a function is necessarily greater than

i=1 to n logi = log(n!) = (nlogn). So T(Mf(n)) = Ω(nlogn).

This is true in particular (see below), for the simulation of

a large number of non trivial one dimensional elementary

cellular automata with nearest neighbors (which are Ω(n
2
))

and in the majority of the simulations of more complex

cellular automata (for example Conway’s game of life is

Ω(n
3
)). Of course, we’ll consider as well CIR functions for

which f(n) < n. This is the case of the two candidates given

below, at the end of part 2, but it is highly probable that

they satisfy nonetheless T(Mf(n)) = Ω(nlogn).

The question of knowing whether there is an

asymptotically optimal program for doing a given

computation is a difficult and open question in general. We

mean by asymptotically optimal program, a program p

such that for any other program p’ doing the same

computation T(p(n))=O(T(p’(n))). On the one hand, it is

well known that the so called Blum’s speedup theorem [1]

shows that for some decision problems, any program that

solves the problem will be much slower than some other

program solving the same problem. In these cases, there

exists an infinite sequence of programs solving the

problem such that each program in the sequence is much

faster than the program it follows and (up to a

multiplicative constant) there is no asymptotically optimal

program. But these problems are artificially constructed to

prove the theorem. On the other hand, Levin’s Optimal

Search Theorem [11] proves that for a wide class of

problems there is an asymptotically optimal program.

These are problems for which verifying a solution is easy

while producing a solution might be difficult. More

precisely, these are problems for which the time

complexity of checking a solution is asymptotically faster

5

than the time complexity of producing a solution. Now, it

is widely thought that no “natural problem” is subject to

Blum speedup and that, in general, asymptotically optimal

algorithms exist for them. In particular, this is the case for

the cellular automata that are the initial source of

inspiration for the subject of this paper. Indeed, to show

that a program P is asymptotically optimal, it is enough to

show that there is a lower bound, say h(n), on the time

complexity of any program Q for this problem,

T(Q(n))=(h(n)), and to prove that T(P(n))=O(h(n)). In

this case, P is an asymptotically optimal program. For

example, in the case of the simulation of non trivial one

dimensional elementary cellular automata with nearest

neighbors, it is clear that any algorithm computing the n

initial configurations will have in the worst case to perform

in (n
2
) and that there are algorithms performing in O(n

2
)

(see [21] for details on this point). So, these algorithms

will be asymptotically optimal. Hence, any Turing

machine representing these algorithms will be an

asymptotically optimal program for the given cellular

automaton. This is what we call in the following of this

paper an Efficient E-Turing machine. In the following,

we’ll make the assumption that there always exist an

asymptotically optimal Turing machine that we will note

M*f and an Efficient E-Turing machine that we will note

Mf
eff

 for any function f we consider. Put differently, let’s

say that we restrict our scope to the subset of the

computable functions set made of functions that satisfy

this requirement (which is hopefully a very large subset).

We give now the formal definition of an Efficient

E-Turing machine for a function, which will be a

fundamental building block for what follows.

Definition 3.2 (Efficient E-Turing machine): We will say

that a E-Turing machine Mf
eff

 for f is an efficient E-Turing

machine for f if for any other E-Turing machine Mf for f:

T(Mf
eff

(n)) = O(T(Mf(n))) i.e. there are constants c > 0,

n0 > 0 such that n > n0, T(Mf
eff

 (n))  cT(Mf(n)).

As explained above, the intuition is that asymptotically it

is not possible for a E-Turing machine to compute faster

than an efficient E-Turing machine.

It’s clear from the definition that for any two efficient

E-Turing machines Mf
eff

, M’f
eff

, and for any two

asymptotically optimal Turing machine M*f, M’*f, we

have: T(Mf
eff

 (n))=(T(M’f
eff

 (n))) and

T(M*f (n))=(T(M’*f (n))). So for any function H,

H(n)=O(T(Mf
eff

 (n))) is equivalent to H(n)=O(T(M’f
eff

 (n)))

and H(n)=O(T(M*f (n))) is equivalent to

H(n) = O(T(M’*f (n))). In the following, Mf
eff

 will always

denote an efficient E-Turing machine for f and

T(Mf
eff

(n)) will denote the time for an efficient E-Turing

machine to compute f(n). M*f will always denote an

asymptotically optimal Turing machine computing f and

T(M*f(n)) will denote the time for an asymptotically

optimal Turing machine to compute f(n). According to

what is said above, there will be no need to precise which

particular efficient E-Turing machine or which

asymptotically optimal Turing machine is considered.

We recall that in the following we always suppose that

there exist an asymptotically optimal Turing machine M*f

and an efficient E-Turing machine Mf
eff

 for f.

Definition 3.3 (approximation of a E-Turing machine): A

Turing Machine M will be said to be a P-approximation
5

of a E-Turing machine for f if and only if there are a

function F such that F(n)=O(T(M*f(n))/n) and a Turing

machine P such that for every n:

(i) on input n, M computes a result rn such that P computes

f(n) from n and rn in a number of steps F(n) and halts.

(ii) during the computation, there exist non decreasing

kn(i) for i=1 to n-1, such that a result r’n,i is written on the

output tape at the right of the last symbol “#”and

that P computes f(i) from n, i and r’n,i in a number of

steps F(i) and halts
6
.

Actually, if we note rn = r’n,n, P computes always from the

triplet (n, i, r’n,i) here abbreviated en n, rn when i=n.

Intuitively, an approximation of a E-Turing machine for f

is a Turing machine doing a computation that is near the

computation made by a E-Turing machine for f.

Let's notice that each E-Turing machine for f is of course

an approximation of a E-Turing machine for f. The

associated Turing machine P is simply the identity (a

Turing machine which computes n from the input n)
 7
.

An approximation P of a E-Turing machine for f can be a

E-Turing machine for r if the r’n,i don’t depend on n and if

r’i = ri for all i (that means that the intermediate results are

the values actually computed by P). But it is not

necessarily always the case. In particular, it can happens

that the intermediate results r’n,i from which P computes

f(i) are different for different values of n. In this case, the

path that M follows for computing rn is different for

different values of n and the ri for i<n are not necessarily

computed.

The concept of approximation of a E-Turing machine for f

is actually a concept obtained from the concept of

5
 In the following, we will often say simply “approximation” for

“P-approximation”.
6
 In the following, we will often omit to mention again the inputs n, i

which will be implied.
7
 Under the condition that F(n) = O(T(M*f(n))/n) =  (l(f(n)).

6

E-Turing machine by relaxing the constraints of the

definition along three dimensions. The first one is the fact

that on input n an approximation doesn’t compute exactly

f(n) but a value r(n) such that it is possible to go from r(n)

to f(n) through a very short computation. The second one is

that the intermediate results don’t need to be all the f(i) for

i<n but values rn,i from which it is possible to compute f(i)

through a very short computation and the third one is that

it is even not necessary that the intermediate values be the

same on every computation for different n.

Another point to notice is that we don't claim that it is

necessary to be able to build the Turing machine P which

is associated to an approximation through an effective

mean. We only ask that such a machine exists.

We can intuitively justify the value chosen for F(n). F(n) is

the time that the computation of f(n) takes from the value

rn that is computed by the approximation. We have in

mind the case of CIR functions for which computing f(n)

demands to compute all the previous values. For these

functions, since we want rn to be “near” in a certain sense

of f(n), the time to go from rn to f(n) must be very short

compared to the time to compute f(n) from n and at most

comparable to the time to compute f(n) from f(n-1). That’s

the reason why F(n)= O(T(M*f(n))/n). Indeed, if f is CIR,

we’ll see that this is the average time to compute f(n) from

f(n-1). The factor 1/n in T(M*f(n))/n takes into account the

fact that there are n necessary phases to compute f(n) with

a E-Turing machine for f and that we want P to compute in

a time shorter or equal to each one of these phases.

Another way to understand the value of F(n), coming from

the picture of cellular automata, is to think that rn is “near”

f(n) (and then the computation of f(n) from rn is fast) if

there are only a bounded number of operations to perform

on some bits of rn to go from rn to f(n). Indeed, in this

framework, a bit of f(n) or of rn is a cell of the cellular

automaton. That means that F(n) is O(l(rn)) where l(rn) is

the length of rn. A reasonable assumption is that the length

of rn should not exceed much the length of f(n) so

l(rn) = O(logf(n)). That means that F(n) is O(logf(n)). Now

as we saw before T(Mf
eff

(n)) = Ω(n logf(n)) so

logf(n) = O(T(Mf
eff

 (n))/n) then F(n) must be

O(T(Mf
eff

 (n))/n). Now for CIR functions, we anticipate

that T(Mf
eff

 (n)) = (T(M*f(n))) so F(n) = O(T(M*f(n))/n)

is equivalent to F(n) = O(T(Mf
eff

 (n))/n). For functions that

are not CIR and, on the opposite, satisfy

T(M*f(n)) = o(T(Mf
eff

 (n))), the value

F(n) = O(T(M*f(n))/n) is the smaller of the two.

Is it possible to be more demanding and to ask that F(n) be

smaller than that ? The answer is “no” as it is easy to see

on the example of one dimension cellular automata. F(n) is

the time for P to compute f(n) from rn so, in order for P to

read rn and to write f(n), F(n) must be at least equal to

l(f(n)). For non trivial automata, l(f(n)) = O(n). If these

automata are CIR, then T(Mf
eff

 (n)) = (T(M*f(n))) =

O(n
2
) and so F(n) = O(T(M*f(n))/n) = O(n). One can see

that demanding a smaller value for F(n) would result in the

fact that no machine P can exist since the time to write f(n)

is (n). By the way, one can notice that for these

automata that are not CIR and for which T(M*f(n)) = o(n
2
),

there will be no machine P and hence no approximation of

E-Turing machine for these automata. Indeed, in this case

F(n) = O(T(M*f(n))/n) = o(n) which is too small a value

for any P to write f(n). Of course, this is true only for

functions such that l(f(n)) > n which is not mandatory. In

particular, this is false for trivial automata whose

configurations vanish after some iterations or for which the

successive configurations are restricted to one cell. So, the

above reasoning is not a proof but only an intuitive

justification of the value of F(n).

Definition 3.4 (Computation of f(n) based on an

approximation): Let M be a P-approximation of a

E-Turing machine for f. Let's consider the computation of

f(n) done initially through M with input n and continued

when M has computed rn by P which computes f(n) from n

and rn in a time F(n) and halts. This computation will be

said to be a computation of f(n) based on the

P-approximation M.

Definition 3.5 (Turing machine computing f based on an

approximation): Let M be a P-approximation of a

E-Turing machine for f and let’s consider the Turing

machine M' which, for every n, computes f(n) through a

computation based on the P-approximation M. M’ will be

said to be a Turing machine computing f based on the

approximation M.

If M is a E-Turing machine for f, M and M’ are identical

and M’ is of course a E-Turing machine for f. Otherwise,

M’ is also an approximation of a E-Turing machine for f.

The Turing machine P’ associated to M’ is the same than

P, i.e. P’ computes f(i) from n, i and r’n,i in a number of

steps F(i), except that for the computation on input n, n

and r’n,n, P’ is the identity while P computes f(n).

As shown in theorem 3.1, the important point is that it is

possible to build a E-Turing machine for f from any

approximation of a E-Turing machine for f.

Theorem 3.1: From any M approximation of a E-Turing

machine for f it is possible to build a E-Turing machine M'

for f (we'll call it the daughter of M) computing in a time

T(M'(n)) = (T(M(n))).

Proof: Since M is an approximation of a E-Turing

machine for f, there are a Turing machine P and a function

F associated as mentioned in the definition 3.3. Let's

7

consider the Turing machine built according the following

way: on input n, M' does exactly the same computation

than M but for each i<n, after having computed rn,i which

computes f(i) through P with input n, i, rn,i in a time F(i),

writes “#” and f(i) on its output tape and resumes the

computation and, at last, computes f(n) from n and rn. It's

clear that M' is a E-Turing machine for f. M' computes in a

time: T(M'(n)) = T(M(n)) +
 + O(1)

= T(M(n)) +

 + O(1)

Now it is possible to compute f(n) by M followed by P

(that is a computation of f based on the approximation M)

so T(M*f(n)) = O(T(M(n)) + F(n))

T(M*f(n)) = O[T(M(n)) +
 Hence

T(M*f(n)) = O(T(M(n))). Then

T(M'(n)) = T(M(n)) +

Now
 if F is a convex function

and F(n) = (logn)
8
. Since any function O(T(M(i))) is a

convex function (logn), we have

T(M'(n)) = T(M(n)) + O(T(M(n))) = O(T(M(n)))

As T(M(n)) < T(M'(n)) we get T(M(n)) = (T(M'(n)))

In the following, we will note this particular form of

composition of the two Turing machines M and P that we

described above. So M' = P M. The composition is

defined for a pair (P, M) when the second argument is an

approximation of a E-Turing machine for a given function

f and the first one is the associated Turing machine

computing f(i) from the intermediate results of M. Of

course, this composition is not to be confused with the

usual composition PoM which runs first the program M

and then the program P with the result of the computation

of M as input. An important difference is the computation

time. The computation time of PoM is the sum of the

respective computation times:

T((PoM) (n)) = T(P(output of M(n))) + T(M(n)).

While the computation time of P M is:

 + O(1)

 + O(1)

Theorem 3.2: No approximation of a E-Turing machine

for f can compute faster than an efficient E-Turing

machine for f. More precisely, if M is an approximation of

a E-Turing machine for f then T(Mf
eff

 (n)) = O(T(M(n))).

Proof: Let M’ be the daughter of M. Since M’ is a

E-Turing machine for f, T(Mf
eff

 (n)) = O(T(M’(n))). By

theorem 3.1 we have T(M'(n)) = (T(M(n))). So

T(Mf
eff

 (n)) = O(T(M(n))).

8
 See the proof in the appendix B.

Theorem 3.3: Let M’ be a Turing machine computing f

based on an approximation M.

Then: T(M'(n))= (T(M(n))).

Proof: M' will compute in a time T(M'(n)) such that

T(M(n)) ≤ T(M'(n)) ≤ T(M(n)) + F(n)

= T(M(n)) + O(T(M*f(n))/n)

= T(M(n)) + O(T(M(n))/n) = O(T(M(n)))

So T(M(n)) = (T(M'(n)))

In summary, one can say that an approximation of a

E-Turing machine for f, its daughter and any Turing

machine computing f based on this approximation compute

all in the same time.

Definition 3.6 (strongly CIR (resp CIR) function): A

function f(n) from N to N will be said to be strongly CIR

(resp CIR) if and only if for any Turing machine M

computing f there is a P-approximation of a E-Turing

machine for f, M’ such that for every n (resp. for infinitely

many n), the computation of f(n) by M is based on M’.

The intuition is that if a function is strongly CIR, for each

n there is no other way to compute f(n) than to compute

before all the values f(i) for i<n (or values that are near in

the sense given in the definition of an approximation of a

E-Turing machine). There is no shortcut allowing to get

directly the value of f(n) without having computed before

f(n-1) or a value that is near f(n-1) and so forth for the

previous values. If a function is CIR (but not strongly

CIR), for infinitely many n there is no other way to

compute f(n) than to compute before all the values f(i) for

i<n (or values that are near).

The reason why it’s useful to introduce this distinction

between strongly CIR and CIR can be explained through

the following example. Assume that f is strongly CIR. So

there is no other way to compute f(n) than to compute

before all the values f(i) for i<n (or values that are near)

and that is true for every n. Let’s now consider the

function g such that g(2i-1)=f(i) and g(2i)=1. It’s clear that

computing g for any even value is very easy and doesn’t

imply having to compute any other result before. So, g is

not strongly CIR. But, the intuition is nevertheless that g is

irreducible in some way. So, the notion of strongly CIR

needs to be weakened to cover functions like g and many

others that similarly need infinitely often (but not always)

to go through the computation of all the previous values

for computing them.

Theorem 3.4: If a function f is strongly CIR then no

Turing machine computing f can compute f(n) faster than

an efficient E-Turing machine for f. So for any Turing

machine M computing f, T(Mf
eff

(n)) = O(T(M(n))).

8

Proof: If f is strongly CIR, then any Turing machine M

computing f is based on an approximation of a E-Turing

machine for f. Let M’ be this approximation. From

theorem 3.2, T(Mf
eff

(n))=O(T(M’(n))). From theorem 3.3,

T(M(n))= (T(M’(n))).

So T(Mf
eff

(n)) = O(T(M(n))).

This result is slightly weakened in the theorem 3.5 if f is

simply CIR. In this case, for any Turing machine

computing f, there are infinitely many values of f(n) that it

is not possible to compute faster than the computation by

an efficient E-Turing machine for f.

Theorem 3.5: If a function f is CIR then for any Turing

machine M computing f there are constants c > 0, n0 > 0

such that N > n0, n > N, T(Mf
eff

 (n))  cT(M(n)).

Proof: If f is CIR, then for any Turing machine M

computing f there is a P-approximation of a E-Turing

machine for f, M’, such that for infinitely many n, the

computation of f(n) by M is based on M’. From

theorem 3.2, T(Mf
eff

(n)) = O(T(M’(n))). So, there are

constants c > 0, n0 > 0 such that n > n0,

T(Mf
eff

 (n))  cT(M’(n)). But N, n > N such that the

computation of f(n) by M is based on M’. For such n

T(M(n)) > T(M’(n)). So for those n that are superior to n0,

T(Mf
eff

 (n))  cT(M(n)).

Theorem 3.6: If a function f is strongly CIR then

T(M*f(n)) = (T(Mf
eff

(n))).

Proof: If f is strongly CIR, then by theorem 3.4 for any

Turing machine M computing f, T(Mf
eff

(n)) = O(T(M(n))).

So T(Mf
eff

(n)) = O(T(M*f(n))). By definition for any

Turing machine M computing f, T(M*f(n)) = O(T(M(n))).

So T(M*f(n)) = O(T(Mf
eff

(n))).

Hence T(M*f(n)) = (T(Mf
eff

(n))).

Definition 3.7 and theorems 3.4, 3.5 and 3.6 address the

two key points of the underlying intuitions for the concept

of CIR: the speed of computation and the path followed

during the computation.

Let’s give two examples of functions that seem to be good

candidates to be strongly CIR (but of course, a rigorous

proof remains to be found).

1. Let B={0,1} and B* be the set of all finite strings over

B, let L be a recursive language and assume an

enumeration of the words of B*
 (for example the index in

the length-increasing lexicographic ordering). Define the

function f by f(n) is the number of words wi (for i≤n in the

chosen enumeration) of B*
 in L. Then it seems that, in

general, there is no other way to compute f(n) than to

decide for each i≤n if the word wi belongs or not to L and

to count the number of positive answers.

2. Knowing if an initial configuration of Conway’s game

of life will be eternal or not is an undecidable problem. So

let f(n) be the number of initial configurations of index

smaller than n+1 in a given enumeration that are still living

after n iterations. Here again, it seems that there is no other

way to compute f(n) than to test each one of the relevant

configurations during n steps and therefore, so doing, to go

through the computation of all the f(i) for i<n.

4. Part 3 : The Computational Analogy

Let M be an approximation of a E-Turing machine for f. M

computes a function r but is not necessarily a E-Turing

machine for r. Nevertheles, it is clear that each E-Turing

machine for r is an approximation of a E-Turing machine

for f. But it is possible that no E-Turing machine for f be

an approximation of a E-Turing machine for r. It would be

the case if, while the time to go from n, r(n) to f(n) through

P is O(T(M*f (n))/n), there is no Turing machine able to

compute r(n) from n, f(n) in a time O(T(M*r(n))/n) where

M*r is an asymptotically optimal Turing machine for r.

But if one E-Turing machine for f is an approximation of a

E-Turing machine for r then every E-Turing machine for f

will be an approximation of a E-Turing machine for r. In

this case, each E-Turing machine for f is an approximation

of a E-Turing machine for r and vice versa, each E-Turing

machine for r is an approximation of a E-Turing machine

for f. So it's possible to define a relation of "computational

analogy" CA (which will be proved to be an equivalence

relation):

Definition 4.1 (Equivalence Relation: Computational

Analogy): f and g will be said to be computationally

analog (noted f CA g) if:

(i) there exists a Turing machine M that is both a E-Turing

machine for f and an approximation of a E-Turing

machine for g

(ii) there exists a Turing machine M' that is both a

E-Turing machine for g and an approximation of a

E-Turing machine for f

That means that there is a Turing machine P
f->g

 which

computes g(n) from n, f(n) for every n in a time

F(n) = O(T(M*g(n)/n)) (and vice versa). So:

Theorem 4.1: (f CA g) is equivalent to: there is a Turing

machine P
f->g

 which computes g(n) from n, f(n) for every n

in a time F(n) = O(T(M*g(n)/n)) and there is a Turing

machine P
g->f

 which computes f(n) from n, g(n) for every n

in a time G(n) = O(T(M*f(n)/n)).

In the following, when f CA g, we will always denote by

P
g->f

 and P
f->g

 these Turing machines.

9

Theorem 4.2: Let M*f (resp. M*g) be an asymptotically

optimal Turing machine computing f (resp. g). If f CA g

then T(M*f(n)) = (T(M*g(n))).

Proof: The Turing machine (P
f->g

 o M
*
f) computes g in a

time T(M*f (n)) + F(n) with F(n) = O(T(M*g(n)/n)).

Since M*g is an asymptotically optimal Turing machines

computing g, T(M*g(n)) = O(T(M*f(n))) + O(T(M*g(n))/n)

so T(M*g(n)) = O(T(M*f(n))). The same reasoning with

(P
g->f

 o M*g) proves that T(M*f(n)) = O(T(M*g(n))). Then

T(M*f(n)) = (T(M*g(n))).

Theorem 4.3: Let M
eff

f (resp. M
eff

g) be an asymptotically

optimal Turing machine computing f (resp. g). If f CA g

then T(Mf
eff

(n)) = (T(Mg
eff

(n)))

Proof: The Turing machine P
f->g

 Mf
eff

 which is a

E-Turing machine for g computes in a

time T(P
f->g

 Mf
eff

(n)) = T(Mf
eff

(n))+

 .

Since Mg
eff

 is an efficient E-Turing machine

T(Mg
eff

(n)) = O(T(P
f->g

 Mf
eff

(n))).

Hence T(Mg
eff

(n)) = O(T(Mf
eff

(n)) +

).

Now

 = O(T(M*g(n))) (see appendix

B).

So T(Mg
eff

(n)) = O(T(Mf
eff

(n))) + O(T(M*g(n))). Now

T(M*g(n))= (T(M*f(n))) by theorem 4.2 and T(M*f(n)) =

O(T(Mf
eff

(n))) then T(Mg
eff

(n))=O(T(Mf
eff

(n))).

The same reasoning for f shows that

T(Mf
eff

(n)) = O(T(Mg
eff

(n))).

Hence T(Mf
eff

 (n)) = (T(Mg
eff

 (n))).

Theorem 4.4: (f CA g) is equivalent to: any

approximation of a E-Turing machine for f is an

approximation of a E-Turing machine for g and vice versa.

Proof: Consider first the direct sense: Let M be a

P-approximation of a E-Turing machine for f. P computes

in a time O(T(M*f (n))/n). According to theorem 4.1, there

is a Turing machine P
f->g

 which computes g(n) from f(n)

for every n in a time F(n) = O(T(M*g(n))/n).

It’s then clear that M is a (P
f->g

 o P)-approximation of a

E-Turing machine for g because (P
f->g

 o P) computes in a

time O(T(M*f (n))/n)+ O(T(M*g(n))/n) = O(T(M*g(n))/n)

since by theorem 4.2, T(M*f(n)) = (T(M*g(n))). Consider

now the reverse sense: a E-Turing machine for f is an

approximation of a E-Turing machine for f so it is an

approximation of a E-Turing machine for g (and vice

versa).

The very meaning of f CA g is that f and g share the same

approximations of E-Turing machines.

Theorem 4.5: CA is an equivalence relation

Proof: This is obvious by theorem 4.4.

The quotient set of the computable functions
9
 set by this

equivalence relation is made of equivalence classes of

computationally analog functions (CA functions) that

share properties about their computational complexity

(their asymptotically optimal programs compute in the

same time as well as their efficient E-Turing machines, by

theorems 4.2 and 4.3) and their computational

irreducibility as we are now going to show.

Theorem 4.6: Assume f CA g. If f is strongly CIR then g

is strongly CIR.

Proof: Let M be a Turing machine computing every g(n).

Since f CA g, there is a Turing machine P
g->f

which

computes f(n) from n, g(n) for every n in a time

F(n) = O(T(M*f(n))/n). (P
g->f

oM) is a Turing machine

computing every f(n). Now f is strongly CIR, so, there are

a Turing machine S which is an approximation of a

E-Turing machine for f, a Turing machine Q and a function

H(n) = O(T(M*f(n))/n) such that for every n, the

computation of f(n) made by (P
g->f

oM) is based on S (i.e. is

actually the same than the computation of f(n) made by S

followed by Q which computes in a time H(n)). Since

f CA g, by theorem 4.4, S is also an approximation of a

E-Turing machine for g. So during the computation of f(n)

there are data rn,i (computed by S) appearing successively

in an increasing order from i=1 to n on the output string of

S such that there is a Turing machine Q’ that on input rn,i,

computes g(i) in a number of steps H’(i) (where

H’(n)=O(T(M*g(n))/n)). Since (P
g->f

oM) and (QoS) are the

same Turing machine, that means that some of these rn,i

appear during the computation of M and some appear

during the computation of P
g->f

. Let’s assume that all the

rn,i for i=1 to k, appear during the computation of M and

that all the rn,i for i=k+1 to n, appear during the

computation of P
g->f

. Let’s now consider the Turing

machine Q’’ gotten from Q’ through the following change:

- on input n, i, rn,i for i=1 to k, Q’’ does the same

computation than Q’ (i.e. computes g(i) in a time H’(i)).

- on input n, i, rn,k for i=k+1 to n, Q’’ starts by computing

rn,i then computes g(i) from r(i) as Q’ does.

Since P
g->f

 computes f(n) from n, g(n) in a time

G(n) = O(T(M*f(n)/n)), all the rn,i for i=k+1 to n, will

appear in a time less than G(n). So the computation of g(i)

from n, i, rn,k (for i=k+1 to n), will be done in a time H”(i)

smaller than G(n) + H’(i). Since G(n) = O(T(M*f(n)/n)),

which is equal to O(T(M*g(n))/n) by theorem 4.2, and

since H’(n)=O(T(M*g(n))/n)) we get H”(n) =

O(T(M*g(n))/n).

Let’s notice that the list of intermediate results r’n,i from

which Q” computes g(i) is the same than the list of rn,i for

9
 Let’s recall that we restrict our scope to the computable functions that

satisfy the requirement that there are an asymptotically optimal program

and an Efficient E-Turing machine for them.

10

i=1 to k and is equal to rn,k for i=k to n. That means that M

is based on a Q”-approximation of a E-Turing machine for

g (the Turing machine computing all the rn,i for i=1 to k)

and so g is strongly CIR.

Theorem 4.7: Assume f CA g. If f is CIR then g is CIR.

Proof: Let M be a Turing machine computing every g(n).

Since f CA g, there is a Turing machine P
g->f

which

computes f(n) from n, g(n) for every n in a time

F(n) = O(T(Mf*(n)/n)). (P
g->f

oM) is a Turing machine

computing every f(n). Now f is CIR so there is an

approximation S of a E-Turing machine for f such that for

infinitely many n the computation of f(n) by (P
g->f

oM) is

based on S. Let’s consider the function f’ obtained from f

by: f’(n) = f(p) where p is the n
th

 value for which the

computation of f by (P
g->f

oM) is based on S. It’s clear that

f’ is strongly CIR since for every n, the computation of

f’(n) is based on the approximation S’ which does exactly

the same computation than S excepted that on input n, S’

computes the result that S computes on input p where p is

the n
th

 value for which the computation of f by (P
g->f

oM) is

based on S. Let g’ be the function defined similarly from

g: g’(n) = g(p) where p is the n
th

 value for which the

computation of f by (P
g->f

oM) is based on S. It’s clear that

f’ CA g’. So, g’ is strongly CIR. Then g is CIR.

5. Conclusion

We have provided a formal definition of Computational

Irreducibility that clarifies the intuition about this concept

and that allows to understand that a function is CIR if there

is a class of close paths that it is necessary to follow in

order to compute it. In a broad sense, that means that if a

function is computationally irreducible, there is only one

road (the width of the road being the size of the class of the

close paths that one can use) to compute this function. In a

way, all these paths have the same length. This explains

the fact that it is not possible to go faster than following

one these paths to compute the function. We have also

defined an equivalence relation between functions that

share the same road. Roughly speaking, Computational

Analogy allows to get a quotient set which can be viewed

as a map of the computable functions set (or at least a large

subset of this set whose elements satisfy the conditions for

the above concepts to be applicable) for which classes are

grouping elements having similar properties relatively to

their time of computation and their computational

irreducibility.

An open problem is still to prove that one function among

the possible candidates is really CIR. The cellular

automaton rule 110 which has been shown to be universal

(see [4]), the first candidate we mention at the beginning of

part 2 or the two other examples we proposed at the end of

part 2 are good examples of functions that we would like

to prove CIR.

On a more philosophical point of view, Computational

Irreducibility can help clarifying the concept of emergence

and can be used to understand why certain phenomena

appear to be emergent. We have proposed in [19] and [20]

that “understanding” a process implies having a mental

model of it that we can use to simulate its behavior.

Emergent phenomena are effects or properties appearing at

the macro level (collective) of a system and that are caused

by the micro level (individual) but very difficult and even

seemingly impossible to predict even from the complete

knowledge of the rules of the micro level. Now if the

process running at the micro level is CIR or if the rules

leading from the micro level to the macro level are CIR

then the global behavior of the system will be neither

predictable (without simulating it) nor understandable. In

this case, what happens will be seen as “emergent”. For

example, the fact that some patterns (pulsar, glider, glider

gun ...) are usually considered as emergent in Conway’s

game of life could be explained by the fact that the

underlying rules are CIR. Similarly, phenomena that are

sometimes interpreted as downward causation could be

merely CIR processes interpreted as causal effects between

the two levels of description.

That’s a point that we will address with greater extension

in a forthcoming paper.

Acknowledgment

I am indebted to Jean-Paul Delahaye for many

enlightening discussions from the beginning of this work,

to Serge Grigorieff for having read a first version of this

paper and given a counter example that led me to modify

the initial definition of an approximation and to build the

present one and to Jean-Michel Ghidaglia for a useful

discussion on appendix B.

11

Appendix A: the asymptotic notations

The asymptotic notations are useful for comparing the

order of magnitude of different functions. We recall here

the standard notations.

 f(n) = O(g(n)) if there are constants c > 0, n0 > 0 such

that n > n0, |f(n)|  c|g(n)|.

 f(n) = o(g(n)) if limn-> f(n)/g(n) = 0.

 f(n) = (g(n)) if there are constants c > 0, n0 > 0 such

that n > n0, |f(n)| ≥ c|g(n)|.

 f (n) = ω(g(n)) if limn-> f(n)/g(n) = .

 f(n) ∽ g(n) if limn-> f(n)/g(n) = 1.

 f(n) = (g(n)) if there are constants c > 0, c' > 0, n0 > 0

such that n > n0, cg(n)  f(n)  c'g(n))

Appendix B

We prove here that
 if F is a

convex function and F(n) = (logn).

 pour y > 1

Now if F is convex

 (y-1) F’(y) y F’(y) so

Now if log x = O(F(x)) then

References

[1] Blum M., A machine independent theory for the

complexity of recursive functions, Journal of the ACM, 14,

323 – 336, 1967

[2] Chaitin G., Algorithmic Information Theory,

Cambridge University Press, 1992

[3] Chaitin G., Exploring Randomness, Springer-Verlag

London, 2001

[4] Cook, M., Universality in Elementary Cellular

Automata, Complex Systems 15: 1-40, 2004

[5] Delahaye J.P., Information, complexité et hasard,

Editions Hermès, Paris, 1998

[6] Garey M., Johnson D. S., Computers and Intractability,

New York: Freeman, 1979

[7] Goldreich O., Computational Complexity, a conceptual

perspective, Cambridge University press, 2008

[8] Hartley R., Theory of Recursive Functions and

Effective Computability, McGraw-Hill; 1967, MIT Press,

1987

[9] Israeli N., Goldenfeld N., Computational Irreducibility

and the Predictability of Complex Physical Systems, Phys.

Rev. Lett. 92, 2004

[10] Kolmogorov A.N., Three Approaches to the

Quantitative Definition of Information, Problems Inform.

Transmission, 1(1): 1-7, 1965

 [11] Levin L. A., Universal Search Problems, in

Problems of InformationTransmission 9,1973

 [12] Li M. and Vitanyi P., An Introduction to

Kolmogorov Complexity and Its Applications, Springer

Verlag 1997

[13] Papadimitriou C. H., Computational Complexity,

Addison-Wesley, 1994

[14] Reisinger D., et al., Exploring Wolfram's Notion of

Computational Irreducibility with a Two-Dimensional

cellular Automaton, In Irreducibility and Computational

Equivalence: Wolfram Science 10 Years After the

Publication of A New Kind of Science, ed. H. Zenil,

Springer, 2013

[15] Wolfram S., Statistical Mechanics of Cellular

Automata, Rev. Mod. Phys. 55, 601-644, 1983

[16] Wolfram S., Undecidability and intractability in

theoretical physics, Vol 54, N 8. Phys. Rev. Letters, 1985

[17] Wolfram S., A New Kind of Science, Wolfram Media,

Inc., 2002

[18] Zenil H., Soler-Toscano F., Joost J.J, Empirical

Encounters with Computational Irreducibility and

Unpredictability, http://arxiv.org/abs/1104.3421, 2011

[19] Zwirn H., Les limites de la connaissance, Odile

Jacob, Paris, 2000

[20] Zwirn H., Les systèmes complexes, Odile Jacob, Paris,

2006

[21] Zwirn, H, and Delahaye, J.P., Unpredictability and

Computational Irreducibility, In Irreducibility and

Computational Equivalence: Wolfram Science 10 Years

After the Publication of A New Kind of Science, ed. H.

Zenil, Springer, 2013

http://www.complex-systems.com/Archive/hierarchy/genlisting.cgi?vol=15&iss=1&vars=Menu_1_15=1=&Menu_1_14=0&label=Menu_1_15&state=0
http://www.complex-systems.com/Archive/hierarchy/genlisting.cgi?vol=15&iss=1&vars=Menu_1_15=1=&Menu_1_14=0&label=Menu_1_15&state=0
http://link.aps.org/doi/10.1103/PhysRevLett.54.735
http://link.aps.org/doi/10.1103/PhysRevLett.54.735
http://www.wolframscience.com/nksonline
http://arxiv.org/find/cs/1/au:+Zenil_H/0/1/0/all/0/1
http://arxiv.org/abs/1104.3421

