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Abstract

Modeling the immune system so that its essential functionalities stand
out without the need for every molecular or cellular interaction to be taken
into account has been challenging for many decades. Two competing ap-
proaches have been the clonal selection theory and the idiotypic-network
theory, each stemming from a relatively separate set of principles. One
recent perspective holding the promise of unification is that of immunity
as computation, that is, of immunity as the process of computing the state
of the body so that protection can be effected, as well as boosted through
learning. Here we investigate the use of cellular automata (CA) as the
core abstraction supporting this new perspective. Our choice of CA for
this role is based on the potential variety of basins in a CA attractor field.
Associating each basin with a consistent set of body states, and moreover
providing for the noisy evolution of the CA in time so that jumping be-
tween basins is possible, have provided the necessary backdrop. Given a
CA rule to be followed by all cells synchronously, our model is based on a
probability with which each cell, at each time step, independently updates
its own state differently than the rule mandates. Setting up and solving
the corresponding Markov chain for its stationary probabilities have re-
vealed that already in the context of elementary CA there exist rules that,
while allowing transitions between basins, display remarkable resiliency in
terms of basin occupation. For these rules, the long-run probability that
the CA is found in a given basin is practically the same as in the deter-
ministic case when the initial CA state is chosen uniformly at random.
We argue that, consequently, our single-parameter CA model may be a
suitable abstraction of immunity as computation.

Keywords: Immune system, Cellular automata, Immunity as computa-
tion.
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1 Introduction

The immune system is one of the body’s major regulatory systems. Compris-
ing important elements at various physical scales, such as organs, cells, and
molecules, the immune system provides defenses against pathogenic bacteria
and viruses, identifies and seeks to eliminate abnormally behaving cells before
they become established tumors, and carries out tissue restoration as well as var-
ious other housekeeping activities. The immune response to invading pathogens,
as well as the system’s participation in body maintenance, are the product of
learning and self-organization: Beginning with the so-called innate immunity,
the immune system is capable of recreating itself along its history while avoid-
ing the pitfalls of autoimmunity [20]. In order to remain fit for such potentially
daunting task for as long as possible, the immune system relies on the process
known as somatic hypermutation [21], which continually provides the required
diversity at the immune-cellular level.

While by virtue of the immune system’s nature as a self-organizing entity it
seems safe to view the rise of the various immune functions as a process that
proceeds from the bottom up, starting with local interactions at the molecular
level, immunity is undoubtedly a systemic process. Explanatory theories of the
immune system have therefore oscillated between the very local (with the clonal
selection theory [5, 11]) and the very wide (with the elusive idiotypic-network
theory [16, 3, 19], based on the idea that many immune-system elements interact
with one another much as they do with antigens). A curious (though apt)
perspective that might reconcile the two extremes is that the immune system
continually “computes” the state of the body (of which it is part), resulting in
state alterations as the immune system both acts and learns [6].

Models of the immune system, however, have concentrated on expressing the
evolution in time of cell concentrations and other quantities, usually by differ-
ential equations (cf., e.g., [10]) but also by discrete-time abstractions akin to
cellular automata (CA) [22]. In general such models have been shown to pro-
vide a qualitatively convincing picture of how several of the important immune
functions arise, or of how the idiotypic network is thought to be organized. But
the immunity-as-computation paradigm is to our knowledge yet to be explored,
though it should be for at least two reasons that we find quite compelling. The
first one is that viewing immunity as resulting from the continual computa-
tion of states of the body is bound to require new abstractions through which
such states can be represented and manipulated, mathematically or computa-
tionally. As a consequence, valuable insight can be expected to emerge. The
second reason is that, once suitable state representations have been identified,
the possibility of uncertain events that renders the entire system both adaptive
and vulnerable can be more easily taken into account.

Here we begin to investigate the use of CA as a suitable abstraction to
underlie the study of the immune system as a computational entity. Although
choosing CA may seem only natural to unconditional CA enthusiasts, given the
impressive plethora of domains to which CA have been applied [27], in our vision
there are specific reasons backing our choice. One of them is that, by virtue of
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the deterministic character of how CA evolve in time, all CA states for a given
finite number of cells and a fixed rule are necessarily partitioned into attractor
basins. Viewing CA states as body states and the CA rule as summarizing
the computation of body states by the immune system immediately yields an
interpretation of each basin as the set of states to which the body is confined
once it is born into that basin. Depending on the CA rule in question some
basins may express a complex succession of body states while others may seem
dull by comparison or merely bespeak decay and disorganization.

Another reason for choosing a representation by CA is that they yield easily
to the incorporation of uncertainty. This can be achieved in many ways, our
choice being to allow each cell, at each time step, to disobey the CA rule in
use and change its state differently than the rule mandates. We model this
possibility by a single probability parameter, denoted by p. The usual, deter-
ministic CA world is recovered by setting p to 0, but proceeding otherwise (i.e.,
choosing p > 0) immediately opens up new doors. Specifically, every CA state
becomes reachable from every other state, whence it follows that the aforemen-
tioned attractor basins are no longer unreachable from one another during the
CA dynamics but rather allow the body whose states are the CA states to jour-
ney through a rich variety of domains (health, disease, recovery, etc.), however
unlikely the transition from one to another may be. It also follows that the
attractor dynamics inside a basin is no longer inevitable, and likewise that the
periodic attractor lying at a basin’s core is not inescapable.

The question we seek to answer is the following. Given a CA rule and an
attractor basin in the corresponding CA-state space, what is the probability
that, in the long run, the CA state is part of that basin? Unlike other studies
that models uncertainty in a manner similar to ours (cf., e.g., [23] and refer-
ences therein), answering this question relies not on analyzing spatiotemporal
patterns of CA evolution but rather on solving Markov chains for their station-
ary distributions. This is computationally strenuous, but for modestly sized
systems we show that there do exist CA rules for which the added uncertainty,
while allowing the desired transitions between CA states of different basins to
occur, nevertheless tends to confine the CA dynamics to within the same basin
where it would unfold if no uncertainty had been added but initial conditions
were random.

We proceed in the following manner. We present our model, along with its
main properties, in Section 2. This is followed by our methodology in Section 3,
results in Section 4, and discussion in Sections 5 and 6. We conclude in Section 7.

2 Model

We consider binary CA, i.e., CA whose cell states are either 0 or 1. If n is the
number of cells, assumed finite, then the number of distinct CA states is 2n. All
cells update their states at all times synchronously (i.e., in lockstep) based on
the same rule, which can be thought of as a table of binary outputs indexed by
(δ + 1)-bit inputs. Here δ is the size of a cell’s neighborhood, the same for all
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cells, so a cell’s new state depends on its own current state and on its neighbors’

current states. Each rule’s size is 2δ+1, so there exist 22
δ+1

distinct rules. Fixing
the rule to be used gives rise to a function f mapping each CA state in {0, 1}n
into another state in the same set.

Our model is based on turning deterministic CA into probabilistic ones. We
do this by introducing a probability, p, with which each cell, at each time step,
disobeys the rule’s prescription for its next state independently of all other cells.
So, if x denotes a cell’s next state and the CA rule’s current prescription for the
value of x is b ∈ {0, 1}, we have

x :=

{

1− b, with probability p;
b, otherwise.

(1)

Now let i, j ∈ {0, 1}n be any two CA states and let Hi,j be the Hamming
distance between them (i.e., the number of cells at which i and j differ). Addi-
tionally, let ki = f(i), i.e., ki is the CA state that follows i in the deterministic
dynamics for the rule at hand. Once we introduce the probability p, the prob-
ability that CA state i is followed by j, denoted by pi,j , is

pi,j = pHj,ki (1 − p)n−Hj,ki . (2)

Readily, letting j = ki yields Hj,ki
= 0, and consequently pi,j = (1− p)n. This

is the probability with which i is followed by ki, that is, the probability that at
any given time step the deterministic prescription is respected.

Thus, while using p = 0 clearly recovers the traditional, deterministic dy-
namics (since pi,j = 1 if j = ki and pi,j = 0 otherwise), using p > 0 lets the
CA dynamics be described as a discrete-time Markov chain on the CA states
and having P = [pi,j ] for transition-probability matrix. To see this it suffices to
verify that the elements of P sum up to 1 on any row. That is, fixing i yields

∑

j∈{0,1}n

pi,j =

n
∑

h=0

(

n

h

)

ph(1− p)n−h = 1 (3)

(because ki is fixed along with i and differs at h cells from
(

n
h

)

of the 2n CA
states for any given number h of cells). Moreover, for p > 0 every element of P
is nonzero and therefore the chain is ergodic, meaning that, regardless of how
likely it is for any given CA state to be the initial state, in the long run the CA
is found in state i with the stationary probability πi given by π = πP , where
π = [πi] is a row vector.

2.1 On symmetry

By Eq. (1), letting p = 1 also implies deterministic behavior, but following the
rule that is complementary to the one that is followed when p = 0. That is,
one rule sets x to b if and only if the other sets it to 1 − b. A similar type of
symmetry occurs between the case in which p > 0 and that in which 1 − p is
used instead.
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To see this, first let l̄ denote the complement of CA state l (i.e., adding any
cell’s state in l to its state in l̄ yields 1). It clearly follows that Hl,j+Hl̄,j = n for
any CA state j. Now recall that Eq. (2) refers to a specific CA rule and to each
cell disobeying it with probability p at each time step. Rewriting the equation
for the complementary rule and also letting it be disobeyed with probability
1− p instead has no effect on the value of pi,j , since

(1− p)Hj,k̄i pn−Hj,k̄i = (1− p)n−Hj,ki pHj,ki . (4)

Thus, studying the case of any given rule under p leads to the same Markov
chain as studying the complementary rule under 1− p, and consequently to the
same stationary probabilities on the CA states.

Typically our interest lies in small values of p, which makes the case of (the
correspondingly large) 1 − p even more remarkable, at least at the level of CA
states. At the higher level of the attractor basins, however, no equivalence can
in general be expected: The probability that the CA is found in a particular
basin in the long run depends on how the CA states cluster into basins and in
general this happens differently for a given rule and its complement.

Nevertheless, there do exist rule pairs that display equivalent behavior for
the same value of p. We identify these pairs by first introducing a transformation
between CA states, call it g, and requiring that one of the rules in the pair lead
the CA from state i to state ki if and only if the other rule leads the CA from
state g(i) to state g(ki). Any rule pair satisfying this requirement is such that
the corresponding sets of attractor basins, one for each rule, are structurally
equivalent to each other. If, moreover, we require Hj,ki

= Hg(j),g(ki), then we
also have pi,j = pg(i),g(j). What results from this is that, in the long run, the
CA is found in any given basin of one of the rules with the same probability
that it is found in the equivalent basin of the other rule.

Rule pairs like this are important in our context because they have the
potential of reducing the number of rules that have to be analyzed. This is so
because, even though the two sets of stationary probabilities on the CA states
are in general distinct, when the probabilities are summed up inside any basin
of one of the rules the result is the same as that for the other rule’s equivalent
basin. One transformation g for which every rule has a counterpart with which
it satisfies the two requirements above is negation, i.e., adding any cell’s state
in i to its state in g(i) yields 1. Another one is reflection, i.e., the cth cell’s state
in i is the same as the (n− c+1)th cell’s state in g(i) for every c ∈ {1, 2, . . . , n}.

2.2 A special case

By Eq. (2), letting p = 0.5 leads to pi,j = 1/2n regardless of i, j, or the rule being
used. From this it follows that πi = 1/2n for every i, so the CA is equally likely
to be found at any state in the long run. However, our transition-probability
matrix P for this particular value of p is not the only one leading to the uniform
distribution over the CA states: In fact, this happens if and only if the matrix
is doubly stochastic (i.e., its elements add up to 1 column-wise just as they do
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row-wise) and implies an ergodic chain. An example is obtained by letting

pi,j =

{

1/
(

n
τ

)

, if Hi,j = τ ;
0, otherwise

(5)

for any number τ of cells [24] (but note that our p = 0.5 case is not equivalent
to choosing any particular value for τ).

2.3 The general case

Our model is a special case of the so-called probabilistic CA (PCA), in which
a cell’s next state is no longer given by the customary deterministic rule but
instead is chosen probabilistically as a function of the cell’s and its neighbors’
current states. Our particular type of PCA relies on the probabilistic decision
summarized in Eq. (1), itself dependent on a specific deterministic rule (unlike
most PCA, in whose case no deterministic rule plays any role).

Placing our model within the wider class of PCA is important because they
have been viewed as prototypes of many important systems, both physical and
computational, in a way similar to that in which immunity may come to be
characterized as a computational process. Examples of such systems include
the spin lattices of statistical physics [9, 4, 14, 12, 18] and, more generally, the
Markov and Gibbs random fields [1] that, together with various asynchronous
state-update schemes [15, 2], underlie many of the so-called probabilistic graph-
ical models (such as Bayesian networks and hidden Markov models) in artificial
intelligence [17].

3 Methods

Given a deterministic CA rule and the number n of cells, let m denote the
number of attractor basins into which the set {0, 1}n is partitioned. We denote
these basins by B1, B2, . . . , Bm. For the case in which the rule in question may
be disobeyed by any cell at any time step according to Eq. (1) with p > 0, our
aim is to calculate the probability that, in the long run, the CA is found in some
state of a given basin B ∈ {B1, B2, . . . , Bm}. Denoting this probability by πB ,
we clearly have

πB =
∑

k0∈{0,1}n

πB|k0
Pr(k0), (6)

where πB|k0
is the conditional probability that in the long run the CA is found in

some state in B, given that it started at state k0, and Pr(k0) is the probability
that it did start at k0. However, it follows from our discussion in Section 2
that πB|k0

is actually unaffected by k0 and can be obtained by adding up πk,
the stationary probability of CA state k in the associated Markov chain, for all
k ∈ B. We then have

πB =
∑

k∈B

πk, (7)
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regardless of how we choose the initial state k0, i.e., regardless of Pr(k0) for any
k0.

All our analyses in the forthcoming sections are based on comparing πB to
the corresponding probability when p = 0, that is, when evolution is deter-
ministic. We denote this probability by σB and the corresponding conditional
probability, given k0, by σB|k0

. Readily,

σB|k0
=

{

1, if k0 ∈ B;
0, otherwise

(8)

and
σB =

∑

k0∈{0,1}n

σB|k0
Pr(k0) =

∑

k0∈B

Pr(k0), (9)

so σB is clearly dependent upon how k0 is chosen. We continue by assuming
that this happens uniformly at random, that is, Pr(k0) = 1/2n for every k0,
whence we obtain

σB =
|B|
2n

. (10)

Thus, σB results trivially from the uniform distribution over all CA states (we
simply add it up for all states in basin B).

Obtaining πB for every basin B requires the system π = πP to be solved,
subject to the constraints that πi > 0 for all i ∈ {0, 1}n and

∑

i∈{0,1}n πi = 1,
for each desired combination of n, CA rule, and p > 0. We have used the solver
that is freely available as part of the Tangram-II modeling tool [8]. This solver
employs state-of-the-art techniques for the above determination of π given P ,
but in our case P is a 2n × 2n matrix with no zeroes and no facilitating sym-
metries or structure. Thus the solution process has been very time-consuming,
which has constrained n to the modest values of 10 through 12. For the record,
we mention that, depending on the CA rule at hand, stepping up to n = 13
would demand nearly two months per run on an Intel Xeon E5-1650 at 3.2GHz
with enough memory to store the entire 8192× 8192 system at all times. This,
unfortunately, has proven infeasible.

4 Results

Henceforth we let B denote the set {B1, B2, . . . , Bm} of all basins for a given CA
rule and a fixed value of n. We compare the distributions πB1

, πB2
, . . . , πBm

and
σB1

, σB2
, . . . , σBm

by means of the Hellinger distance between them, denoted by
H(π, σ) and given by

H(π, σ) =

√

1−
∑

B∈B

√
πBσB. (11)

Using the Hellinger distance to compare the two distributions is convenient not
only because it truly is a distance function but also because it is always such
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that 0 ≤ H(π, σ) ≤ 1. In fact, clearly H(π, σ) = 0 if and only if πB = σB

for all B ∈ B and H(π, σ) = 1 if and only if πBσB = 0 for all B ∈ B. The
latter, however, can never be achieved in our context because both πB and σB

are strictly positive for all B ∈ B.
We also compare the mean and standard deviation of basin sizes as they

vary from one distribution to the other. To this end, we use the ratios

ρmean =

∑

B∈B πB |B|
∑

B∈B σB |B| (12)

and

ρs.d. =

√

∑

B∈B πB|B|2 − (
∑

B∈B πB |B|)2
∑

B∈B σB|B|2 − (
∑

B∈B σB |B|)2 . (13)

Clearly, comparing ρmean to 1 lets us detect increases or decreases in the mean
basin size as we move from using the probabilities σB1

, σB2
, . . . , σBm

to using
πB1

, πB2
, . . . , πBm

, and likewise for ρs.d. with respect to the standard deviation
of basin sizes.

These data are given in Tables 1 and 2, the former containing Hellinger
distances, the latter containing mean and standard-deviation ratios. All data
refer to elementary CA [25], which in the present context corresponds to set-
ting a cell’s neighborhood size (δ) to 2, and to an arrangement of cells that
is one-dimensional with periodic boundaries (i.e., the first and last cells in the
arrangement are neighbors). Moreover, our data encompass all combinations of
a unique rule, a CA size n ∈ {10, 11, 12}, and a probability p ∈ {0.001, 0.01}.
By unique rule we mean one that is not equivalent to any other selected rule by
negation or reflection. Of the 256 possible elementary-CA rules, 88 are unique in
this sense but group with the remaining 168 rules into equivalence classes of size
at most 4, or into larger clusters of size at most 8 as two equivalence classes of
pairwise complementary rules are joined. Each of the equivalence classes might
be represented in our tables by any of its members, but we follow Wuensche and
Lesser, who in their atlas [29] use one or two rules of each larger cluster, viz. the
rule of least number (in the customary Wolfram sense [25]) and its complement
if not already in the first rule’s equivalence class. Each table also informs a
rule’s class (1 through 4) according to Wolfram’s well-known qualitative scheme
[26].

5 Discussion

As we have seen, disobeying a CA rule independently at each cell with proba-
bility p makes the CA dynamics stochastic and puts it between two extremes
that, in a sense, are equivalent. One extreme is the p = 0 case, i.e., the case in
which the rule is not disobeyed at all and the customary deterministic dynamics
is followed. In this case, the long-run probability that a randomly chosen CA
state is in some basin B is σB and stems from the uniform distribution on the
CA states provided the initial state is itself chosen uniformly at random. The
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Table 1: Hellinger distances.
Wolfram H(π, σ) for n = 10 H(π, σ) for n = 11 H(π, σ) for n = 12

Rule class p = 0.001 p = 0.01 p = 0.001 p = 0.01 p = 0.001 p = 0.01
0 1 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

248 1 0.248956 0.248918 0.223216 0.223206 0.200278 0.200274
249 1 0.091299 0.091276 0.073387 0.073380 0.059551 0.059549

250 1 0.176776 0.176729 0.015626 0.015626 0.125000 0.124995
251 1 0.031257 0.031224 0.000000 0.000000 0.015626 0.015623

252 1 0.022100 0.022100 0.015626 0.015626 0.011049 0.011049

253 1 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

254 1 0.022100 0.022100 0.015626 0.015626 0.011049 0.011049

1 2 0.237315 0.239354 0.260833 0.261584 0.283045 0.283760
2 2 0.214709 0.203996 0.224895 0.223983 0.234612 0.233671
3 2 0.121415 0.124573 0.136260 0.136566 0.150518 0.150766
4 2 0.198416 0.178198 0.207861 0.206196 0.216913 0.215180
5 2 0.122062 0.123784 0.136260 0.136566 0.151784 0.152007
6 2 0.145932 0.099881 0.153279 0.140815 0.178978 0.167294
7 2 0.570014 0.073262 0.600195 0.477705 0.627823 0.494088
9 2 0.127448 0.058579 0.198415 0.169627 0.130059 0.112595
10 2 0.104076 0.102039 0.088408 0.086590 0.106435 0.104504
11 2 0.339538 0.265903 0.290900 0.238953 0.543483 0.346141
12 2 0.084915 0.083186 0.088408 0.086590 0.091966 0.090065

13 2 0.561884 0.436485 0.298189 0.248901 0.620558 0.469093
14 2 0.296465 0.245507 0.335487 0.266519 0.492403 0.338750
15 2 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
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Table 1: Continued.
Wolfram H(π, σ) for n = 10 H(π, σ) for n = 11 H(π, σ) for n = 12

Rule class p = 0.001 p = 0.01 p = 0.001 p = 0.01 p = 0.001 p = 0.01
19 2 0.665262 0.455025 0.687454 0.466017 0.706507 0.476426

23 2 0.649786 0.504885 0.674805 0.517551 0.699909 0.532909

24 2 0.151170 0.145988 0.162003 0.156480 0.163455 0.157906
25 2 0.178794 0.142287 0.205302 0.166376 0.240752 0.184615
26 2 0.096811 0.087081 0.092313 0.081963 0.082902 0.073380

27 2 0.078410 0.075206 0.078149 0.075674 0.088139 0.084074

28 2 0.507050 0.293820 0.276705 0.187250 0.554002 0.304611
29 2 0.042041 0.041289 0.044401 0.043618 0.046283 0.045463

33 2 0.128619 0.124749 0.102505 0.099605 0.131497 0.128095
35 2 0.112197 0.095522 0.108425 0.093326 0.136032 0.100919
36 2 0.210118 0.202473 0.212746 0.204591 0.218307 0.209832
37 2 0.217930 0.128618 0.130832 0.085161 0.153067 0.127335
38 2 0.053281 0.051025 0.060564 0.058097 0.058462 0.055931

41 2 0.120070 0.097433 0.115620 0.106492 0.150240 0.107285
43 2 0.299150 0.254258 0.340329 0.279313 0.499819 0.357524
46 2 0.176524 0.167568 0.186924 0.177534 0.196353 0.186419
50 2 0.621971 0.428828 0.434170 0.334403 0.667557 0.448039
51 2 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

57 2 0.271948 0.093908 0.095220 0.034859 0.287305 0.079804
58 2 0.230614 0.194367 0.401245 0.276011 0.410814 0.410734
62 2 0.197845 0.138003 0.132255 0.122913 0.215650 0.117917
77 2 0.649786 0.504885 0.447864 0.375344 0.699909 0.532909

1
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Table 1: Continued.
Wolfram H(π, σ) for n = 10 H(π, σ) for n = 11 H(π, σ) for n = 12

Rule class p = 0.001 p = 0.01 p = 0.001 p = 0.01 p = 0.001 p = 0.01
94 2 0.306439 0.269040 0.277744 0.242535 0.569790 0.280718
178 2 0.649786 0.504885 0.447864 0.375344 0.699909 0.532909
197 2 0.529675 0.345739 0.285589 0.211139 0.581408 0.362983
198 2 0.522388 0.330289 0.282790 0.203589 0.572138 0.344295
201 2 0.220405 0.209932 0.217887 0.207934 0.221112 0.209812
204 2 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

205 2 0.081927 0.080898 0.082447 0.081349 0.083984 0.082815

210 2 0.007328 0.006725 0.000000 0.000000 0.010027 0.008364

212 2 0.299150 0.254258 0.340329 0.279313 0.499819 0.357524
214 2 0.104722 0.100715 0.138109 0.122696 0.112897 0.094736
217 2 0.120698 0.115389 0.130762 0.125581 0.126279 0.121099
218 2 0.266122 0.259242 0.221638 0.214302 0.265582 0.258562
220 2 0.092624 0.090070 0.092633 0.089882 0.094236 0.091322

222 2 0.081912 0.081363 0.081185 0.080555 0.084533 0.084083

226 2 0.170992 0.148976 0.079509 0.075465 0.196928 0.168250
227 2 0.128235 0.089781 0.076123 0.065573 0.109403 0.072279
228 2 0.322168 0.308522 0.308795 0.298360 0.299346 0.290927
229 2 0.101086 0.096509 0.134254 0.119041 0.115874 0.108862
230 2 0.238324 0.230492 0.258104 0.250046 0.277262 0.268729
232 2 0.649786 0.504885 0.674805 0.517551 0.699909 0.532909

233 2 0.370172 0.311163 0.404103 0.341928 0.420107 0.357435
236 2 0.767929 0.677742 0.790184 0.701010 0.810056 0.722260
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Table 1: Continued.
Wolfram H(π, σ) for n = 10 H(π, σ) for n = 11 H(π, σ) for n = 12

Rule class p = 0.001 p = 0.01 p = 0.001 p = 0.01 p = 0.001 p = 0.01
237 2 0.511025 0.446457 0.532280 0.465832 0.551887 0.483901
240 2 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

241 2 0.161638 0.159585 0.169371 0.167225 0.176764 0.174527
242 2 0.219813 0.216880 0.229854 0.226784 0.239672 0.236473
243 2 0.084915 0.083186 0.088408 0.086590 0.091966 0.090065

244 2 0.253371 0.248050 0.265043 0.259493 0.276340 0.270564
246 2 0.123588 0.121820 0.126632 0.124803 0.133269 0.131387
18 3 0.177219 0.171971 0.098671 0.095609 0.216715 0.200709
22 3 0.051738 0.044548 0.090170 0.077895 0.250064 0.134211
30 3 0.034544 0.016889 0.020255 0.007665 0.038162 0.009492

45 3 0.016456 0.010594 0.000000 0.000000 0.056506 0.004097

60 3 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

73 3 0.294481 0.182849 0.120781 0.107784 0.181444 0.151175
90 3 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

105 3 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

126 3 0.114009 0.110473 0.158805 0.146309 0.140149 0.125633
150 3 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

161 3 0.213897 0.142957 0.046676 0.018741 0.145264 0.101305
182 3 0.118028 0.098982 0.037891 0.030647 0.110355 0.095368
225 3 0.034380 0.020135 0.062034 0.018674 0.488660 0.119769
54 4 0.250242 0.160801 0.078368 0.060045 0.285840 0.138826
193 4 0.066972 0.049254 0.057118 0.030831 0.096156 0.052231
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Table 2: Mean and standard-deviation ratios (I: p = 0.001; II: p = 0.01).
n = 10 n = 11 n = 12

Wolfram ρmean ρs.d. ρmean ρs.d. ρmean ρs.d.
Rule class I II I II I II I II I II I II
0 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

248 1 1.13 1.13 0.00 0.00 1.11 1.11 0.00 0.00 1.09 1.09 0.00 0.00
249 1 1.02 1.02 0.00 0.00 1.01 1.01 0.00 0.00 1.01 1.01 0.00 0.00

250 1 1.06 1.06 0.00 0.00 1.00 1.00 0.00 0.00 1.03 1.03 0.00 0.00
251 1 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00

252 1 1.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00

253 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

254 1 1.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00

1 2 0.41 0.40 0.74 0.74 0.35 0.35 0.68 0.68 0.30 0.30 0.62 0.62
2 2 0.75 0.80 0.98 0.99 0.72 0.73 0.93 0.93 0.67 0.67 0.88 0.88
3 2 0.91 0.88 0.93 0.94 0.85 0.85 0.90 0.90 0.80 0.80 0.86 0.85
4 2 0.49 0.53 0.72 0.75 0.45 0.46 0.68 0.68 0.42 0.43 0.64 0.65
5 2 0.70 0.65 0.76 0.71 0.63 0.63 0.71 0.70 0.59 0.58 0.66 0.65
6 2 0.88 0.95 1.05 1.03 0.85 0.87 1.12 1.12 0.84 0.85 1.02 1.02
7 2 1.40 1.07 0.14 1.00 1.49 1.44 0.15 0.50 1.43 1.38 0.16 0.51
9 2 1.11 1.04 0.97 1.00 0.84 0.86 1.58 1.53 0.99 0.98 0.98 0.99
10 2 0.90 0.90 0.98 0.98 0.92 0.92 1.02 1.02 0.90 0.90 1.04 1.04
11 2 1.08 1.08 0.88 0.90 1.11 1.09 0.90 0.92 2.37 1.92 0.39 0.91
12 2 0.93 0.93 1.01 1.01 0.92 0.92 1.01 1.01 0.91 0.92 1.00 1.00

13 2 1.93 1.83 0.18 0.54 1.17 1.16 0.08 0.26 2.33 2.14 0.24 0.71
14 2 1.03 1.03 0.99 0.99 1.42 1.37 0.71 0.77 1.91 1.71 0.26 0.68
15 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table 2: Continued.
n = 10 n = 11 n = 12

Wolfram ρmean ρs.d. ρmean ρs.d. ρmean ρs.d.
Rule class I II I II I II I II I II I II
19 2 3.68 2.95 0.48 1.16 4.28 3.27 0.58 1.33 4.97 3.61 0.70 1.51

23 2 3.33 3.01 0.26 0.75 3.89 3.43 0.32 0.88 4.57 3.92 0.38 1.02

24 2 1.01 1.01 1.23 1.21 0.97 0.97 1.03 1.02 0.97 0.98 0.98 0.98
25 2 1.00 0.99 0.99 1.00 0.87 0.89 1.27 1.22 1.21 1.17 0.99 1.01
26 2 0.92 0.92 1.03 1.03 0.94 0.94 0.98 0.98 0.89 0.90 0.94 0.94

27 2 0.95 0.95 0.97 0.97 0.93 0.93 0.94 0.94 0.94 0.94 0.98 0.98

28 2 2.16 1.78 0.35 0.85 1.22 1.18 0.16 0.48 2.72 2.04 0.46 1.03
29 2 1.03 1.03 1.03 1.03 1.04 1.04 1.06 1.06 1.04 1.04 1.05 1.05

33 2 0.77 0.77 0.85 0.86 0.79 0.79 0.84 0.84 0.77 0.77 0.83 0.83
35 2 1.15 1.13 1.01 1.01 1.00 1.00 0.97 0.97 1.10 1.07 1.00 1.00
36 2 0.57 0.59 0.90 0.90 0.54 0.56 0.86 0.87 0.50 0.52 0.82 0.83
37 2 0.86 0.92 1.18 1.10 0.96 0.99 1.14 1.09 1.03 1.03 0.96 0.96
38 2 0.96 0.97 1.02 1.02 0.96 0.96 1.04 1.03 0.95 0.95 1.00 1.00

41 2 1.04 1.03 0.95 0.97 1.16 1.15 1.12 1.12 0.83 0.89 0.97 1.01
43 2 1.06 1.05 0.86 0.87 1.42 1.38 0.68 0.74 2.08 1.87 0.24 0.65
46 2 0.96 0.96 1.09 1.08 0.97 0.97 1.14 1.13 0.92 0.93 1.03 1.03
50 2 3.29 2.74 0.37 0.94 1.58 1.52 0.14 0.43 4.49 3.43 0.52 1.22
51 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

57 2 1.28 1.12 0.34 0.83 1.03 1.01 0.28 0.78 1.35 1.12 0.41 0.89
58 2 0.97 0.98 1.00 0.99 1.36 1.30 0.18 0.52 1.35 1.31 0.43 0.43
62 2 1.24 1.17 0.61 0.77 1.31 1.30 1.17 1.16 0.85 0.96 1.04 1.01
77 2 3.33 3.01 0.26 0.75 1.58 1.55 0.10 0.32 4.57 3.92 0.38 1.02
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Table 2: Continued.
n = 10 n = 11 n = 12

Wolfram ρmean ρs.d. ρmean ρs.d. ρmean ρs.d.
Rule class I II I II I II I II I II I II
94 2 0.84 0.87 1.13 1.12 0.90 0.92 1.04 1.03 2.04 1.30 0.66 1.08
178 2 3.33 3.01 0.26 0.75 1.58 1.55 0.10 0.32 4.57 3.92 0.38 1.02
197 2 1.91 1.70 0.28 0.75 1.17 1.15 0.13 0.39 2.30 1.92 0.37 0.94
198 2 2.17 1.85 0.30 0.80 1.22 1.19 0.14 0.42 2.75 2.17 0.41 0.98
201 2 0.91 0.91 1.16 1.15 0.90 0.91 1.12 1.11 0.97 0.96 1.22 1.19
204 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

205 2 0.97 0.97 1.02 1.01 0.97 0.97 1.00 1.00 0.97 0.97 1.01 1.01

210 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

212 2 1.04 1.04 0.91 0.91 1.56 1.50 0.85 0.89 2.08 1.87 0.24 0.65
214 2 0.96 0.96 1.05 1.05 0.79 0.82 1.09 1.09 0.97 0.97 0.96 0.97
217 2 0.94 0.94 1.37 1.36 0.92 0.92 1.37 1.35 0.90 0.90 1.12 1.11
218 2 0.59 0.60 0.80 0.81 0.55 0.56 0.79 0.80 0.50 0.52 0.73 0.74
220 2 0.93 0.93 1.02 1.02 0.92 0.92 1.01 1.01 0.91 0.92 1.01 1.01

222 2 0.85 0.85 0.91 0.91 0.83 0.84 0.89 0.89 0.82 0.81 0.88 0.88

226 2 1.08 1.07 0.96 0.97 0.99 0.99 1.00 1.00 1.09 1.08 0.98 0.98
227 2 1.07 1.04 1.00 1.00 1.07 1.05 1.04 1.04 1.08 1.05 1.02 1.01
228 2 0.72 0.74 1.05 1.05 0.69 0.70 0.98 0.98 0.66 0.68 0.91 0.91
229 2 0.96 0.96 1.03 1.03 0.89 0.90 1.01 1.01 0.80 0.81 0.86 0.86
230 2 0.70 0.71 0.86 0.87 0.73 0.74 0.90 0.91 0.70 0.71 0.80 0.81
232 2 3.33 3.01 0.26 0.75 3.89 3.43 0.32 0.88 4.57 3.92 0.38 1.02

233 2 1.39 1.37 0.09 0.28 1.48 1.46 0.09 0.28 1.53 1.51 0.09 0.29
236 2 5.40 5.11 0.24 0.72 6.39 6.01 0.27 0.82 7.57 7.08 0.31 0.92
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Table 2: Continued.
n = 10 n = 11 n = 12

Wolfram ρmean ρs.d. ρmean ρs.d. ρmean ρs.d.
Rule class I II I II I II I II I II I II
237 2 1.88 1.84 0.10 0.31 2.00 1.95 0.10 0.32 2.13 2.07 0.11 0.33
240 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

241 2 0.80 0.80 0.94 0.94 0.77 0.77 0.90 0.90 0.76 0.76 0.88 0.89
242 2 0.78 0.78 0.96 0.96 0.68 0.68 0.81 0.81 0.69 0.69 0.86 0.86
243 2 0.94 0.94 1.04 1.04 0.92 0.92 1.02 1.02 0.92 0.93 1.00 1.00

244 2 0.96 0.96 0.98 0.98 0.96 0.96 0.99 0.99 0.96 0.96 1.00 1.00
246 2 0.88 0.88 1.10 1.10 0.89 0.90 1.17 1.16 0.92 0.92 1.07 1.07
18 3 0.86 0.86 0.94 0.94 0.90 0.90 1.04 1.04 0.81 0.82 0.64 0.65
22 3 0.94 0.95 0.98 1.00 0.97 0.96 0.99 0.98 0.60 0.79 1.01 1.05
30 3 0.98 0.99 1.05 1.04 0.98 0.99 1.02 1.01 0.99 1.00 1.10 1.04

45 3 0.99 0.99 1.01 1.01 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00

60 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

73 3 1.08 1.02 1.16 1.09 0.93 0.93 0.90 0.90 0.91 0.86 0.98 0.92
90 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

105 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

126 3 0.91 0.91 1.07 1.07 0.88 0.88 1.02 1.02 0.87 0.88 0.75 0.78
150 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

161 3 0.97 0.98 1.16 1.12 1.02 1.00 0.98 1.02 0.93 0.94 1.05 1.05
182 3 1.02 1.02 0.87 0.88 1.02 1.02 0.95 0.96 1.01 1.00 0.87 0.86
225 3 0.99 0.99 1.02 1.02 1.03 0.99 0.88 1.04 0.39 0.92 1.24 1.14
54 4 0.86 0.90 0.84 0.89 1.03 1.04 1.06 1.05 1.41 1.17 0.86 0.98
193 4 1.03 1.02 0.99 1.00 1.07 1.03 0.92 0.97 0.95 0.97 1.05 1.03
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other extreme is that of p = 0.5, in which case the long-run probability that the
CA is found in basin B is πB, now stemming from CA-state probabilities that
are again uniform but now by virtue of the underlying Markov chain’s stationary
distribution.

Comparing these two distributions as indicated in Section 4 clearly yields
H(π, σ) = 0 and, consequently, ρmean = ρs.d. = 1, regardless of the particular
CA rule and CA size being considered. Although these values may look like what
we seek (stochastic CA dynamics that, while allowing occasional transitions
between basins, let the CA state be found in a same basin for long stretches of
time), they are only the product of erratic transitions between the CA states.
In fact, for p = 0.5 all CA states are equally likely candidates for where the CA
is to move next, regardless of where it is currently.

It is instructive to contrast this p = 0.5 extreme with the case of any p such
that 0 < p < 0.5. We first rewrite the transition probability pi,j of Eq. (2) as

pi,j = (1− p)n
(

1− p

p

)−Hj,ki

, (14)

which for 0 < p < 0.5 leaves it clear that pi,j decays exponentially with the
Hamming distance between j and ki from the maximum value of (1− p)n. This
maximum, as we have noted, is achieved for j = ki, so evolving toward i’s
deterministic successor in a single time step is always exponentially more likely
than doing it toward any other CA state. Intuitively one might then expect the
occurrence of H(π, σ) ≈ 0 to be commonplace, but we have found this to be
far from the truth. In fact, it all depends on the great richness of detail we can
always expect from CA behavior, particularly on how the basins are laid out on
the attractor field and whether the CA switches basins in the event that some
j 6= ki is picked when the current CA state is i.

We proceed by singling out some rules for a more detailed discussion. Most
of these are highlighted in Tables 1 and 2 with a bold typeface. We occasionally
mention specific characteristics of a rule or its basins, and for these the reader
is referred to one of the available atlases [29, 28].

First note that, though not commonplace, rules for which H(π, σ) is indis-
tinguishable from 0 within the six decimal places used in Table 1 do exist. These
are class-1 rules 0 and 253; class-2 rules 15, 51, 204, and 240; and class-3 rules
60, 90 (the XOR rule), 105, and 150. For two of these rules, namely 0 and 253,
the value of H(π, σ) is precisely 0, since each of them gives rise to exactly one
basin of attraction, call it B1, whence it follows that πB1

= σB1
= 1 no matter

what the stationary CA-state probabilities that make up πB1
turn out to be.

The value of H(π, σ) is precisely 0 also for four other rules, namely 15, 51, 204,
and 240, but for an entirely different reason. What happens in these cases is
that the transition-probability matrix is doubly stochastic, which as we have
noted implies that the stationary distribution over the CA states is uniform.
For rules 51 and 204, in particular, double stochasticity is a consequence of the
matrices’ being symmetric (i.e., pi,j = pj,i for all CA states i and j). As for
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rules 60, 90, 105, and 150, H(π, σ) is probably only approximately equal to 0,
since the matrices do not seem to be doubly stochastic.

Making the requirement on H(π, σ) less stringent, for example by replacing
indistinguishability from 0 with H(π, σ) < 0.1, turns up further rules: class-1
rules 249, 251, 252, and 254; class-2 rules 12, 26, 27, 29, 38, 205, 210, 220,
222, and 243; class-3 rules 30 and 45; and even one of the elusive class-4 rules,
namely rule 193 (more widely recognized through its equivalent by both nega-
tion and reflection, the celebrated rule 110, known to be capable of universal
computation). The class-1 additions to the list are not really surprising, since in
all four cases nearly all CA states cluster into one single basin and therefore our
argument above for rules 0 and 253 essentially continues to hold (though ap-
proximately). As for the remaining additions (the class-2 through class-4 rules),
no readily discernible characteristic seems to stand out that might help explain
the relative proximity of the two distributions, not even inside each class.

Aside from these 27 zero or near-zero cases of the Hellinger distance, the
remaining 61 rules in Tables 1 and 2, at least for our small sample of n and p
values, all give rise to stationary basin probabilities that differ from those of the
deterministic case (with initial CA states chosen uniformly at random) to some
substantial extent. Singling out some rules on the higher extreme of distance
values is not as clear-cut a task as picking the zeroes. As we mentioned earlier,
the theoretical maximum distance of 1 can never be achieved for distributions
that are strictly positive everywhere, so figuring out the actual maximum for
elementary CA is far from a trivial task.

What we do is then to highlight those rules that, across our small sample
of n and p values, are on the far side of the (admittedly arbitrary) threshold
of H(π, σ) = 0.45. Doing this yields four rules, all in class 2 and italicized in
the tables: rules 19, 23, 232, and 236. Once again it is hard to discern any
explaining characteristics, but from Table 2 it is clear that all four rules have in
common the facts that ρmean is substantially larger than 1 (but less so as p is
increased) and that ρs.d. is often smaller than 1 (but growing as p is increased).
That is, for small p the distribution is more concentrated on larger basins, all
relative to the basin-size distribution arising from the uniform distribution on
CA states. This becomes less so as p is increased and the already discussed
limit, as p is driven toward 0.5, is approached.

6 Immunity as computation

The present study has hinged on Eq. (1), a simple probabilistic expression of a
cell’s ability to alter its state differently than the CA rule in use directs it to, at
every time step and independently of all other cells. If we view the CA states as
states of the body, including the portion of it known as the immune system, then
the evolution of CA states in time stands not only for the natural succession of
body states but also for the computation of such states by the immune system.
Given this context, the adoption of the spatially and temporally local proba-
bilistic alterations to the CA rule given in Eq. (1) is an attempt to summarize
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several phenomena originating from the uncertainty that is inherent to every
biological process. Such uncertainty drives adaptation, gives rise to diversity as
well as disease, and fuels the appearance of idiotypes never before seen in the
body and with them the possibility of better immunity through learning.

Though inherently stochastic, our model is also inherently dependent on a
fixed CA rule. This is clear already in Eq. (1) itself, where we recall that b
stands precisely for the cell’s next state according to such a fixed rule. More-
over, although Eq. (1) makes every state update of every cell nondeterministic,
globally it is always exponentially more likely to evolve to the CA state the rule
mandates than to any other CA state. This means that the clustering of CA
states into basins, though no longer unbreachable, is still meaningful and can
be exploited as we adopt the modified CA as metaphors of immunity as compu-
tation. For example, each basin can be viewed as encompassing CA states that
are equivalent from the perspective of the immune system as it computes the
state of the body. Some possibilities that come to mind are basins representing
a healthy or unhealthy body, others representing a body under recovery through
the action of the immune system, and still many others as details are brought
into the picture.

In such a setting, changes in the CA state other than those mandated by the
underlying CA rule can be interpreted in a variety of ways: e.g., inter-basin tran-
sitions may stand for the appearance of or the recovery from diseases, as well as
to adaptation into a distinct, though still healthy, set of states; intra-basin tran-
sitions, in turn, may represent change that nevertheless does not fundamentally
alter the state of the body as far as being healthy is concerned. So far we have
explored this landscape by simply asking what the effects of Eq. (1) might be in
terms of fundamentally deviating the CA from its traditional excursion into the
field of attractor basins under the CA rule in question. We have discovered CA
rules in all four of Wolfram’s classes for which no fundamental deviation exists
while still allowing the CA to occasionally drift in and out of the field’s basins.

It is telling that we should find such behavior already in the simplest of CA,
viz. elementary CA, and already for the very small ones we investigate in this
work. Moving forward will require the investigation of more complex CA, at
the same time higher-dimensional, larger, and governed by larger-neighborhood
rules. We expect that these enriched scenarios will provide many useful possi-
bilities to characterize immunity as computation. In our view, the importance
of characterizations such as this can hardly be overstated: Even as we write,
immunotherapy is being hailed as a fundamental breakthrough in cancer treat-
ment (cf. [7], as well as [13] and related content), and theoretical modeling is
bound to be instrumental in better understanding this and other applications.

7 Concluding remarks

An important characteristic of our model is its reliance on one single parameter,
the probability p. Assuming that it acts at each cell independently of all others
has allowed the transition probability pi,j , from CA state i to CA state j in a
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single step, to be written as in Eq. (2), which in turn implies the ergodicity of
the corresponding Markov chain whenever p > 0. The model is then conceptu-
ally simple, but studying it requires the Markov chain’s stationary probabilities
to be found, which by virtue of the model’s inherent combinatorial growth in
the general case quickly becomes computationally burdensome if not downright
intractable.

Further research should then first concentrate on looking for those CA rules,
if any exist, for which the transition matrix can somehow be simplified so that
some facilitating structure emerges. We already know that, for p < 0.5, the dom-
inant probability on any of the matrix’s rows, say the ith, is pi,ki

= (1 − p)n.
Not only this, but pi,j for any j 6= ki is smaller than pi,ki

by the exponentially
decaying factor of [(1 − p)/p]−Hj,ki . The key to solving the Markov chain as-
sociated with certain rules may lie precisely in ignoring such vanishingly small
probabilities, but to our knowledge substantial further research is needed to
ascertain this.
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