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Abstract

We investigate algebraic and compositional properties of abstract multiway rewriting
systems, which are archetypical structures underlying the formalism of the Wolfram model.
We demonstrate the existence of higher homotopies in this class of rewriting systems, where
homotopical maps are induced by the inclusion of appropriate rewriting rules taken from
an abstract rulial space of all possible such rules. Furthermore, we show that a multiway
rewriting system with homotopies up to order n may naturally be formalized as an n-fold
category, such that (upon inclusion of appropriate inverse morphisms via invertible rewrit-
ing relations) the infinite limit of this structure yields an∞-groupoid. Via Grothendieck’s
homotopy hypothesis, this ∞-groupoid thus inherits the structure of a formal homotopy
space. We conclude with some comments on how this computational framework of ho-
motopical multiway systems may potentially be used for making formal connections to
homotopy spaces upon which models relevant to physics may be instantiated.
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1 Introduction

The Wolfram model [31] [30] (see also [15] [14] [16] [3]) is an explicitly computational framework
based upon abstract rewriting that attempts to formalize the fundamental mathematical struc-
tures underlying space, time and matter. The model seeks to capture the ways in which simple
abstract rewriting rules may be composed, so as to yield more complex structures (suggestively
titled “universes”) that admit certain emergent “laws of physics”. This general approach of seek-
ing a constructivist formalization of certain fundamental structures has strong parallels in recent
work in the foundations of both physics and mathematics, for instance in relation to synthetic
geometry and cohesive homotopy type theory [27] [26] [28] [1]. The general framework of the
Wolfram model eschews the rigid continuum description of spacetime in terms of Lorentzian
manifolds in favor of a more rudimentary description of the combinatorics and topology of
the intrinsic causal relationships between events, which, in turn, makes manifest some of the
computational architecture that underlies contemporary physics. The archetypical structures
that appear within this framework are so called multiway systems - non-deterministic abstract
rewriting systems equipped with a notion of causal structure. The “multiway” moniker here
designates the fact that all permissible applications of the rewriting rules are instantiated in
all possible orderings, leading to multiple chains of rewrite terms that are partially-ordered by
causality. Depending upon the precise interpretation of these terms (or states), Wolfram model
multiway systems may be realized as rewriting systems over hypergraphs, character strings,
ZX-diagrams [16] [18] (as formalized by Coecke and Duncan [11]), or string diagrams [17].

In this paper, we consider abstract multiway rewriting systems, i.e. systems in which the
terms/states are purely abstract entities, since doing so will be more convenient for studying the
algebraic and compositional properties of such systems at the highest possible level of generality;
these general results may then be easily specialized or extrapolated to particular classes of
rewriting systems. Specifically, our analysis reveals a rich homotopical structure admissible on
these abstract multiway rewriting systems, where these homotopies are induced by the inclusion
of certain “higher-order” rules taken from an abstract rulial space, designating the space of all
possible rewriting rules of a given signature (formally, at least for the case of hypergraphs, a
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monoidal category of cospans). Although a generic abstract rewriting system may be thought
of as simply being an F -coalgebra for the power set functor P (which, at least in the case
of hypergraph rewriting, is further equipped with a natural symmetric monoidal structure),
we show here that a multiway rewriting system equipped with homotopies up to order n may
elegantly be formalized as an n-fold category. Furthermore, upon including inverse morphisms
(via the inclusion of invertible rewriting relations), the infinite limit of this structure naturally
yields an ∞-groupoid, which therefore inherits the structure of a formal homotopy space via
Grothendieck’s homotopy hypothesis [2]. For specific models of ∞-categories, these structures
correspond precisely to topological spaces, hence allowing one to make formal connections
between the abstract computational framework of Wolfram model multiway systems and the
topological spaces (such as Lorentzian manifolds, or projective Hilbert spaces) upon which laws
of physics are traditionally instantiated.

2 Preliminaries of Wolfram Model Multiway Systems

This section provides an overview of the basic abstract rewriting constructions that constitute
the Wolfram model, with a particular emphasis on their non-deterministic aspects, as captured
via multiway rewriting systems. We present both combinatorial and compositional descriptions
of such systems, as well as an abstract description of their rulial space (i.e. the space of
all possible rewriting rules) for the case of (hyper)graph rewriting, by means of a double-
pushout (DPO) rewriting formalism over (selective) adhesive categories. The contents of this
section serve merely as a preliminary introduction to the known constructions of Wolfram model
multiway rewriting systems; the informed reader is encouraged to proceed directly to Section
3, in which the main arguments of this paper are presented.

2.1 Combinatorial & Compositional Descriptions of Multiway Sys-
tems

Combinatorially, a multiway rewriting system is simply a directed, acyclic graph of states,
determined by abstract rewriting rules that inductively generate a (potentially infinite) multi-
way evolution graph, together with a partial order on the rewrite rule applications, determined
by their causal structure. This is straightforward to formalize in terms of abstract rewriting
systems [7] in which the underlying rewrite relation is not (necessarily) confluent [22].

Definition 2.1. An “abstract rewriting system” (or “ARS”) is a set, denoted A (whose elements
are known as “objects”), equipped with a binary relation, denoted → (known as the “rewrite
relation”).

Definition 2.2. A “multiway evolution graph”, denoted Gmultiway, is a directed, acyclic graph
corresponding to the evolution of a (generically non-confluent) abstract rewriting system (A,→),
in which the set of vertices corresponds to the set of objects V (Gmultiway), and in which the
directed edge A→ B exists in E (Gmultiway) if and only if there exists an application of the
rewrite relation that transforms object A to object B.

Hence, directed edges will connect vertices A and B in Gmultiway if and only if A→ B in the
underlying rewriting system, and a directed path will connect vertices A and B if and only if
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A→∗ B, where →∗ denotes the reflexive transitive closure of →, i.e if and only if there exists
a finite rewrite sequence of the form:

A→ A′ → A′′ → · · · → B′ → B. (1)

An example of a multiway evolution graph for a simple Wolfram model evolution (i.e. a non-
deterministic hypergraph rewriting system) is shown in Figure 1.

Figure 1: The multiway evolution graph corresponding to the first 3 steps
in the non-deterministic evolution history of the hypergraph substitution rule
{{x, y} , {y, z}} → {{w, y} , {y, z} , {z, w} , {x,w}}, starting from a simple double self-loop
initial condition {{0, 0} , {0, 0}}.

In the most general case, in which the rewrite relation→ is treated as an indexed union of sub-
relations, i.e. →=→1 ∪ →2 ∪ . . ., with label set Λ for the indices, and in which the set of objects
A is arbitrary (i.e. its elements could represent graphs, hypergraphs, string diagrams, terms,
character strings, etc.), the resulting labeled abstract rewriting system (A,Λ,→) permits an
elegant compositional description in terms of F -coalgebras. Specifically, note that the system
(A,Λ,→) is now simply a bijective function from A to a subset of the power set of A indexed
by Λ, i.e. P (Λ× A):

p 7→ {(α, q) ∈ Λ× A : p→α q} . (2)

Recall now that an F -coalgebra for an endofunctor F : C→ C consists of an object A in
ob (C) equipped with a morphism α : A→ FA in hom (C), hence denoted (A,α). Thus, since
the power set construction on Set is a covariant endofunctor P : Set→ Set, we see that the
abstract rewriting system (A,→) consists of an object A equipped with an additional morphism
of Set, namely the rewrite relation →:

→: A→ PA. (3)

The causal structure of the abstract rewriting system also endows the multiway system with an
additional partial order relation on the rewrite applications themselves [15], which can in turn
be described compositionally in terms of a partial monoidal structure [16] [18] [17]. However,
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for the purposes of the present paper, the causal structure can (for the most part) be safely
ignored.

2.2 Rulial Space and Double-Pushout (DPO) Rewriting

In a large class of cases, such as (hyper)graph rewriting, open graph rewriting, string diagram
rewriting (including the ZX-calculus), etc., the rewrite relation → may be further specified
as a double-pushout (DPO) rewriting system; for instance, this was formalized by Dixon and
Kissinger [12] for the case of open graphs using a selective adhesive category of open spans, and
the same formalism was subsequently applied to both ZX-diagrams and arbitrary hypergraph
rewriting systems as special cases [16] [18]. Specifically, the rewriting rules are defined as spans
of monomorphisms ρ of the form:

ρ = (l : K → L, r : K → R) , (4)
with the left- and right-hand-sides of the rule specified by objects L and R, respectively, and
with object K designating the interface graph. A match for the rule ρ within an object G is
simply a morphism m : L→ G, with the rule being applicable if and only if there exists a pair
of pushout diagrams of the form [20]:

L K R

G D H

m

l

k

r

n

f

g

. (5)

These rules are defined and applied in the context of an adhesive category [23], in which every
pushout along a monomorphism satisfies the van-Kampen square condition, such that, for every
commutative diagram of the form:

B′ A′

B A

D C

D′ C ′

f ′h

hB
gh

hA

fhf ′

g

f

g′
hD

g′h

hC

, (6)

such the following subdiagrams are both pullbacks:

B′ A′

B A

hB

gh

hA

g

, and
A A′

C C ′

f

hA

fh

hC

, (7)

the pushouts and pullbacks satisfy a compatibility condition. In fact, selective adhesive cate-
gories [12] allow DPO rewriting to be defined in an even broader class of cases, in which one
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is working within a full subcategory C′ of an adhesive category C, with embedding functor
S : C′ → C, with the only condition being that S preserves monomorphisms.

This construction allows us to formalize the notion of rulial space, i.e. the space of all possible
rewriting rules of a given signature, at least for the case of Wolfram model hypergraph rewriting
systems (and systems such as string diagram rewriting systems that are known to be special
cases):

Definition 2.3. The “rulial space” of Wolfram model systems is the category of cospans of a
DPO rewriting system, defined over the selective adhesive category of Wolfram model hyper-
graphs.

The rulial space of Wolfram model systems functorially acquires the structure of a selective
adhesive category. Indeed, as a consequence of the concurrency and parallelism theorems of
algebraic graph transformation theory [13], the rulial space also inherits a natural monoidal
structure [16] (which is, in turn, inherited by all Wolfram model multiway systems, since they
are obtained by the composition of certain rules in rulial space).

Even though the rewriting formulation above borrows from DPO rewriting as per [12], it is
worth noting other recent developments in rewriting theory, that will no doubt be useful for
our model in future work. We point the reader to the following relevant works: (i) mathematical
foundations of string diagram rewriting, reported in [8], [9]; (ii) higher dimensional rewriting
theory [10], [19]; (iii) algebraic graph transformations and compositional systems [21], [6].

3 Homotopical Multiway Systems as n-Fold Categories

Given the compositional setup outlined above, we now address explicit constructions of higher
homotopies upon abstract multiway systems, and introduce a systematic algorithm for iden-
tifying rewriting rules resulting in these homotopies. Subsequently, we prove that a multiway
system equipped with homotopies up to order n may be formalized as an n-fold category, such
that the infinite limit of such a higher-order multiway system yields an ∞-groupoid (upon the
admission of invertible rewriting rules).

3.1 A Computational Framework for Constructing Homotopical Mul-
tiway Systems

To avoid us needing to deal with the added complexities of full hypergraph rewriting systems,
let us consider instead a very simple rewriting system on character strings, as specified by the
rule A→ AB, generating the multiway evolution graph shown in Figure 2. We have deliber-
ately selected a very minimal example, although the basic algorithm described here applies in
principle to all classes of multiway systems, as discussed below. Every path in this multiway
evolution graph corresponds to a proof of a proposition, as shown on the left of Figure 3 for the
particular case of a proof of the proposition that AA→ ABBBABBB, subject to the axiom
A→ AB. A key feature of multiway systems is that one can consider multiple paths connecting
the same pair of vertices, which may be interpreted type-theoretically as corresponding to the
existence of multiple proofs of the same proposition, as shown on the right of Figure 3.
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AA

AAB ABA

AABB ABAB ABBA

AABBB ABABB ABBAB ABBBA

AABBBB ABABBB ABBABB ABBBAB ABBBBA

AABBBBB ABABBBB ABBABBB ABBBABB ABBBBAB ABBBBBA

AABBBBBB ABABBBBB ABBABBBB ABBBABBB ABBBBABB ABBBBBAB ABBBBBBA

AABBBBBBBABABBBBBBABBABBBBBABBBABBBBABBBBABBBABBBBBABBABBBBBBABABBBBBBBA

AABBBBBBBBABABBBBBBBABBABBBBBBABBBABBBBBABBBBABBBBABBBBBABBBABBBBBBABBABBBBBBBABABBBBBBBBA

Figure 2: The multiway evolution graph corresponding to the first 8 steps in the non-
deterministic evolution history of the string substitution rule A→ AB, starting from the two-
character initial condition AA.

A key feature of homotopy type theory is the ability to describe proofs of equivalences between
proofs in terms of homotopies between paths [24]. In the discrete setup of a multiway evolution
graph, a concrete realization of the homotopy map between paths can be given by simply
introducing bi-directional edges mapping vertices on one path to corresponding vertices on the
other path, and back again, as shown in Figure 4. However, this approach to introducing
homotopy maps is somewhat ad hoc; it is far more natural to introduce these bi-directional
relationships between multiway vertices as a new set of rewrite relations that can be appended
to the original multiway system rules, as shown in Figure 5. For the particular system at hand,
these additional rules are:

{AAB → ABA, AABB → ABBA, AABBB → ABBBA,

ABABBB → ABBBAB, ABBABBB → ABBBABB} (8)

and their respective inverses (which have significance for the forthcoming constructions of
groupoids):

{ABA→ AAB, ABBA→ AABB, ABBBA→ AABBB,

ABBBAB → ABABBB, ABBBABB → ABBABBB} (9)

This general algorithmic procedure for introducing homotopy maps between paths in an arbi-
trary multiway system may now be iterated, so as to introduce higher homotopy maps between
homotopies; for instance, order-3 homotopies (3-cells) between order-2 homotopies (2-cells) and
so on (more of this will be reported in forthcoming work [3]).
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Figure 3: On the left, a multiway evolution graph with a red highlighted path between vertices
AA and ABBBABBB, corresponding to a proof of the proposition AA→ ABBBABBB, sub-
ject to the string substitution axiom A→ AB. On the right, the same multiway evolution graph
showing multiple highlighted paths (red and yellow) between vertices AA and ABBBABBB,
illustrating the existence of multiple proofs of the proposition AA→ ABBBABBB.

Figure 4: A multiway evolution graph with purple highlighted paths between vertices on one
(red) path and corresponding vertices on the other (yellow) path, and back again, interpreted
as homotopic maps between the two associated proofs of the proposition AA→ ABBBABBB.
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Figure 5: A multiway evolution graph with explicit rules added to map vertices on one (red)
path to corresponding vertices on the other (yellow) path, and back again, interpreted as
homotopic maps between the two associated proofs of the proposition AA→ ABBBABBB,
shown in purple.
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3.2 Higher Categorical Formulation of Homotopical Multiway Sys-
tems

We now attempt to formalize the above constructions in the language of higher category theory.
Starting with the order-2 homotopies (2-cells or 2-morphisms) between paths (1-morphisms)
we make the following proposition:

Proposition 3.1. The multiway rewriting system shown in Figure 5 is an order-2 homotopy
rewriting system with 2-morphisms between paths, thus yielding a double category.

Let us first recall the standard definition of a double category.

Definition 3.1. A double category D, denoted D1 D0 is defined in terms of the fol-
lowing conditions:

(i) The objects of D are the objects of D0

(ii) D has vertical morphisms, which are the morphisms of D0

(iii) Additionally, D also has horizontal morphisms, which are the objects of D1

(iv) Finally, the 2-morphisms of D (also referred to as squares or 2-cells) are the morphisms
of D1

Here, a 2-cell in D can be represented by the following commutative square:

a c

b d

l

f

m

g

φ

(10)

where a, b, c, d are objects; l, m are vertical arrows; f , g are horizontal arrows; and φ denotes
the 2-cell.

Note that a double category is an internal category in Cat. Vertical composition in a double
category is given by composition in the categories D0 and D1, while horizontal composition is
given by composition on D1 D0 itself, by virtue of it being a category internal to Cat.
This set-up will be useful for proving the desired proposition.

Proof of Proposition 3.1: Following the functorial description provided in Section 2, any abstract
multiway system may be thought of as a category M0 whose objects are given by states
(rewrite terms) of the multiway system, and whose paths of causally-ordered rewrite chains
refer to morphisms of this category. Composition is given by concatenation of directed paths.
Transitive closure along directed paths ensures associativity and self-loops on nodes (trivially
obtained via identity rewrite rules) ensure identity laws of a category.
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From the definition of a double category given above, M0 is precisely the category D0, with
objects being the vertices of a multiway evolution graph (a prototypical example being given
in Figure 2), and paths formed by multiway evolution (also shown in Figure 3) corresponding
to vertical morphisms in D0. The horizontal arrows in Figure 5, colored in purple, are in-
duced by the introduction of additional rules to the rewriting system and serve the purpose of
connecting (vertical) paths in the multiway system. Hence, these can be identified as objects
of another category, which we denote as M1 (M1 will be identified with D1 once we specify
its morphisms). Imposing commutativity over squares formed by the vertical and horizontal
arrows of the multiway system gives us the morphisms of M1; these squares, exemplified in
Figure 5, are 2-morphisms of the double category M1 M0 .

Given this double category, the 2-morphism in the multiway evolution graph between the high-
lighted red and yellow paths in Figure 5 is precisely given by vertical compositions of squares.
These are the 2-cells of the new multiway rewriting system, enhanced with additional rules,
thus making it a 2-homotopy rewriting system. (Note that the triangles at the start and end
points of the 1-paths are also squares with an identity morphism at those points.)

This leads us directly to the following corollary:

Corollary 3.1. A 2-homotopy multiway system extends to a double groupoid upon admitting
invertible rules to those used in the multiway construction (including the homotopy rules).

Proof of Corollary 3.1: Adding invertible rules to the multiway system equips every rewrite
arrow with an inverse arrow, such that their composition is the identity map on either rewrite
term. Given an order-2 homotopy multiway system, the presence of invertible arrows implies
that all 1-morphisms and 2-morphisms are isomorphisms. This extends the multiway system
in Proposition 3.1 to a double groupoid.

Furthermore, as shown in the previous section, with appropriate additional rules, one can
continue the above construction inductively to obtain rewriting systems with progressively
higher homotopies between paths. This yields the following proposition:

Proposition 3.2. So long as additional rewrite rules between cells, up to order n − 1, are
admissible, then the multiway system shown in Figure 5 can be enhanced to yield an n-homotopy
rewriting system with n-morphisms between paths, thus yielding an n-fold category.

Proof of Proposition 3.2: The proof of this proposition follows by a simple inductive construc-
tion.

A double category itself is a special case of an n-fold category. In Proposition 3.2, we proved
this proposition for the n = 2 case.

For the n = 3 case, we need to construct an order-3 homotopy rewriting system equipped with
3-morphisms, which are cubes bounded by squares of the given double category. This can be
done by adding specific rewrite rules that give arrows between paths (1-cells) in such a way
that one obtains multiple 2-cells, which eventually permit additional arrows between them,
giving 3-morphisms as cubes bounded by squares. These cubes then define a 3-fold category as
follows:

Definition 3.2. A 3-fold category, denoted D2 D1 D0 is defined in terms of
the following conditions:
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(i) The objects are the objects of D0

(ii) The vertical arrows are the morphisms of D0

(iii) The horizontal arrows are the objects of D1

(iv) The vertical squares are the morphisms of D1

(v) The horizontal squares are the objects of D2

(vi) The cube bounded by vertical and horizontal squares is a morphism of D2

The above data has to satisfy the commutative diagram:

A B

A′ B′

C D

C ′ D′

f

a

h

h′

b

f ′

k′
g

c
d

g′

k ψ

η

ω

α

β
(11)

where arrows are 1-morphisms, squares are 2-morphisms and cubes are 3-morphisms (3-cells)
of the 3-fold category. Compositions, identity and associative laws on each of these entities
follow from their usual definitions in D0, D1 and D2 where appropriately applicable.

The 3-cells in a multiway system can then be obtained by vertical, horizontal and sideways
compositions of cubes of a 3-fold category.

Likewise, one can continue this process of constructing higher morphisms indefinitely, so long as
additional rewrite rules between cells of up to order n−1 are admissible such that n-morphisms
are now n-hypercubes defined within an n-fold category, and n-cells of such multiway systems
are simply compositions of n-hypercubes in n-directions. The ensuing n-fold category can then
be expressed as:

Mn−1 Mn−2 · · · · · · M2 M1 M0

where the objects ofMi (for 0 < i < n− 2) are i-dimensional hypercubes in Rn whose normal
vectors are oriented along the z-axis in Rn. The morphisms ofMi are (i+ 1)-dimensional hy-
percubes in Rn whose normal vectors are oriented orthogonal to the z-axis in Rn. Furthermore,
the objects of Mn−1 are (n − 1)-dimensional hypercubes with normal vectors oriented along
the z-axis in Rn and the morphism inMn−1 is the commutative n-hypercube composed of the
above.

This iterative definition of an n-fold category corroborates the previously described construc-
tion, in which homotopies of up to order n in multiway systems are realized by including
additional rewrite rules that introduce new arrows to obtain squares (and so on), until one
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eventually obtains a commutative n-hypercube.

The benefit gained by realizing n-fold categories in our constructions is the ease of expressing
multiple compositions by gluing hypercubes up to order n. Composable arrays of hypercubes
can then be used to construct all (i ≤ n)-cells of the category.

For example, in a 2-fold category, we can define a composable array of 2-dimensional elements
(squares) to be such that any array is composable with its immediate neighbors (the associative
and commutative laws imply that the composition is well defined). This process easily extends
in n-fold categories using n-dimensional elements (n-hypercubes).

The following remark is in order:

Remark 3.1. As in Corollary 3.1, a n-homotopy multiway system extends to an n-fold groupoid
upon admitting invertible rules that ensure invertibility of all higher morphisms.

Given the iterative construction above, where one induces higher homotopies in multiway sys-
tems via the inclusion of supplementary rules, one can now ask what the n → ∞ limit of this
construction yields?

Proposition 3.3. The n → ∞ limit of a multiway rewriting system with invertible homotopy
rules, corresponding to higher morphisms (so long as they are admissible), is an ∞-groupoid.

Proof of Proposition 3.3: Following Proposition 3.2 and Remark 3.1, multiway rewriting systems
equipped with homotopies up to order n, along with invertible rules, yield an n-fold groupoid.
The n→∞ limit of an n-fold groupoid is precisely an∞-groupoid. This limit exists so long as
the infinite hierarchy of rules required to iteratively construct higher morphisms is admissible
on that multiway rewriting system.

4 Implications and Outlook

This paper has illustrated how higher categorical structures arise naturally within the abstract
non-deterministic rewriting systems of the Wolfram model, at least when formalized as multi-
way systems. We have shown how higher homotopies induced on multiway systems via specific
rewriting rules correspond to morphisms of an n-fold category, and we have both demonstrated
an explicit computational procedure for constructing these homotopies on multiway rewriting
systems, as well as provided the formal correspondence of these systems to n-fold categories
and n-fold groupoids. Interestingly, the n → ∞ limit of this structure yields an ∞-groupoid,
with the latter being relevant from the point of view of Grothendieck’s homotopy hypothesis [4];
we speculate that this correspondence might potentially offer a new way to understand how
the kinds of spatial structures relevant to the foundations of physics might potentially arise
from purely combinatorial rewriting systems [2] [29] [5]. Our results here provide a prelimi-
nary framework for investigating such connections to topological and geometric spaces from an
underlying computational perspective, which we outline in forthcoming work [3].

On the other hand, complementary to what we have shown here, there is an ongoing research
program involving the application of methods from homotopy type theory and infinity-category
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theory, that seeks to formalize, among other things, the mathematical foundations of synthetic
spatial structures (in particular, cohesive topological and geometric spaces) [29] [24] [25]. Con-
structions of synthetic geometry are also of great relevance for the foundations of physics. In
particular, there are active efforts in the formalization of quantum field theories on a cohesive
∞-topos [27]. In a sense, the Wolfram model can be thought of as a “constructivist” realization
of some of the above ideas, expressed via a concrete model of computation, namely abstract
rewriting systems. The precise connections of Wolfram model multiway rewriting systems to
homotopy types and infinity-categories is also a topic for future work.
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