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This is a study of localised structures in one-dimensional cellular au-
tomata, with the elementary cellular automaton Rule 54 as a guiding
example.

A formalism for particles on a periodic background is derived, ap-
plicable to all one-dimensional cellular automata. One can compute
which particles collide and in how many ways. One can also compute
the fate of a particle after an unlimited number of collisions – whether
they only produce other particles, or the result is a growing structure
that destroys the background pattern.

For Rule 54, formulas for the four most common particles are given
and all two-particle collisions are found. We show that no other parti-
cles arise, which particles are stable and which can be created, provided
that only two particles interact at a time. More complex behaviour of
Rule 54 requires therefore multi-particle collisions.

1. Introduction

This article is part of a project to develop a higher-level language for
the dynamical behaviour of cellular automata. In the current investi-
gation we search for an intermediate-level description of the elementary
cellular automaton Rule 54, in order to learn how to handle periodic
background structures and simple particle interactions. The investi-
gation leads to further streamlining and an extension of the existing
formalism.1

The formalism is called Flexible Time. It was introduced in [18] and
further developed in [20]. Flexible Time makes it possible to “calculate”
with the localised structures in a cellular automaton and to determine
their development over time. The structures in Flexible Time resemble
the way in which a human observer views an evolution diagram of a
cellular automaton (like Figure 1): by grouping the states of cells from
different times and places to a single pattern in space-time.

Rule 54 is an elementary cellular automaton that was first inves-

1This article started as an extension of [19], but has now grown considerably
and is completely rewritten.
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2 Complex Systems

Figure 1. Development of a random initial configuration under Rule 54. Time
runs from bottom to top.

tigated in detail by Boccara et al. [1]. When evolving from random
initial configurations, it develops a simple background pattern with a
small number of interacting particles that move on this background.
While it has not been shown to be computationally universal, it can at
least evaluate Boolean expressions [10]. So it is a rather simple system
(but not too simple) and therefore an ideal test object for a formalism
that is still under development.

The right methods to handle large complex structures must still be
found. I ask here new questions about the behaviour of Rule 54, and
Flexible Time must “learn” how to handle them. As a result, there are
differences and extensions of the formalism in this article that were not
present in [20]. I will point them out and review them at the end.

Context Researchers on cellular automata have developed a number
of concepts to describe the localised structures that arise in a cellular
automaton.

The oldest named structures must be the particles (also called glid-
ers or signals) and their collisions. This goes back at least to Zuse
[23], whose cellular automaton simulates idealised physical particles.
Particle-based research has continued since then, with Cook’s con-
struction of a universal computer in Rule 110 as its most spectacular
result [2].

This rule, and Rule 54, belonged also to those rules in which a stable
periodic background pattern occured; it was called “ether” by Cook.

For Rule 54, the starting point was the work by Boccara et al.
[1]; they identified the most common particles that arise from ran-
dom initial configurations, described their interactions and gave them
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A Language for Particle Interactions 3

the names that are still used. This research was later continued by the
group around McIntosh [10, 11, 13], who found more complex particles
and interactions.

The descriptions of these particles were mostly given by pictures and
by a simple symbolism that showed which particle collides with which.
But, especially to find general theorems about cellular automata, more
abstract representations were developed too.

There is a more detailed investigation of particles and what they can
achieve [3, 14]. For Rule 110 there is an approach for the systematic
specification of initial configurations with interacting gliders [13], and
to express the behaviour of the cellular automaton through a block
substitution system [21].

There are also the approaches by Hordijk et al. [6] and by Martin
[9], who use properties of the background and draw conclusions about
the particles and particle interactions that are possible. More gen-
eral, the cellular automaton is subdivided in “regular” regions and the
boundaries between them [4, 5, 7, 8, 17]; the boundaries move, often in
an almost random fashion, and are thus a generalisation of the more
straight-moving particles.

Other approaches view the evolution of the cellular automaton as
two-dimensional, with one space and one time dimension. The cellular
space-time is then subdivided into finite patches that represent e. g. a
piece of the background or a collision between particles. The theory
of cellular automata then becomes a special tiling problem. One can
do this in a more informal way, like McIntosh and Martínez [12], or
develop a complex formal theory around it, as Ollinger and Richard
[15, 16] do it. (This approach is closest to the work described here.)

Overview After an introductory section about cellular automata and
Rule 54, Section 3 recapitulates the work in [20], as far as it is relevant
for the present work. At its end, a representation of Rule 54 as a
“reaction system” (defined below) is shown, the same that was derived
in [20]. In Section 4 we then find a way to compress this and similar
systems, and we use the compressed reaction system to understand
the local behaviour of Rule 54 better. Section 5 then turns to larger
patterns and describes the triangular structures in Rule 54 and the
stable background pattern that is formed by them. Then, in Section 6,
the four kinds of particles found by Boccara et al. [1] are represented
in Flexible Time, together with the collision between the particles. A
summary follows in Section 7.

Complex Systems, Volume (year) 1–1+



4 Complex Systems

2. Cellular automata and Rule 54

2.1 Elementary cellular automata

Rule 54 is an one-dimensional cellular automaton, more specifically
an elementary cellular automaton. This kind of cellular automata was
made popular by StephenWolfram [22], who also introduced the system
of code numbers from which Rule 54 got its name.

One-dimensional cellular automata are dynamical systems with dis-
crete time. The state of such an automaton is called a configuration.
It consists of an infinite sequence of simpler objects, the cells. The
state of each cell is an element of a finite set Σ; the configuration at
time t is therefore a function ct : Z → Σ. We write ΣZ for the set of
configurations; ct(x) is then the state of the cell at position x at time t.

The evolution of the automaton is then a sequence (c0, c1, c2, . . . )
of configurations that follow a common rule that is described below
in (2). While the sequence here starts at time 0, we will also accept
other starting times.)

An elementary cellular automaton is a one-dimensional cellular au-
tomaton with two states and a three-cell neighbourhood. The set of
states is Σ = {0, 1}, and its behaviour is given by its local transition
rule

ϕ : Σ3 → Σ . (1)

This is the function with which the configuration ct+1 is computed
from its predecessor ct. To do this, we apply ϕ to every three-cell
neighbourhood of ct, and the result is the next state of the middle cell:

ct+1(x) = ϕ(ct(x− 1), ct(x), ct(x+ 1)) for all t, x ∈ Z. (2)

The function ϕ defines then a global transition rule ϕglobal: It is the
function that maps the configuration ct to its successor ct+1 according
to (2).

The transition rule (2) is also called a rule of radius 1, because only
the ct(y) with |x− y| ≤ 1 contribute to ct+1(x). Rules with other radii
are defined similarly.

2.2 Rule 54

Rule 54 has a left-right symmetric transition rule,

ϕ(s) =

{
1 for s ∈ {(0, 0, 1), (1, 0, 0), (0, 1, 0), (1, 0, 1)},
0 otherwise. (3)

The rule is easier to remember in form of the following slogan [20],

“ϕ(s) = 1 if s contains at least one 1, except if the cells in state
1 touch.”

Complex Systems, Volume (year) 1–1+



A Language for Particle Interactions 5

Here we say that two cells “touch” if they are direct neighbours. Thus
the two cells in state 1 touch in the neighbourhood (1, 1, 0), but not in
the neighbourhood (1, 0, 1).

Figure 2. Rule icon for Rule 54.

Figure 2 shows how the neighbourhoods influence the next state of
the central cell. White squares are in state 0, black squares are in state
1, and the time runs upwards. This is also our convention in the other
diagrams, even if white and black may also become dark and bright
grey in the parts of the diagram that are less emphasised.

3. Flexible Time

3.1 Situations

We need a means to describe and understand the interactions of
gliders and other patterns under Rule 54. Flexible Time was developed
in [20] for this task. The motivation was that it is easier to find patterns
in the evolution of cellular automata if one works with structures that
involve the states of cells at different times. These structures are called
here situations.

They generalise the finite sequences of cells that are part of the con-
figurations ct described above. In order to express e. g. that ct(0) =
ct(1) = 0 and ct(2) = 1, one would often write that the subsequence of
ct that begins at cell position 0 is 001. Situations generalise this nota-
tion. They may extend not only over space but also over time. To write
them, we use additional symbols that express a jump in spacetime.

Under Rule 54, situations are written as sequences of the symbols
0, 1, 	i and ⊕i, for i ∈ {1, 2}. The intended interpretation can most
easily be described in terms of instructions to write symbols on squares
in a grid. The squares are labelled by pairs (t, x) ∈ Z2; x is the position
of a cell and t a time step in its evolution. The writing rules are:

Start reading at the first symbol. For writing, place the cursor at
square (0, 0) of the grid.

If the cursor is at (t, x) and the current symbol is

– an element of Σ, write it down and move the cursor one square
to the right, to (t, x+ 1),

– 	i, move the cursor to (t− 1, x− i),
– ⊕i, move the cursor to (t+ 1, x− i).

Complex Systems, Volume (year) 1–1+



6 Complex Systems

Then continue with the next symbol.

No overwriting : One cannot write different symbols on the same
square.

To get an example for such a writing process, let us set for a moment
Σ = {0, 1, 2, 3} and look at the situation 01⊕123. First, the cell states
0 and 1 are written to the squares (0, 0) and (0, 1). The cursor is then
at square (0, 2). Now the symbol ⊕1 moves the cursor to (1, 1). The
following symbols 2 and 3 are then written to the squares (1, 1) and
(1, 2), leaving the cursor at (1, 3). The result is then the following grid:

t = 1 2 3
t = 0 0 1
x = -2 -1 0 1 2 3 4

The horizontal rules mark the beginning and end of the symbol se-
quence, or, more exactly, the squares left of the starting point and
right of the end point of the state sequence. Similar lines will later
appear in the illustrations.

Now we need to express this construction in a mathematical form.
We will use two-dimensional coordinates and call a coordinate pair
(t, x) ∈ Z2 a space-time point. A pair (p, σ) ∈ Z2 × Σ is a cellular
event. The event ((t, x), σ) provides the information “At time t, the cell
at position x is in state σ”. We will usually write them [t, x]σ or [p]σ for
better readability. A situation is then a sequence of cellular events, to-
gether with the final cursor position: s = (([p0]σ0, . . . , [pn−1]σn−1), pn).
For the final cursor position of s we write δ(s), the size of s. This means
that we have in our example δ(s) = pn.

In a situation, the sequence of the cellular events is significant, and
the size too, since they make algebraic operations possible. In many
cases, we want to ignore however this information: Then we will use
the cellular process that belongs to a situation; it is simply the set of
its cellular events. The cellular process of a situation s is written pr(s).
In our example, with s = 01⊕123, we have therefore

s = (([0, 0]0, [0, 1]1, [1, 1]2, [1, 2]3), (1, 3)) .

This means that δ(s) = (1, 3) and pr(s) = {[0, 0]0, [0, 1]1, [1, 1]2, [1, 2]3}.
Usually we will not need this explicit form, since situations are meant

to make this unnecessary. It helps us however to explain the “no over-
writing” rule above. This rule concerns expressions like 01⊕12	13,
where the cursor reaches the same point twice. If it were a situation,
its cellular process would be {[0, 0]0, [0, 1]1, [1, 1]2, [0, 1]3}. This would
provide contradicting information about the space-time point (0, 1):
At time 0, is the cell at position 1 in state 0 or 3? The overwriting rule
prevents this problem.

Complex Systems, Volume (year) 1–1+



A Language for Particle Interactions 7

The most important algebraic property of situations is that they can
be multiplied. The product of s1 and s2 is found by first writing s1

and then, with the cursor at δ(s1), writing s2. The resulting product
is written s1s2, but due to the overwrite rule, it may not always exist.

More complex terms of situations are defined in the usual way: s2

is the result of writing s twice, and so on. The Kleene closure of a
situation s is the set

s∗ = { sk : k ≥ 0 } . (4)

The Kleene closure always contains the empty situation, which is writ-
ten [0].

In Flexible Time, situations are used to express the evolution of
a cellular automaton. But in order to understand how this is done,
we first have to look at the way in which the evolution of a cellular
automaton is expressed by cellular processes.

3.2 Evolution Expressed with Cellular Processes

In a similar way to that in which a configuration c0 ∈ ΣZ can be the
starting point of an evolution (c0, c1, c2, . . . ), a cellular process π can be
extended to a larger process clπ, its closure. Figure 3 shows how this is

Figure 3. A process and its closure.

meant for the initial configuration π = pr(10131). The cellular events
of the original process π are displayed in black and white; together with
the the events in grey they form the process clπ. Each horizontal row
in the diagram contains the events that belong to a specific time step.
We see that the diagram becomes smaller at the top; this means that as
time progresses, fewer cell states can be deduced from the information
given by the initial process π.

To motivate the exact definition of the closure, we first express the
configurations of the cellular automaton and their evolution in terms
of cellular processes. This will then allow us to generalise the definition
of evolution to processes that do not correspond to configurations.

Let now c be the configuration of a cellular automaton. We define
the embedding of c at time t to be the process

ηt(c) = { [t, x]c(x) : x ∈ Z }. (5)

A kind of inverse of the function ηt is the concept of time slices. The
time slice at time t of a process π is the process

π(t) = { [t, x]σ : x ∈ Z }. (6)

Complex Systems, Volume (year) 1–1+



8 Complex Systems

The time slice is a process and not a configuration because π(t) must
exist for all processes, not just for embeddings of configurations.

With these concepts, the cellular process that belongs to the evolu-
tion sequence (co, c1, c2 . . . ) is γ =

⋃
t≥0 ηt(ct). It has the time slices

γ(t) = ηt(ct), which represent the configurations ct. The process γ must
then be the closure of η0(c0).

A time slice π(t) of an arbitrary process is then understood as partial
knowledge about the state of a cellular automaton at time t. In order
to determine the state of the automaton at time t + 1, we take all
configurations that are compatible with this knowledge, evolve them
for one time step and accept only the states of those cells about which
all configurations agree. The result is the cellular process

∆t(π) =
⋂
{ ηt+1(ϕglobal(c)) : ηt(c) ⊇ π(t) } (7)

of those events that are determined by π(t). The cellular events of
which it consists all belong to time t+ 1.

We can now easily check that the process γ has the property that
γ(t) = ∆t(γ) for all t > 0. Every time slice, except the first, can be
computed from the previous one. Only γ(0), which represents the initial
configuration, must still be handled separately.

This inconvenience in resolved in the full definition of the closure.
In it, the initial process no longer needs to be the embedding of a
configuration. This is possible because it is now split into time slices
and then added piece-wise to the partial results of the computation.

Definition 1 (Closure [20, Def. 3.10]) Let π be a cellular process for which
there is a time t0 ∈ Z such that π(t) = ∅ for all t < t0.

If there is a process γ with the property that

γ(t) =

{
∆t(γ) ∪ π(t) for t ≥ t0,
∅ for t < t0,

(8)

then we write γ = clπ and say that it is the closure of π.

It is easy to see that the choice of t0 has no influence on clπ.
We can now see that the set γ that was defined above satisfies (8)

if we set t0 = 0 and π = η0(c0): Then we have γ(t) = ∅ for t < 0,
γ(0) = η0(c0), and γ(t) = ∆t(γ) for t > 0, and indeed γ = cl η0(c0).
Definition 1 is thus a generalisation of the transition rule (2) to cellular
processes.

Not to all cellular processes, however. One of the requirements of
Definition 1 is that γ must be a process, and this can easily be broken.
All we need is conflicting information in ∆t(γ) and π(t): If there is a
time step t at which there is an event [t, x]σ ∈ ∆t(γ) and another event

Complex Systems, Volume (year) 1–1+



A Language for Particle Interactions 9

[t, x]τ ∈ γ(t) with σ 6= τ , then γ(t) is no cellular process, and neither
is γ.

We will however introduce in the next section a class of situations
whose cellular processes all have a closure: They will then be used to
describe the evolution of cellular automata in an economical way.

3.3 Reactions

The evolution of a cellular automaton is represented in Flexible Time
by reactions. We will say that there is a reaction between two situations
a and b if the situation b consists only of events that are determined
by of the events of a. They belong to the future of a, so to speak.

→
10131→ (10⊕)71(	01)7

Figure 4. A reaction under Rule 54.

Figure 4 shows a reaction. On the left side we see the process of
the situation a = 10131, together with its closure. As in Figure 3, the
events of pr(a) are highlighted while the remaining cells of the closure
are displayed in grey. On the right side we see the same closure, but
with different events highlighted. This time they belong to the situation
b = (10⊕)71(	01)7. With these diagrams we therefore see that the
events of the process b are determined by the process a.

The formal definition of reactions is then:

Definition 2 (Reactions [20, Def. 4.8]) Let a and b be two situations with

cl pr(a) ⊇ pr(b) and δ(a) = δ(b) . (9)

Then the pair (a, b) is the reaction from a to b. It is usually written
a→ b.

We will use the expression a → b also as a proposition, meaning that
there is a reaction from a to b. The symbol “→” then specifies a
relation, and as it is normal for relations, we can also write longer
chains of reactions, like a→ b→ c. One can verify that if such a chain
exists, then there is also a reaction a→ c.

Reactions are useful because they can be applied to situations. It
can be shown [20, Th. 4.11] that if there are situations x, y and a for
which cl pr(xay) exists and if there is a reaction a → b, then there is
also a reaction xay → xby. This reaction is then called the application
of a→ b to xay.

Complex Systems, Volume (year) 1–1+



10 Complex Systems

Table 1. The local reaction system for Rule 54, long form.

Generating Slopes:
	100, 1	101, 1	210, 00	211, 00⊕1, 01⊕21, 10⊕11, 11⊕200.

Reactions: 	1000→ 0	100 000⊕1 → 00⊕10
	1001→ 1	101 100⊕1 → 10⊕11

1	1010→ 111	210 010⊕11→ 01⊕2111
1	1011→ 100	211 110⊕11→ 11⊕2001
1	2100→ 1	100 001⊕21→ 00⊕11
1	2101→ 1	101 101⊕21→ 10⊕11

00	2110→ 001	210 011⊕200→ 01⊕2100
00	2111→ 000	211 111⊕200→ 11⊕2000

00→ 00⊕1	100 	100⊕1 → [0]
01→ 01⊕21	101 1	101⊕21→ 1
10→ 10⊕11	210 1	210⊕11→ 1
11→ 11⊕200	211 00	211⊕200→ 00

Now it is possible that there is also a reaction that can be applied to
xby. We would then have a reaction b′ → c and two processes x′ and
y′ such that xby = x′b′y′ → x′cy′ and therefore, by transitivity, also
a reaction xay → x′cy′. This way application allows one to specify a
large set of reactions by a small set of “generator reactions”, provided
only that there is a large enough set of situations to which they can be
applied.

The result is a reaction system. It is the foundation of all calculations
in Flexible Time.

Definition 3 (Reaction System [20, Def. 4.13]) Let D be a set of situations
and R a set of reactions between them. We say that R is a reaction
system with domain D if the following is true:

1. If a ∈ D, then a→ a is in R.

2. If a→ b and b→ c are in R, then a→ c is in R.

3. R is closed under application of reactions to the situations in D.

We will now define a reaction system by specifying D and a set
G ⊆ R of generators; it is then extended by repeated application and
concatenation of reactions, as described above. The system describes
Rule 54; its derivation is described in detail in Chapters 6 and 7 of [20].

The reaction system is summarised in Table 1. The top of the ta-
ble, entitled “Generating Slopes”, specifies the domain D of Φ. More
specifically, it lists the neighbourhoods that a 	 or ⊕ operator may
have if it is is part of a situation s ∈ D. The first entry, 	100, specifies
that a 	1 may occur in s at the left of the term 00, the second entry

Complex Systems, Volume (year) 1–1+



A Language for Particle Interactions 11

1 	1 01, that it may occur between a 1 (at its left) and a 01 (at its
right). No other possibilities exist since the remaining entries refer to
other operators. One can prove [20, Theorem 6.10] that all situations
in D have a closure.

The bottom of Table 1 contains the generating reactions of Φ. Its
upper part (i. e. the middle of the whole table) contains the reactions
that involve a single 	 or ⊕ operator. If we had only them, no reaction
could have an element of Σ∗ at its left side: Therefore we have at
the bottom left of the table a set of reactions that create a 	 and
a ⊕ operator from an element of Σ∗. Their converses are listed at
the bottom right: reactions that destroy a 	 and a ⊕ operator. All
reactions of Φ are the results of repeated applications of these four
types of generators.

The arrangement of the reactions in Table 1 has also another pur-
pose. It allows one to read off two important subsystems of Φ.

Definition 4 (Slopes) Let R be a reaction system with domain D.
The system R+ (with domain D+) of positive slopes consists of the

situations ofD that only contain⊕ operators and the reactions between
these situations.

The system R− (with domain D−) of negative slopes consists of
the situations of D that only contain 	 operators and the reactions
between these situations.

In case of Rule 54, we can find the generators of Φ− if we take only
the generating slopes at the right and the generator reactions at the
top right of the middle section in Table 1. Similarly, Φ+ is represented
by the slopes and reactions at the top right of the table.

Details of the reaction system We will now have a closer look at
the way in which the reaction system Φ represents Rule 54.

We begin with the slopes. Figure 5 displays the generating slopes for
Φ, first the negative slopes and then their mirror images, the positive
slopes.

	100 1	1 01 1	2 10 00	2 11

00⊕1 10⊕1 1 01⊕2 1 11⊕2 00

Figure 5. Generating slopes.

Complex Systems, Volume (year) 1–1+



12 Complex Systems

In this and in later diagrams, the endpoints of the situations are
marked by horizontal lines. They represent the places where the sur-
rounding events would be expected if the slopes were parts of larger
situations. Or, in the interpretation of Section 3.1, the square at which
the left horizontal line ends is always one point left of the coordinate
origin, while the right horizontal line always begins at δ(s). The be-
ginning of the situation is also marked by the small vertical bar, which
is located at the left boundary of the square at the coordinate origin.

An important property of the generating slopes is that they trace
the boundaries of the closure. We can see in Figure 6 what this means.

11⊕2 00 	100

Figure 6. Generating slopes as boundaries of the closure.

It shows a situation, 110101000, together with two generations of its
closure. We see at its left the slope 00 ⊕2 11 (the mirror image of
11 	2 00 in Figure 5), and at its right, the term 	1, both in bolder
colours. Note that the situation 	100 reaches over two time steps and
has its starting point directly at the right end of the second time step
of the closure. This is the way the slope terms trace the boundary of
a closure.

The generator reactions of Φ− are designed with the goal that the
reaction result consists of events near the right boundary of the closure
of the initial situation. (For Φ+ it is similar, with left and right ex-
changed.) How this is done is shown in Figures 7 and 8. They contain
reactions of the form a → b and display pr(a) and pr(b) in relation to
the closure of pr(a). Figure 7 shows the generator reactions of Φ−. In
it, we see that the process of b is always located more to the right than
pr(a) and that it touches the right boundary of cl pr(a). The reactions
involve only two time steps, and one of the 	 operators must always be
present. To get the system started from situations in Σ∗, we need the
reactions at the right side of Figure 8. Here we see reactions in which
pr(b) completely fills the closure of pr(a) and b is a situation with both
a ⊕ and a 	 operator.

The converses of the reactions at the left side of Figure 8 are shown
at its right side: Reactions a→ b in which a contains one 	 and one ⊕,
while b contains none. We can use them for cleanup, since they remove
pairs of neighbouring 	 and ⊕ operators. The same manoeuvre is also
possible in all other cases where a 	 is left of a ⊕, and we get a result
that for every situation a there is a reaction a → b+b− with b+ ∈ D+

and b− ∈ D−. If we start from a and continue to apply the generator
reactions as long as possible, we can even enforce that b+ and b− trace
the boundaries of cl pr(a).

Complex Systems, Volume (year) 1–1+



A Language for Particle Interactions 13

→

	1000 → 0	1 00

→

	1001 → 1	0 01

→

1	1 010 → 111	2 10

→

1	1 011 → 100	2 11

→

1	2 100 → 1	1 00

→

1	2 101 → 1	1 01

→

00	1 110 → 001	2 10

→

00	2 111 → 000	2 11

Figure 7. Reactions of Φ− as motion towards the boundaries of the closure.

This was a summary of the content of [20] as far as it concerns Rule
54.

4. Understanding the Reaction System

Up to now, the representation of Rule 54 in Table 1 looks complex
and does not provide much insight. This makes it difficult to do cal-
culations about Rule 54 without always looking at the table. We will
therefore develop a more compact representation of the reaction sys-
tem. The goal is to find “slogans” for it that are easy to remember,
analogous to the slogan for ϕ on page 4.

4.1 A simpler Rule Table

As a first simplification, we omit the indices from the ⊕ and 	
operators. This is possible because the indices of the operators are
always determined by the environment. We can see from the list of
generating slopes in Table 1 that if 	i is followed by a 0, then always
i = 1, and if it is followed by a 1, then i = 2. A similar law is valid for
⊕i, and we can recover the indices of 	 and ⊕ from the equations

	0 = 	10, 	1 = 	21, 0⊕ = 0⊕1, 1⊕ = 1⊕2 . (10)

This kind of abbreviation is possible in every reaction system, because
in a generating slope u 	i v, the term u	i is completely determined
by v.

Complex Systems, Volume (year) 1–1+



14 Complex Systems

→

00 → 00⊕1 	100

→

	100⊕1 → [0]

→

01 → 01⊕2 1	1 01

→

1	1 01⊕2 → 1

→

01 → 01⊕2 1	1 01

→

1	2 10⊕1 → 1

→

11 → 11⊕2 00	1 11

→

00	2 11⊕2 00 → 11

Figure 8. Reactions that generate and destroy slopes. The generator reactions
are shown at the left, the destructors, right.

For the same reason we can shorten the generator reactions by re-
moving common factors from their left and right sides. The generator
reactions of Φ− all have the form u	 vσ → ux	 v′, with a generating
slope u 	 v. When such a reaction is applied to a situation s, there
must be always a factor u to the left of 	v in s. Therefore we can
shorten these generator reactions to the form 	vσ → x	v′ and do not
get new reactions when the shortened reactions are applied.

We then get four pairs of reactions as generators for Φ−:

	000→ 0	 00, 	010→ 11	 10,

	001→ 0	 01, 	011→ 00	 11, (11a)

	100→ 	00, 	110→ 1	 00,

	101→ 	01, 	111→ 0	 01 . (11b)

They can be compressed further with the help of a new notation. For
a cell state σ ∈ Σ we will write σ̄ for the complementary state, such
that 0̄ = 1 and 1̄ = 0. Then we can write the following reactions, valid
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Table 2. The local reaction system for Rule 54, short form.

Generating Slopes
G− = {	00, 1	 01, 1	 10, 00	 11}
G+ = {00⊕, 01⊕ 1, 01⊕ 1, 11⊕ 00}

Reactions
	00σ → σ 	 0σ σ00⊕ → σ0⊕
	10 → 	0 01⊕ → 0⊕
	01σ → σ̄σ̄ 	 1σ σ10⊕ → σ1⊕ σ̄σ̄
	11σ → σ̄ 	 1σ σ11⊕ → σ1⊕ σ̄

u	 v ⊕ u→ u
v → v ⊕ u	 v for u	 v ∈ G−

Abbreviations
	0 = 	10 0⊕ = 0⊕1

	1 = 	21 1⊕ = 1⊕2

for all σ,2

	00σ → σ 	 0σ, 	01σ → σ̄σ̄ 	 1σ, (12a)
	10→ 	0, 	11σ → σ̄ 	 1σ . (12b)

Written in this form we will analyse the reaction system and show what
the generator reactions actually mean. But before we can do this, we
must see how to simplify the rest of Table 1.

The reactions at the bottom of the table can be brought easily to a
common form, when we define the setG− = {	00, 1	01, 1	10, 00	11}
of negative generating slopes. With this name at hand, we can see that
the bottom reactions have the common form

v → v ⊕ u	 v u	 v ⊕ u→ u (13)

whenever u, v ∈ Σ∗ and u 	 v ∈ G−. This then completes the com-
pression of Table 1: The result is Table 2.

Relation to the Transition Rule In order to understand this new
form of the reaction system and to see how it is related to the transition
rule ϕ, we write the reactions of Φ− in the following manner:

2The bottom left reaction has been shortened even more, it should have been
	10σ → 	0σ.
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τ0 τ1 τ2

	100σ → τ0 	1 0σ ϕ(0, 0, σ) = σ ϕ(0, σ, ·)↑
	210 → 	10 ϕ(0, σ, ·)↑
	101σ → τ0τ1 	2 1σ ϕ(0, 1, σ) = σ̄ ϕ(1, σ, ·) = σ̄ ϕ(σ, ·, ·)↑
	211σ → τ0 	2 1σ ϕ(1, σ, ·) = σ̄ ϕ(σ, ·, ·)↑

In the reactions at the leftmost column of the table, each variable τi
stands for the state of the cell at position (0, i). The other columns then
show for each τi the computation that determines its value – or, if it
cannot be computed, which application of ϕ fails to have a determined
value.

We can see e. g. in the first row that the state of the cell at (0, 0) can
be computed from the information presented in the initial situation
	100σ. The cellular process of this situation consists of the events
[−1,−1]0, [−1, 0]0, and [−1, 1]σ, and therefore the state τ0 of the cell
at (0, 0) must be ϕ(0, 0, σ).

In the same way we can see that in the third row, τ0 is ϕ(0, 1, σ).
The diagram contains however also entries for which not all arguments
of ϕ are known. The missing arguments are marked by a dot. When
the value of ϕ is independent of the missing argument, it is entered in
the table, otherwise the entry is marked with an arrow.

We can see that the values of the τi only depend on three equations,

ϕ(0, 0, σ) = σ, ϕ(0, 1, σ) = σ̄, ϕ(1, σ, ·) = σ̄ . (14)

They all can be derived from the rule that a pair of touching 1’s cause
a ϕ value of 0, while one or more isolated 1’s make the value equal to 1.
In the case of ϕ(0, 0, σ), a pair of touching 1’s cannot occur, therefore
the value of ϕ is one if and only if σ = 1. In the other two cases, σ = 1
creates a touching pair and σ = 0 inhibits it, therefore the function
value is σ̄. In a similar way we can see that in the remaining entries
of the table, the value of ϕ is undefined. This is how ϕ influences the
reactions in Φ.

In the table, the 	 have been written once again with indices—not
just to ease the translation from situations to cellular processes, but
also because with them we can see how many new events are generated
in the reactions. One can thus see that in the first reaction one new
event is generated because δ(	100σ) must be equal to δ(τ0	1 0σ), and
so on. If the left side of a reaction has a 	i operator and the right side
a 	j , then j − i new cell states must be generated in the reaction.

Slogans These considerations may help to understand the reactions
of the system Φ a bit better. To help memorising them, I will introduce
two slogans. Both refer to the left side of the reactions of Φ−. This
side can always be written as 	αβσ, with α, β, σ ∈ Σ. The first slogan
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tells in which cases the value of αβ makes the reaction product longer
or shorter than the initial term:

“01 causes growth, 10 shrinking, everything else no change.”

The second slogan describes the influence of βσ on the newly generated
cell states. They can be either be a copy (σ) or the inversion (σ̄) of
the variable σ, and the rule is:

“0σ copies and 1σ inverts.”

5. Triangles and Ether

In the rest of this article we will describe the behaviour of larger
systems of cells under Rule 54. We want to describe the interaction of
particles that move on a periodic background, the so-called ether. So
we will now introduce, as a first step, reactions for the ether. Since it
has been done already to some extent in [20, Ch. 8], we will do it here
in a shorter form and from a higher point of view.

The first tool that we will use are reaction families, which allow to
represent many similar reactions in a single formula. Reaction families
appeared already in[20], but here we use a more streamlined notation.

Definition 5 (Reaction Families) If there is a reaction ak → bk for every
k ≥ 0, we will write this as

(ak → bk)k . (15)

The notation will be extended in the usual way to expressions like
(ak → bk)k≥N or (aj,k → bj,k)j,k. We will also speak of (ak)k as a
situation family.

5.1 Triangle Reactions

We will first find general formulas for reactions that represent tri-
angular structures like that in Figure 4.

There are two general laws that we will use here. The first one
makes it possible to iterate a reaction of a special form. This can be
done in two ways,

if ax→ ya, then (axk → ykb)k, (16a)

if xa→ ay, then (xka→ byk)k . (16b)

The second law “iterates” a specific reaction family; in it, n is a con-
stant:

if (ak+n → xaky)k, then (akn+i → xkaiy
k)i,k . (17)

Complex Systems, Volume (year) 1–1+



18 Complex Systems

Both laws can easily be proved by induction [20, Ch. 8.1].
We now search for cases in which the first law can be applied and in

which the left side is a generator reaction. There are two candidates,
	000 → 0 	 00 and 	111 → 0 	 11. The first one has a = 	00 and
x = y = 0 and leads to

(	0k+2 → 0k 	 00)k, (18a)

while the second reaction has a = 	11, x = 1 and y = 0 and leads to

(	1k+2 → 0k 	 11)k . (18b)

Family (18a) is the more interesting one. It becomes the core of
another reaction family,

(10k+21→ 10⊕ 10k1)k, (19)

whose derivation I will show here in detail, as an example for calculation
with reactions:

1000k1→ 10⊕ 1	 1000k1

→ 10⊕ 1	 000k1

→ 10⊕ 10k 	 001→ 10⊕ 10k1	 01 .

Parts of the situations are underlined; they are the places that change
in the next reaction step. We will use this notation in later calculation
without special notice.

Reaction family (19) can now be iterated by rule (17), with ak =
10k1 and n = 2. The result is(

102k+i1→ (10⊕)k10i1(	01)k
)
i,k
. (20)

In families like these, the cases with i < 2 are the most important ones,
since the reactions in (19) have been applied in them for the highest
number of times. For i = 1, we can add one more step, since we have
101 → 10 ⊕ 1 	 101 → 10 ⊕ 1 	 01. therefore (20) can be written as
two families, (

102k1→ (10⊕)k11(	01)k
)
k
, (21a)(

102k+11→ (10⊕)k+11(	01)k+1
)
k
. (21b)

They, and all reactions of the form (ak+n → xkany
k)k, are called trian-

gle reactions.
Diagrams for the reactions with k = 3 are shown in Figure 9.
If we try the same manoeuvre with the other reaction family, (18b),

we get (01k+20 → 01 ⊕ 10k+21 	 10)k. This is a family to which (17)
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→ →
1061→ (10⊕)311(	01)3 1071→ (10⊕)41(	01)4

Figure 9. Triangle reactions for k = 3.

cannot be applied. Therefore we will now use the reaction families (21)
as our base for the description of the ether.

5.2 The Ether

We will find now represent the ether of Rule 54 by reactions. The
reactions for Rule 54 will turn out to be a special case of a generic
scheme that applies to periodic patterns in any one-dimensional cellular
automaton.

In Rule 54 [1], the ether is a periodic structure whose configura-
tions consist alternatingly of the two patterns . . . 100010001 . . . and
. . . 011101110 . . . . When one of them occurs again, it is shifted hori-
zontally by two cells, so that the true time period is 4.

Our starting point for representing them by reactions must be the
configuration . . . 100010001 . . . , since to it we can apply one reaction
of type (21b),

10001→ (10⊕)21(	01)2. (22)

It would be therefore advantageous to decompose the initial configu-
ration into components of the form 10001. With a small extension of
our notation, this is actually possible.

Definition 6 (Overlapping Situations) Let ax be a situation. The a〈x〉 is
also a situation, and 〈x〉 is the overlapping part. We have

pr(a〈x〉) = pr(ax) and δ(a〈x〉) = δ(a) . (23)

A product of situations with overlap, like a〈x〉b〈y〉, is only allowed if
the situation by begins with x; then a〈x〉b〈y〉 = ab〈y〉.

A reaction that begins with a〈x〉 must have the form

a〈x〉 → a′〈x〉; (24)

it exists if ax→ a′x is a reaction.

If we remind ourselves that the transitions of a cellular automaton
are defined in terms of overlapping cell neighbourhoods, then the new
extension looks quite natural.

We can now write a term like (1000)k1 as a product (1000〈1〉)k1
and apply the ether reactions in parallel to each factor, except for
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the final 1. In this style, Reaction (22) is best written in the form
1000〈1〉 → (10⊕ 〈1〉)2(1	 0〈1〉)2.

But now we should better introduce abbreviations. We will write,

ε+ = 10⊕ 〈1〉 and ε− = 1	 0〈1〉, (25)

such that (22) becomes

1000〈1〉 → ε2
+ε

2
−. (26)

The terms ε+ and ε− are the simplest of the higher level structures in
Rule 54 that we will identify.

There is also a complementary reaction to (26),

ε2
−ε

2
+ → 1000〈1〉 . (27)

In contrast to (26), this reaction does not belong to a known family,
and we will derive it by hand (see below). Together the two reactions
form a type that naturally represents the periodic patterns of one-
dimensional cellular automata. Before a formal definition is given, we
introduce the abbreviations

e− = ε2
−, e+ = ε2

+, b = 1000〈1〉 . (28)

Then we see that (26) and (27) are example of the following general
pattern:

Definition 7 (Background Pairs) Two situations, e−, e+, form a background
pair if there is a reaction

e−e+ → e+e− . (29a)

If there is also a situation b ∈ Σ∗ with

e−e+ → b→ e+e−, (29b)

then b is the baseline of the background pair.

A background pairs represent the elementary region of a tiling of
the two-dimensional space-time (Figure 10). If a background pair is
present, we automatically get the reaction families

(bk → ek+e
k
−)k, (30a)

(ek−e
`
+ → e`+e

k
−)k,`, (30b)

which represent larger patches of the background. As we can see in
Figure 10, the reactions of (30a) represent the generation of a larger
piece of ether from an initial configuration, while (30b) represents the
development of a background fragment at a later time.
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t = 0

e−

e+

b

e6+ e6−

b6

e7+
e4−

e7+
e4−

Figure 10. An ether, represented by a background pair e−, e+ with baseline b.

Derivation of the remaining ether reaction We have not yet
proved equation (27), the reaction e−e+ → 1000〈1〉. This will be done
now.

The computation is an example for a larger calculation with Flexible
Time. We will prove (27) via the two reactions

ε−ε+ → 12〈1〉, (31a)

ε2
−ε

2
+ → 1000〈1〉 (31b)

and the auxiliary step

0130→ 01⊕ 1031	 10 . (31c)

The last reaction is an element of the reaction family

(01k+20→ 01⊕ 10k+21	 10)k . (32)

Its derivation uses the reaction family (18b) and is done in the following
way:

0111k0→ 01⊕ 1	 0111k0

→ 01⊕ 1	 111k0

→ 01⊕ 1000k 	 110→ 01⊕ 10k+21	 10 .

Now we can derive the other two reactions of (31):

ε−ε+ = 1	 0〈1〉10⊕ 〈1〉
= 1	 010⊕ 〈1〉
→ 111	 10⊕ 〈1〉 → 11〈1〉,

ε−ε−ε+ε+ → ε−11〈1〉ε+

= 1	 0〈1〉11〈1〉10⊕ 〈1〉
= 1	 01310⊕ 〈1〉
→ 1	 01⊕ 1031	 01⊕ 〈1〉 → 103〈1〉 .
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In the second computation we have used (31a) and (31c).

6. Particles

In the ether particles move. Boccara et al. [1] have found four of
them and called them ←−w , −→w , go and ge (Figure 11). We will refer to
the moving particles ←−w and −→w sometimes as gliders, in contrast to the
static particles go and ge.

−→w ←−w go ge

Figure 11. Particles under Rule 54. The diagrams show the four types of
gliders on an ether background.

Now we will represent these particles by situations and reactions.
The characterisation of particles is a natural generalisation of that of
a background:

Definition 8 (Particles) Let (b−, b+) be a background pair. A particle that
moves in this background is a situation p for which there is a reaction

bm−pb
n
+ → bn+pb

m
− . (33)

The pair (m,n) is the type of the particle.

The type of p represents its speed relative to the background. To
convert it to a more conventional form, we notice that in the initial
situation of the reaction (33), the left side of p is located at the space-
time point mδ(b−), while in its final situation, it is at nδ(b+). The
period vector (∆t,∆x) = nδ(b+)−mδ(b−) is therefore the displacement
that p undergoes during one cycle of its existence. After ∆t time steps,
the particle is in the same state, and it has ∆x positions to the right.
The speed of p is then ∆x

∆t . (Figure 12.)
Often it is simpler to work with speeds relative to the background.

For this we use the vectors T = δ(b+)− δ(b−) and X = δ(b+) + δ(b−)
as our base, the first one pointing to the future and the second one
to the right. A particle of type (m,n) has then a period vector of
n+m

2 T + n−m
2 X and we can say that its relative speed is n−m

n+m .
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b2−

b3−

b3−

b2−

p

p

(∆t,∆x)

Figure 12. A particle of type (2, 3) as part of a periodic background. Its
relative speed is 1

5
.

The particles of Rule 54 For Rule 54 we use the following defini-
tions:

←−w = ε−12〈1〉, go = ε+ε−,
−→w = 12ε+, ge = ε+1ε− . (34)

They have this specific form because we can then use a simple subset of
our reaction system to represent their behaviour. This subset consists
of two reaction families and one extra reaction,

(ε−12kε+ → εk+1
+ εk+1

− )k≥1, ε−ε+ → 12〈1〉, (35a)

(ε−12k+1ε+ → εk+1
+ 1εk+1

− )k, (35b)

which transform situations that consist only of ε−, ε+ and 1 into each
other. They can easily be derived from the reaction families (32)
and (21). With the reactions of (35a), the ether reaction ε−ε+ can
be proved, as we have seen on page 21.

With these reactions we can now verify that the terms in (34) are
indeed particles:

−→we+ = ε−12ε2
+ → ε2

+ε
2
−ε+ → ε2

+ε−12〈1〉 = e+
−→w , (36a)

e−goe+ = ε2
−ε+ε−ε

2
+ → ε−1212ε+ → ε3

+ε
3
− = e+goe−, (36b)

e−gee+ = ε2
−ε+1ε−ε

2
+ → ε−12112ε+ → ε3

+1ε3
− = e+gee− . (36c)

The reaction e−←−w →←−we− has been omitted since the reactions in (34)
are left-right symmetric. We see from these reactions that the types of−→w and ←−w are (0, 1) and (1, 0), while go and ge both have type (1, 1).
Figure 13 contains diagrams of the reactions.

Collisions of two particles With the reactions of (35) we can al-
ready find out simple facts about the particles and their interactions.
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→

−→we+ → e+
−→w

→ →

e−goe+ → −→w←−w → e+goe−.

→ →

e−gee+ → −→w 1←−w → e+gee−.

Figure 13. Evolution of the Rule 54 particles. The particles are shown in
strong colours, and the outlined squares are ether.

One fact is hidden in (36b): the reaction

−→w←−w → e+goe− (37)

can easily be recognised once we remember that −→w←−w = ε−1212ε+.
This is the reaction in which two colliding w particles create a go. It is
in fact the only reaction that is possible between the two w particles.
To see this, we note that if −→w moves towards←−w with nothing else than
ether between them, this must be represented by a situation −→wE←−w ,
where E is a product of an arbitrary number of e− and e+ terms.
Then there must be a reaction E → em+e

n
−, where m is the number

of e+ factors in E and n the number of e− factors. This leads to a
reaction chain

−→wE←−w → −→wem+en−←−w → em+
−→w←−wen− (38)

to which we can apply (37). We have thus seen that two w gliders
always move towards each other unchanged until they react to the
position −→w←−w , and that therefore (37) is their only possible collision.
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The same principle can be applied to any pair of colliding particles.
We have then the following theorem:

Theorem 1 (Particle Collisions) Let p and p′ be two particles of types (m,n)
and (m′, n′), with p left of p′. Then p moves toward p′ if nm′ > mn′,
away from p′ if nm′ < mn′, otherwise they keep the same distance.

If they collide, then there are nm′ possible interactions between
them.

Proof. If p and p′ collide, the relative speed of p must be greater than
that of p′. This means that n−m

n+m > n′−m′

n′+m′ , or equivalently that nm′ >
mn′. The other two cases are similar.

For the second statement we represent the relative positions of p
and p′ by a situation apbp′c with a, b, c ∈ {b−, b+}∗. Here a and c
represent the empty space left and right of the particles. We can make
them arbitrarily large without changing the relative position of p and
p′. (A change of a changes the absolute position of p and p′, but that
has no influence on their behaviour.) Especially we can assume that
a = bm− and c = bn

′

+ . The situation b represents the space between p
and p′, and we can always bring it by background reactions to the form
bi+b

j
−.
So we can assume that the environment of the particles has the form

bm−pb
i
+b

j
−p
′bn

′

+ . Since p and p′ collide, none of the reactions bm−pbn+ →
bn+pb

m
− and bm

′

− p
′bn

′

+ → bn
′

+p
′bm

′

− can be applied to this situation. This
means that i < n and j < m′, for which there are nm′ possibilities. �

Interaction between the static particles and the w gliders.
When we start with a random initial configuration and let it evolve for
a short time, we typically see some go and ge particles on a background,
with −→w and ←−w moving between them (Figure 1). The formalism for
Rule 54 is now developed far enough to describe with it the behaviour
of these particles in reasonable detail.

Specifically, we can now describe the behaviour of isolated go and ge
particles, which never interact with each other, only with −→w and←−w . In
Flexible Time we can express this requirement by restricting ourselves
to the reactions that start from a situation xgy with x ∈ {e−,−→w }∗,
g ∈ {go, ge} and y ∈ {e+,

←−w }∗.
The go case is the simplest, since the collision with a w always de-

stroys this particle. Up to symmetry we have only the following reac-
tions, −→wgoe+ → e+

−→we−, −→wgo←−w → e2
+e

2
− . (39)

They could be verified directly, but we will now compute them in a
way that is also useful in the more complex case of ge. For this we
begin with −→wgo, a common factor of the two left sides in (39), and also
the smallest situation that represents a collision of −→w and go. Their
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reaction is wgo = ε−12ε+ε− → ε2
+ε

3
− = e+ε−e−. The end result is

here interpreted as an ε− surrounded by two ether fragments. We can
consider it as a short-lived intermediate stage, or a resonance, if we use
once again the jargon of particle physics. In the next step we ignore the
ether fragments and consider only the development of the ε−. There
are two ways in which it can interact with an ether fragment or a w
particle, namely through the reactions ε−e+ = ε−ε2

+ → 12ε+ =←−w and
ε−
−→w = ε−12ε+ → ε2

+ε
2
− = e+e−. No further resonances arise from

these reactions, so we can stop here.
The result is a scheme of three reactions; they describe the behaviour

of go in the same way as (39):

−→wgo → e+ε−e−, (40a)

ε−e+ → −→w
ε−
←−w → e+e− (40b)

One can use them to derive the reactions of (40), e. g. with the reac-
tion chain −→wgoe+ → e+ε−e−e+ → e+ε−e+e− → e+

←−we− for the first
reaction. But for most purposes, (40) can be interpreted directly as
a two-step scheme that describes how an ε− is created (40a) and how
it decays to −→w or ether (40b). The ether particles at the right side
of (40a) can be thought as becoming part of the surrounding space,
which is why they do not appear in (40b).

A similar but more complex scheme describes the collision of ge with
one or more w particles. Up to symmetry it has the intermediate states
1, 1ε− and 15〈1〉 and can be written as follows:

−→wge → e+e−1ε− (41a)

1ε−e+ → 1←−w
1ε−
←−w → 1e+e− (41b)

e−1e+ → 15〈1〉
e−1←−w →←−w 1e−
−→w 1←−w → e+gee− (41c)

e−15e+ →←−wge−→w
e−15←−w →←−we2

+1e2
−

−→w 15←−w → e2
+gee

2
−. (41d)

All these reactions are short and can be verified directly. They show
that an isolated ge can neither be destroyed nor does it explode to
a larger structure. (See [9] for the deeper reasons behind this.) The
intermediate states can however persist for an indefinite time if the
right pattern of incoming w gliders is given. One can see this e. g.
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from the reaction e−1←−w → ←−w 1e− in (41c). It can be iterated to
(ek−1←−w k →←−w k1ek−)k, which shows how the intermediate state 1 can be
kept alive indefinitely by a sequence of incoming ←−w gliders.

In summary we get a description of the behaviour not just of a
single go and ge, but also of a whole system of particles, provided
that the g particles and their intermediate states all keep a distance
from each other. The distance must be so large that next to each g
particle or intermediate state there is always a w particle or an ether
fragment. As long as this is true, the go particles are created (37)
and destroyed (40) by w gliders, while the ge persist but go through
intermediate states (41).

7. Summary

This text consists of two interleaving tracks, one with the goal of
understanding Rule 54 better, the other to find concepts that are valid
for all cellular automata.

After a recapitulation of the results derived in [20], we began with
constructing a shorter representation of the local reaction system for
Rule 54 (Table 2). We then described how the transition rule ϕ in-
fluences the local reaction system Φ and at the end introduced two
slogans to summarise the generator reactions of the local system.

With (16) and (17), we learned how to iterate reactions. This helped
to derive expressions for the triangles under Rule 54 and to find a
subsystem (35) of Φ that consists only of modified triangle reactions.
It also introduced the situations ε− and ε+, which, together with the
situation 1, were the building blocks of the following construction.

We introduced definitions for the background and for particles and
explored particle collisions. A formula for the number of particle inter-
actions was already found in [6] under a different framework, but the
proof here seems more direct.

Expressions for the ether and the main particles of Rule 54 were
found and the collisions of the particles computed. We could see that
an isolated ge is stable under all collisions with incoming w gliders. This
extends in a way a result in [9], which already showed that a single ge
could not be destroyed, but the current, more detailed investigation
also shows that it could not “explode” either and become a steadily
growing perturbation in the ether.

On the way to this result, we saw an efficient method to display all
possible interactions of an isolated particle with all other particles and
the background (41).

The track about Rule 54 lead therefore to results about the interac-
tion of its particles, while the general track lead to generic definitions
of triangles, background and particles and a theorem about glider colli-
sions. Both show how Flexible Time helps to understand an automaton
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like Rule 54 as a system of interacting particles.

Changes in the formalism One of the aims of this work was to
extend the capabilities of Flexible Time by applying it to the under-
standing of a “naturally occuring” cellular automaton, i. e. one that was
not constructed for a specific purpose. This resulted in the following
changes with respect to the version in [20]:

1. The interpretation of 	 and ⊕ were changed silently in (10). In [20],
they were abbreviations for 	r and ⊕r, where r was the radius of the
cellular automaton. Now the horizontal offsets associated to 	 and ⊕
depend on the context in which the symbols occur.

2. Reaction families, which were already present in [20], got a shorter
notation.

3. A short notation for overlapping situations was introduced in Defini-
tion 6. There was already an overlap notation in [20], but it was more
clumsy. Now overlapping situations are part of the normal formalism.

The new interpretation of 	 and ⊕ allowed us to write the formulas
of the local reaction system completely without indices and to make
the similarities between the basic reactions more visible.

With overlaps, definitions like those of a background pair (29) could
be written in a concise way.
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