
Cryptographic Puzzles and Complex Systems

Author

Vuckovac, Rade

Published

2021

Journal Title

Complex Systems

Version

Version of Record (VoR)

DOI

10.25088/ComplexSystems.30.3.375

Downloaded from

http://hdl.handle.net/10072/412918

Griffith Research Online

https://research-repository.griffith.edu.au

http://dx.doi.org/10.25088/ComplexSystems.30.3.375

Cryptographic Puzzles and Complex Systems

Rade Vuckovac

Rade.Vuckovac@griffithuni.edu.au

A puzzle lies behind password authentication (PA) and blockchain
proof of work (PoW). A cryptographic hash function is commonly used
to implement them. The potential problem with secure hash functions
is their complexity and rigidity. We explore the use of complex systems
constructs such as a cellular automaton (CA) to provide puzzle function-
ality. The analysis shows that computational irreducibility and sensitiv-
ity to initial state phenomena are enough to create simple puzzle
systems that can be used for PA and PoW. Moreover, we present puzzle
schemata using CA and n-body problems.

Keywords: password authentication; proof of work; provable security

Introduction1.

Our fundamental proposal is to profit from how difficult it is to pre-
dict the behavior of complex systems. An analogous challenge is
found in mathematics when attempting to define randomness and in
computing when producing randomness. For example, a mathemati-
cal perspective on randomness can be summarized as follows.

Although the concept of randomness is ubiquitous, it turns out
to be difficult to generate a truly random sequence of events.
The need for “pseudorandomness” in various parts of modern
science, ranging from numerical simulation to cryptography, has
challenged our limited understanding of this issue and our mathe-
matical resources. [1]

Furthermore, number theorists provide insights into how number
theory can contribute to the issue of randomness [2]:

◼ There is a dichotomy in number theory. Either we have a closed analyti-
cal formula for a given problem, or there is great difficulty and the
problem shows random behavior.◼ The outcome of this situation can go in two directions. Solving a prob-
lem brings a more profound understanding of a process behind the
question. Otherwise, we are faced with the fact that some explicit arith-
metical or Diophantine problems show randomness, and that can have
considerable practical value.

Although the issue of randomness is important to our puzzle pro-
posal, we will use other peculiarities of chaos theory and cellular

https://doi.org/10.25088/ComplexSystems.30.3.375

automata (CAs) to construct password authentication (PA) and
blockchain proof of work (PoW) puzzles.

Password Authentication and Proof of Work Puzzles1.1

PA and PoW puzzles have the same foundation. Both use a problem
where a solution is relatively hard to find (i.e., compute). When a
solution is found, the verification process that confirms the correct
solution is quite easy (computable in practice).

The Password Authentication Puzzle1.1.1

In early days, passwords were kept as a plain text in some form of a
table. The user typed a password, and it was compared to the table
entry. If the stored and typed password were the same, some rights
were granted to the user. This scenario is not very secure because
access to the password table compromises the whole security sce-
nario. The initial solution for this problem is to store a hash of the
password instead. Now, when the user enters a password, the pass-
word is hashed. The resulting hash is compared with the hash stored
in the table. If identical, the user gains the desired access. In this case,
having access to the hash table does not reveal passwords because
hash functions are hard to invert. However, the hash function itself is
not a secret. The salt, a publicly known string, is concatenated to the
password, preventing the building of a list of known hashes. There-
fore, password authentication hashing computes the hash value h
using two arguments to the hash function hash(· , ·) as

h  hashpassword, salt, (1)
where password and salt are two inputs to the hash function. An
attacker is anyone who tries to find the corresponding password
knowing h, the hash function and the salt. Note that the two-
argument hash function typically is just the composition of catenation
followed by a one-argument hash function.

The Proof of Work Puzzle1.1.2

The PoW concept [3, 4] was introduced to generate a computation-
ally hard question, easily verifiable. The first use of PoW was to pre-
vent email spamming [4]. The sender must solve some puzzle before
sending an email. The task consists of repeatedly hashing publicly
available data (such as recipient email address, date) plus a string of
random characters until an acceptable hash result is found. The
acceptable hash has some predefined pattern (e.g., the value 0 for the
first 20 bits). Those who want to provide evidence of work must vary
the random part, called the nonce, until they produce a hash that
meets the constraint of the pattern. For instance, in a hashcash system

376 R. Vuckovac

Complex Systems, 30 © 2021

[5], the chances of finding a pattern with 20 zeros is one in a million.
In the email application, the recipient checks the solution (the pro-
posed nonce) quickly (since the recipient only needs to evaluate the
hash function once), and only accepts emails with confirmed nonce.
The PoW puzzle is no obstacle for the genuine sender. Sending an
email to multiple recipients becomes a burden because too many puz-
zles result in impractical computational cost. From the perspective of
the sender, the problem has the form of the following equation:

p  hashn, d (2)
where p is patterned hash value, hash is a hash function, n is the
nonce (random string) and d is the public data.

General Puzzle1.1.3

Both puzzles could be considered the same. From the perspective of
the PA attacker and the PoW sender the problem has the form

t  hashv, d (3)
where t is a target hash value (corresponding to h and p in PA and
PoW, respectively), hash is a hash function, v is a variable part that
attackers must compute (password or nonce, respectively) and d is
public data (salt, an email address or a blockchain transaction ledger).

Cryptographic Hash Function1.2

Today, schemata for PA/PoW commonly use a secure hash function.
For example, every information technology user performs several pass-
word authentications daily. Blockchain applications are even larger
users of hash functions. Bitcoin’s (one of the popular blockchain tech-
nologies) energy footprint for hash computation (PoW) is in the neigh-
borhood of a small country’s energy consumption (between Greece
and Switzerland [6]). The potential shortcomings concerning the use
of hash functions are:

Secure hash functions are complex and not easy to develop. For exam-
ple, the latest adoption of the secure hash function SHA-3 by NIST (US
National Institute of Standards and Technology) was in 2015 [7]. The
whole SHA-3 project started in 2007 and lasted for eight years. SHA-2
and SHA-3 are the only secure NIST recommendations. NIST empha-
sizes the recommendation without absolute security in the case of
SHA-3. Bitcoin came into existence in 2009 and consequently had to
use the older SHA-256 algorithm.

1.

Typically, the security of the hash functions is argued using heuristic
security. It is based on the notion that a particular algorithm is secure if
it resists all current cryptanalyses. That is in sharp contrast to provable
security, which relies on a computationally difficult problem (e.g.,
factoring).

2.

Cryptographic Puzzles and Complex Systems 377

https://doi.org/10.25088/ComplexSystems.30.3.375

Both systems, PA and PoW, have additional requirements such as time
and memory hardening. Both are needed to raise the cost (in terms of
computational time and hardware requirements) of the puzzle for the
potential attacker. Hash functions are inflexible and cannot be used to
regulate the cost, so additional machinery is required on top of hash
algorithms.

3.

Hashless Password Authentication / Proof of Work Puzzles2.

Our proposal is an alternative provable by security argumentation
because both of the problems (the n-body and CA predictability) are
related to unsolved mathematical problems. The relevant observations
are the following.

Butterfly effect. They both exhibit the butterfly effect; that is, the sys-
tem has an extremely high sensitivity to its initial state or initial condi-
tions. This property might be interpreted as a lack of correlation
between input and output. That is, similar inputs do not result in simi-
lar outputs. Even a minuscule change in the initial state (input) will pro-
duce a different outcome (output). Such a property could be considered
equivalent to the avalanche effect required and evident in hash function
designs [8]. Figure 1 illustrates the butterfly effect using cellular
automata (CAs) [9].

1.

Computational irreducibility. The principle of computational irre-
ducibility says that the only way to determine the answer to a compu-
tationally irreducible question is to perform, or simulate, the
computation [10].

2.

The n-body problem is a good example. When n  2, the system has
a known closed-form solution, meaning a set of equations is known
that defines body motions and positions for any point in time. That is,
positions can be computed efficiently. However, for n > 2, we do not
have a closed-form solution. Instead, there is a set of equations that can
only approximate body motions and positions for a given time. Today,
the preferred method for solving an n-body system is step-by-step
numerical simulation.

Partial knowledge effect on reversibility. The laws of physics are time
reversible (including n-body systems), meaning that the known state of
a physical system determines all past and future state configurations.
Similar reversibility exists in the CA world. For example, the left-hand
side of rule 30 evolution shows a pattern (Figure 4). Furthermore, if we
know two columns of evolution (16 and 17), then the whole left-hand
side (columns 1 to 15) is determined. By reducing knowledge to one col-
umn and showing only every second cell, the evolution is undetermined
[11, p. 605]. A partially known state of a system in some circumstances
can provide one-way functionality required by proposed schemata.

3.

378 R. Vuckovac

Complex Systems, 30 © 2021

Figure 1. CAs and chaos. Two evolutions of the same CA are shown. The ini-
tial state consists of an array of 128 cells, each cell 32 bits wide. Every pixel
represents two bytes. The seed, the first six pixels (six bytes, top-left of each
image), is two strings “bits00” and “bits01”, respectively. The rest of the
state is set to zero, hence the black region after the seed. The first evolution
iteration is almost the same for both (regions with stripes). Consequent itera-
tions show chaos in action.

n-Body Puzzle2.1

In Newton’s time, the details of the motions of more than two orbit-
ing bodies were considered as intractable. The problem became very
important in the second half of the nineteenth century. Oscar II, king
of Sweden, founded a prize for a 3-body solution. Henri Poincaré, a
French mathematician, won that prize, even though the solution did
not address the entire problem. However, that was an important
moment in history because the origin of chaos theory could be traced
to Poincaré’s solution. Currently, n-body has a general solution [12,
13]. That solution is presented by a convergent power series, which is
very slow and impractical to use. Numerical methods
(approximations) or system simulations are used instead to solve
practical problems [14, 15]. Figure 2 shows an example of n-body
simulation.

n-body puzzle preliminaries. The puzzle proposal relies on a simula-
tion environment. The idea is that only step-by-step simulation can
evaluate an n-body system efficiently. In other words, if the future

Cryptographic Puzzles and Complex Systems 379

https://doi.org/10.25088/ComplexSystems.30.3.375

details of the system are needed, the quickest way of knowing them is
to simulate it.

Figure 2. 10 bodies’ paths traced out during three-dimensional simulation.

4-body puzzle. Imagine four bodies (planets). From initial state s0,

all four bodies (n1, n2, n3, n4) evolve to a state s
t
by two-dimen-

sional n-body simulation [16], after some time t.
This scenario could be translated to a password hashing scheme.

The hash function is a 4-body simulation simulated for time duration
t. The initial state of bodies (n1, n2) is encoded as a salt and (n3, n4)

as a password. Then, simulation positions of bodies (n3
′ , n4

′) repre-

sent the hash(n3′ , n4
′)  4bodysim(n1, n2, n3, n4, t). (4)

It is easy to see that if initial state (n1, n2, n3, n4) is known,

future state (n3
′ , n4

′) can be derived by a two-dimensional simulator.

If details of n3, n4 (password) are unknown, public knowledge of

n1, n2, n3
′ , n4

′ details (salt and hash) is not sufficient to reverse two-

dimensional simulation. Figure 3 illustrates this proposal.

Figure 3. Initial state: n1, n2 details (a salt) are known and n3, n4 are

unknown (a password). Simulated state: after time t; only n3
′ , n4

′ details are

known (a hash).

380 R. Vuckovac

Complex Systems, 30 © 2021

Cellular Automaton Puzzle3.

Stanislaw Ulam [17] and John von Neumann [18] discovered the
concept of the cellular automaton (CA) in the 1940s. CAs are used as
a modeling tool in various scientific fields, from computer and
complexity science, mathematics and physics to biology. Stephen
Wolfram was the first to propose the use of CAs (rule 30) for cryptog-
raphy [19].

Figure 4 shows Wolfram’s one-dimensional rule 30 CA. Rules on
the top show how a cell (black or white) is transformed, depending
on the neighboring cells. Row 1 is the initial state of the CA. Consec-
utive rows 1, 2, 3, … are evolved next generations. A next-generation
cell is derived from neighbors of the previous one. For example, the
cell (row 4, column 13) is derived by case 7. When a cell does not
have a left or right neighbor in the row above it (e.g., row 16,
column 1), it uses the cell from the opposite end of the preceding row
(row 15, column 31). Therefore, the cell (row 16, column 1) is
derived by case 7 (white, white, black).

The prize for solving rule 30 CA problems was announced in Octo-

ber 2019 (the center column is the 16th outlined column Figure 4):

◼ Problem 1: Does the center column always remain nonperiodic?

◼ Problem 2: Does each color of cell occur on average equally often in the
center column?

◼ Problem 3: Does computing the nth cell of the center column require at
least O(n) computational effort [20]?

Problems 1 and 2 ask if some pattern in the center column exists
because it behaves randomly (rule 30 is used as a random number gen-
erator by Wolfram’s Mathematica software).

Figure 4. CA rule 30. Transformation rules and evolution history. Outlined
column 16 can be considered as a random sequence.

Cryptographic Puzzles and Complex Systems 381

https://doi.org/10.25088/ComplexSystems.30.3.375

Problem 3 asks if there is an approach shorter than actually run-
ning the CA (computational irreducibility). The run consists of each
cell update contained in the diamond (Figure 5) and the runtime cost

is On2 (n2  2 updates). The question is, Can we determine the nth

cell without doing intermediate (diamond) cells updates [21]?

Figure 5. Rule 30. To determine the nth cell of the center column, the cells in
the diamond need to be determined first.

CA puzzle. In principle, every CA showing computational irre-
ducibility can be used for puzzle proposal. On this occasion, we will
use a cellular automaton generator (CAG) [9]. The rule for a cell
transformation is shown in Figure 6. Details of the cag function are
given in the Appendix, (function stir).

Figure 7 shows a CAG evolution history of eight cycles. The initial
state is an array with 128 cells, 32 bits wide. It can contain a pass-
word (input x) and a salt (data d). The black region is set to zero (in
grayscale encoding, zero is black), and that is the initial state. The
third generation already shows some randomness. The part of the
eighth cycle (output y) serves as a hash of the password

y  cagx, d. (5)
Note that cag is not a one-way function. Meaning, if the current

state is known, the future and past states are computable. However,
the same problem remains, because only the partial final state is
known. The complete final state must be known before reversal.
Therefore a provisional part has to be guessed, and that provisional
part with the output (y) has to meet the initial state constrained with
public data. Finding a correct provisional part is as costly as a search
for correct input (password)

initial state  inverse cagy, provisional state. (6)

382 R. Vuckovac

Complex Systems, 30 © 2021

Figure 6. CAG transformation rule. “Current Array” and “Cell Array” are
the previous and next rows in one-dimensional CA evolution. Cells are multi-
bit integers (e.g., 32 bit). The next cell (blue) is the result of extended or (xor)
between the previous cell (black) and carry (green). The carry is the result of
xor of the previous carry value and the right-hand neighbor (red). The right-
hand neighbor comes in two values: original state (red) or flipped state
(magenta). Which neighbor state (original or flipped) is used depends on the
cyan neighbor’s relation.

Figure 7. CA puzzle. The CA initial state is partitioned as input and some pub-
lic data (red and green). Output (blue) is a partial state of the last CA evolu-
tion cycle. When green, blue and CA transformation rules are known, it is
hard to find red.

Cryptographic Puzzles and Complex Systems 383

https://doi.org/10.25088/ComplexSystems.30.3.375

Proposed Puzzles and Provable Security4.

Cryptanalysis dealing with CA rule 30 appeared in [22]. Hash and
one-way functions based on CAs are proposed and discussed in [23,
24]. Those works are in the heuristic security category, meaning that
security is based on resistance against newly discovered and known
attacks. That argumentation is open-ended because new attacks and
defenses techniques can be developed in the future.

From the heuristics point of view, puzzle proposals should accom-
modate the following hash requirements:

◼ Arbitrary input and fixed output size.

◼ Pre-image resistance: when given a hash, it is difficult to find the mes-
sage that will result in the given hash.◼ Second pre-image resistance: when given a particular message, it is diffi-
cult to find another message with the same hash.◼ Collision resistance: it is challenging to find a pair of messages with the
same hash.

Depending on the hash design, security is argued by addressing
known design weaknesses. For example, the hash function based on
block ciphers has an argumentation advantage because block ciphers
are extensively studied, and their weaknesses are well known.

Hash functions can be based on mathematical problems as well.
This approach tends to be impractical. Some hash functions based on
problems usually found in public-key cryptography are:

◼ Discrete algorithm problem, muHASH [25].

◼ Problem of finding modular square roots, VSH [26].

Because proposed puzzles are connected with well-known hard
problems (n-body and rule 30), a provable security method appears to
be a reasonable approach.

Discussion. First we assume that the computational irreducibility
principle holds. That means a desired state of some system is only
reachable by running/simulating that system. From a mathematical
point of view, we can consider it as a function with inputs and out-
puts, where the state transformation is the function and various states
in transition are inputs and outputs (Table 1). For example:

s′  rule30(s, i) (7)
where rule30 is CA rule 30, s is initial state (e.g., the first row of Fig-
ure 4) and s′ is the state after i CA iterations (e.g., the last row after
15 iterations, Figure 4).

Now, we can speculate on the properties of the state transition
function and its input/output (I/O) behaviors. First, we can sort the

384 R. Vuckovac

Complex Systems, 30 © 2021

initial state evolved state

input output

s1 s1
′

s2 s2
′… …

Table 1. Tabular representation of a CA state transition.

input column and observe what happens to the output column after
several experiments. We find that the output column does not behave
in an orderly fashion, and there is no visible pattern in the output
data. This phenomenon can be seen in chaos theory as a butterfly
effect, where very similar inputs produce drastically different output.
A CA example of it is shown in Figure 1, where 4096-bit initial states
differ by just one bit. That behavior might be expected because we
presume that the only access to I/O mapping is running the CA rule
or simulating an n-body system. On those premises, we can create a
puzzle by restricting knowledge to a partial value of input and output.
Since running a system is the only way to find output, an exhaustive
search is needed to match a partially known input with a partially
known output. In this case, the exhaustive search cost is O(n)—a lin-
ear traversal of the elements in a column.

However, this hypothesis might not hold. In that case, the search-
ing time cost for I/O matches will be <O(n). In theory, that is possi-
ble. A complete I/O table sorted by output will enable a search of

Olog n cost. In practice, that table is impossible to create because of

memory constraints. For example a 256-bit hash (output) needs a

table of ≈2256 entries.
Some other approaches might exist that can determine some order

behind the table mappings. One promising candidate is machine learn-
ing and artificial neural networks algorithms. They are the latest
techniques for solving complex problems. For example, we have a
headline from MIT Technology Review such as “A Neural Net Solves
the Three-Body Problem 100 Million Times Faster” [27]. Comments
on that article are [28]:

The revolution of machine learning has been greatly exagger-
ated… . The trouble is, the authors have given no compelling rea-
son to think that they could actually do this.

Even if we do not know how the proposal can be broken, we can
estimate some of the attack properties. Its I/O match searching cost
has to be less than exhaustive search (O(n) time cost estimate).

For example, the attack on CA rule 30 [22] shows how some pat-
terns in evolution history can be exploited. For example, the pattern
of rule 30 is clearly visible (Figure 4, left-hand side).

Cryptographic Puzzles and Complex Systems 385

https://doi.org/10.25088/ComplexSystems.30.3.375

It is also shown that for rule 30, the initial state of N  200 cells
and success probability of δ  0.5, the number of trials needed to find
the mapping in question is only μ  23000. However, the number of
cells N and number of trials μ remain in an exponential relation. For

a number of trials μ  250, the estimated number of cells is between
N  750 and N  900, indicating O(n) searching cost. A similar situa-
tion occurs with the factoring problem. While the latest factoring
record [29] is to factor a 829-bit number, the factoring problem
remains unsolved, and cryptography based on the factoring problem
remains sound as well (excluding quantum computing).

If proposed puzzles are defeated, then Table 1 will emerge with
some mathematical structure and should be comparable with other
data structures where the searching cost is less than O(n) (such as vari-
ous types of tree data structures). The eventual mathematical struc-
ture will be a significant finding for the n-body problem, potentially
inferring an efficient closed solution. For CA rule 30 problems, ran-
domness questions will be faced with apparent mathematical struc-
ture. The need to perform all intermediate steps between initial state s

and state s′ to find the nth cell will disappear.

Appendix

Implementation DetailsA.

With advances in computer hardware, the password exhaustive
search method becomes a very viable option. A couple of schemes
were developed in the 1990s to address this issue. MD5 crypt [30]
and bcrypt [31] are examples still used in some Unix flavors today.
The idea behind schemes is to make a hash function computation
slow (time hardening). For example, let us assume that one hashing of
a password eight characters long can be done in 0.001 seconds. Brute
force with the newest hardware finds the hash/password pair in 10
minutes. If we iterate the hash function 500 times by feeding the
resulting hash as a new hashing input, the computing cost is 0.5 sec-
onds. Half a second waiting for a user is acceptable, but brute force
cost is 83.33 hours now. Please see Table A.1.

hash iterations user wait attacker search cost

1 0.001 second 10 minutes

500 0.500 second 83.33 hours

Table A.1. PA time hardening.

A similar approach is adopted for hashing memory requirement.
By increasing the amount of fast storage required for hashing, the

386 R. Vuckovac

Complex Systems, 30 © 2021

brute force hardware cost should go up as well. One example of a
memory hardening scheme is scrypt [32]. However, this strategy does
not prevent custom-made hardware, especially in PoW schemes:

Hardware specialization resistance is futile.1.

The “success” of altcoins is not reliant on resistance.2.

PoW algorithms need to be easy to manufacture [33].3.

The PA puzzle implementation uses the CAG cellular automaton in
Listing 1. The description details of the CA used are given in [9].
Because it is ideal for mapping onto field-programmable gate arrays
(FPGAs), it is efficiently implemented in hardware [34].

The original listing appeared in the PHC competition. A modified
version with the exclusion of memory hardening is presented. The
motivation for that comes from some conclusion points made about
hardware resistance (memory hardening), especially on PoW’s require-
ment to be easily implemented in hardware (for which the proposed
hash function showed great potential).

The time hardening is achieved by specifying the length of evolu-
tion. Line 30; rounds  4; specifies that four evolution cycles are
applied to the initial state. For the desired time increase of evolution,
this variable should be adjusted accordingly.

//http://lists.openwall.net/phc - discussions/2014/09/18/3
#include < stdio.h >
#include < stdint.h >
#include < string.h >
#include < stdlib.h >

void stir (uint64_t * state, uint64_t statelen)
{

uint64_t mixer = 6148914691236517205; // 010101 ...
uint64_t carry = 1234567890123456789;
uint64_t j;

for (j = 0; j < statelen; j++)
{

if (state[(j + 2) % statelen] > state[(j + 3) % statelen])
carry ^= state[(j + 1) % statelen];

else
carry ^= ~state[(j + 1) % statelen];

state[j] ^= carry;
carry += mixer;

}
}

Cryptographic Puzzles and Complex Systems 387

https://doi.org/10.25088/ComplexSystems.30.3.375

int PHS (void *out, size_t outlen,
 const void *in, size_t inlen,
 const void *salt, size_t saltlen)
{

uint64_t state[256] = {0};
uint64_t statelen = 256;
uint64_t rounds = 4;
size_t i;
memmove (& state[0], in, inlen);
memmove (& state[(inlen / 8) + 1], salt, saltlen);
state[statelen - 3] = outlen;
state[statelen - 2] = inlen;
state[statelen - 1] = saltlen;

stir (state, rounds * statelen);

for (i = 0; i < outlen; i++)
 memcpy (& out + i, & state[i * 8], sizeof (char));

return 0;
 }

Listing 1. Password hash function (shhvrch01.h).

References

[1] J. Bourgain. “Searching for Randomness.” Institute for Advanced Study.
(Jul 22, 2021) www.ias.edu/ideas/searching-randomness.

[2] P. Sarnak, “Randomness in Number Theory,” Asia Pacific Mathematics
Newsletter, 2(3), 2012 pp. 15–19.
www.asiapacific-mathnews.com/02/0203/0015_0019.pdf.

[3] M. Jakobsson and A. Juels, “Proofs of Work and Bread Pudding Proto-
cols (Extended Abstract),” in Secure Information Networks: Communi-
cations and Multimedia Security IFIP TC6/TC11 Joint Working
Conference on Communications and Multimedia Security (CMS’99),
Leuven, Belgium (B. Preneel, ed.), Boston: Kluwer Academic Publishers,
1999 pp. 258–272. doi:10.1007/978-0-387-35568-9_18.

[4] C. Dwork and M. Naor, “Pricing via Processing or Combatting Junk
Mail,” in Advances in Cryptology—CRYPTO ’92, Santa Barbara, CA
(E. F. Brickell, ed.), Berlin, Heidelberg: Springer, 1992 pp. 139–147.
doi:10.1007/3-540-48071-4_10.

[5] A. Back. “Hashcash—A Denial of Service Counter-Measure.” (Aug 2,
2021) www.hashcash.org/papers/hashcash.pdf.

[6] digiconomist. “Energy Consumption Index.” (Jul 22, 2021)
digiconomist.net/bitcoin-energy-consumption.

388 R. Vuckovac

Complex Systems, 30 © 2021

https://www.ias.edu/ideas/searching-randomness
https://www.asiapacific-mathnews.com/02/0203/0015_0019.pdf
https://doi.org/10.1007/978-0-387-35568-9_18
https://doi.org/10.1007/3-540-48071-4_10
http://www.hashcash.org/papers/hashcash.pdf
https://www.digiconomist.net/bitcoin-energy-consumption

[7] “Hash Functions.” NIST: Information Technology Laboratory. (Jul 22,
2021) csrc.nist.gov/projects/hash-functions/sha-3-project.

[8] H. Feistel, “Cryptography and Computer Privacy,” Scientific American,
228(5), 1973 pp. 15–23. www.jstor.org/stable/24923044.

[9] R. Vuckovac, “Secure and Computationally Efficient Cryptographic
Primitive Based on Cellular Automaton,” Complex Systems, 28(4),
2019 pp. 457–474. doi:10.25088/ComplexSystems.28.4.457.

[10] N. Israeli and N. Goldenfeld, “Computational Irreducibility and the Pre-
dictability of Complex Physical Systems,” Physical Review Letters,
92(7), 2004 074105. doi:10.1103/PhysRevLett.92.074105.

[11] S. Wolfram, A New Kind of Science, Champaign, IL: Wolfram Media,
Inc., 2002.

[12] K. F. Sundman et al., “Mémoire sur le problème des trois corps,” Acta
Mathematica, 36, 1913 pp. 105–179. doi:10.1007/BF02422379.

[13] W. Qiu-Dong, “The Global Solution of the N-body Problem,” Celestial
Mechanics and Dynamical Astronomy, 50(1), 1990 pp. 73–88.
doi:10.1007/BF00048987.

[14] K. T. Alligood, T. D. Sauer and J. A. Yorke, Chaos: An Introduction to
Dynamical Systems, New York: Springer-Verlag, 1996.

[15] M. Trenti and P. Hut, “N-Body Simulations (Gravitational),” Scholarpe-
dia, 3(5), 2008 3930. doi:10.4249/scholarpedia.3930.

[16] E. Zeleny, “N-Body Problem in 2D” from the Wolfram Demonstrations
Project–A Wolfram Web Resource.
demonstrations.wolfram.com/NBodyProblemIn2D.

[17] S. Ulam, “Random Processes and Transformations,” in Proceedings
of the International Congress of Mathematicians, Cambridge, MA,
1950, vol. 2., Providence, RI: American Mathematical Society, 1952
pp. 264–275.

[18] J. von Neumann, Theory of Self-Reproducing Automata (A. W. Burks,
ed.), Urbana, IL: University of Illinois Press, 1966.

[19] S. Wolfram, “Cryptography with Cellular Automata,” in Advances
in Cryptology—CRYPTO ’85 Proceedings, Santa Barbara, CA
(H. C.�Williams, ed.), Berlin, Heidelberg: Springer, 1985 pp. 429–432.
doi:10.1007/3-540-39799-X_32.

[20] “The Wolfram Rule 30 Prizes.” The Wolfram Foundation.
www.rule30prize.org.

[21] S. Wolfram. “Announcing the Rule 30 Prizes.”
writings.stephenwolfram.com/2019/10/announcing-the-rule-30-prizes.

[22] W. Meier and O. Staffelbach, “Analysis of Pseudo Random Sequences
Generated by Cellular Automata,” in Advances in Cryptology—EURO-
CRYPT ’91, Brighton, UK (D. W. Davies, ed.), Berlin, Heidelberg:
Springer, 1991 pp. 186–199. doi:10.1007/3-540-46416-6_17.

Cryptographic Puzzles and Complex Systems 389

https://doi.org/10.25088/ComplexSystems.30.3.375

https://csrc.nist.gov/projects/hash-functions/sha-3-project
https://www.jstor.org/stable/24923044
https://doi.org/10.25088/ComplexSystems.28.4.457
https://doi.org/10.1103/PhysRevLett.92.074105
https://doi.org/10.1007/BF02422379
https://doi.org/10.1007/BF00048987
https://dx.doi.org/10.4249/scholarpedia.3930
https://demonstrations.wolfram.com/NBodyProblemIn2D/
https://doi.org/10.1007/3-540-39799-X_32
https://www.rule30prize.org/
https://writings.stephenwolfram.com/2019/10/announcing-the-rule-30-prizes/
https://doi.org/10.1007/3-540-46416-6_17
https://doi.org/10.25088/ComplexSystems.30.3.375

[23] M. Mihaljevic, Y. Zheng and H. Imai, “A Cellular Automaton Based
Fast One-Way Hash Function Suitable for Hardware Implementation,”
in Public Key Cryptography—PKC 1998, Pacifico Yokohama, Japan
(H. Imai and Y. Zheng, eds.), Berlin, Heidelberg: Springer, 1998
pp. 217–233. doi:10.1007/BFb0054027.

[24] M. Mihaljevic, Y. Zheng and H. Imai, “A Family of Fast Dedicated One-
Way Hash Functions Based on Linear Cellular Automata over GF(q),”
IEICE Transactions on Fundamentals of Electronics, Communications
and Computer Sciences, 82(1), 1999 pp. 40–47.

[25] M. Bellare and D. Micciancio, “A New Paradigm for Collision-Free
Hashing: Incrementality at Reduced Cost,” in Advances in Cryptology—
EUROCRYPT ’97, Konstanz, Germany (W. Fumy, ed.), Berlin, Heidel-
berg: Springer, 1997 pp. 163–192. doi:10.1007/3-540-69053-0_13.

[26] S. Contini, A. K. Lenstra and R. Steinfeld, “VSH, an Efficient and Prov-
able Collision-Resistant Hash Function,” in Advances in Cryptology—
EUROCRYPT 2006, St. Petersburg, Russia (S. Vaudenay, ed.),
Springer, 2006 pp. 165–182. doi:10.1007/11761679_11.

[27] Emerging Technology from the arXiv. “A Neural Net Solves the Three-
Body Problem 100 Million Times Faster.” MIT Technology Review.
(Jul 22, 2021) www.technologyreview.com/2019/10/26/132171/
a-neural-net-solves-the-three-body-problem-100-million-times-faster.

[28] G. Marcus and E. Davis, “Are Neural Networks About to Reinvent
Physics?,” Nautilus. (Jul 22, 2021) nautil.us/issue/78/atmospheres/
are-neural-networks-about-to-reinvent-physics.

[29] F. Boudot, P. Gaudry, A. Guillevic, N. Heninger, E. Thomé and P. Zim-
mermann, “Comparing the Difficulty of Factorization and Discrete
Logarithm: A 240-digit Experiment.” arxiv.org/abs/2006.06197.

[30] N. Provos and D. Mazières, “Md5 crypt,” in USENIX, 1999. (Aug 3,
2021) www.usenix.org/legacy/event/usenix99/provos/provos_html/
node10.html.

[31] N. Provos and D. Mazières, “A Future-Adaptable Password Scheme,” in
1999 USENIX Annual Technical Conference, Monterey, CA, 1999
pp. 81–91. www.usenix.org/legacy/events/usenix99/provos.html.

[32] C. Percival and S. Josefsson, “The scrypt Password-Based Key Deriva-
tion Function,” IETF Draft. (Jul 22, 2021)
datatracker.ietf.org/doc/html/draft-josefsson-scrypt-kdf-00.

[33] StopAndDecrypt. “Asic Resistance Is Nothing but a Blockchain Buzz-
word.” Hacker Noon. (Jul 22, 2021) hackernoon.com/asic-resistance-is-
nothing-but-a-blockchain-buzzword-b91d3d770366.

[34] A. Palchaudhuri and A. S. Dhar, “Primitive Instantiation for Speed-Area
Efficient Architecture Design of Cellular Automata Based Mageto Logic
on FPGA with Built-In Testability,” in 2020 IEEE 28th Annual Interna-
tional Symposium on Field-Programmable Custom Computing
Machines (FCCM), Fayetteville, AR, Piscataway, NJ: IEEE, 2020
pp. 207–207. doi:10.1109/FCCM48280.2020.00038.

390 R. Vuckovac

Complex Systems, 30 © 2021

https://doi.org/10.1007/BFb0054027
https://doi.org/10.1007/3-540-69053-0_13
https://doi.org/10.1007/11761679_11
https://www.technologyreview.com/2019/10/26/132171/a-neural-net-solves-the-three-body-problem-100-million-times-faster/
https://www.technologyreview.com/2019/10/26/132171/a-neural-net-solves-the-three-body-problem-100-million-times-faster/
https://nautil.us/issue/78/atmospheres/are-neural-networks-about-to-reinvent-physics
https://nautil.us/issue/78/atmospheres/are-neural-networks-about-to-reinvent-physics
https://arxiv.org/abs/2006.06197
https://www.usenix.org/legacy/event/usenix99/provos/provos_html/node10.html
https://www.usenix.org/legacy/event/usenix99/provos/provos_html/node10.html
https://www.usenix.org/legacy/events/usenix99/provos.html
https://datatracker.ietf.org/doc/html/draft-josefsson-scrypt-kdf-00
https://hackernoon.com/asic-resistance-is-nothing-but-a-blockchain-buzzword-b91d3d770366
https://hackernoon.com/asic-resistance-is-nothing-but-a-blockchain-buzzword-b91d3d770366
https://doi.org/10.1109/FCCM48280.2020.00038

