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 A Data Fusion System designed to provide a reliable assessment of the occurrence of 
Foreign Object Damage (FOD) in a turbofan engine is presented.  The FOD-event feature 
level fusion scheme combines knowledge of shifts in engine gas path performance obtained 
using a Kalman filter, with bearing accelerometer signal features extracted via wavelet 
analysis, to positively identify a FOD event. A fuzzy inference system provides basic 
probability assignments (bpa) based on features extracted from the gas path analysis and 
bearing accelerometers to a fusion algorithm based on the Dempster-Shafer-Yager Theory 
of Evidence. Details are provided on the wavelet transforms used to extract the foreign 
object strike features from the noisy data and on the Kalman filter-based gas path analysis.  
The system is demonstrated using a turbofan engine combined-effects model (CEM), 
providing both gas path and rotor dynamic structural response, and is suitable for rapid-
prototyping of control and diagnostic systems. The fusion of the disparate data can provide 
significantly more reliable detection of a FOD event than the use of either method alone.  
The use of fuzzy inference techniques combined with Dempster-Shafer-Yager Theory of 
Evidence provides a theoretical justification for drawing conclusions based on imprecise or 
incomplete data. 
 

Nomenclature 
A  Amplitude of oscillation, State Space Model System Matrix, fused event set 
A i  Source i event set 
Am  Reconstructed approximation component of wavelet-analyzed signal at scale m 
BE  Belief 
Dm  Reconstructed detail component of wavelet-analyzed signal at scale m  
DTWTD  Discrete-time wavelet transform detail coefficient  
DTWTA  Discrete-time wavelet transform approximation coefficient  

δ   Deviation from steady state operating condition 
f  Frequency in Hz 
m   Dyadic scale of wavelet-decomposed signal, basic probability assignments (bpa) 
n  Wavelet time delay in number of samples 
PROB  Probability 
PL  Plausibility 

h,δy,δxδ ˆˆˆ
  Estimated state variables, output, and health parameters 

Y(f)  Discrete Fourier Transform of y(n) 

m,nψ   Wavelet at scale m and translation n 

φ   Null set  

nmφ ,   Wavelet scaling function at scale m and translation n 
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I. Introduction 
 
Although ingestion of birds and ice has occasionally resulted in uncontained rotor events in commercial jet 

transport,1 in the vast majority of cases bird ingestion does not affect the safe outcome of a flight and may, in fact, 
go unnoticed by the flight crew.2  However ingestion does pose a risk of Foreign Object Damage (FOD), and even in 
a case where there is no apparent damage to an engine as observed from the cockpit, latent effects (e.g. cracks that 
can be propagated by high cycle fatigue3) may be present; thus it is important to be aware of its occurrence, if 
possible.  A system that detects foreign object impact has two potential uses, depending on the level of certification 
achievable.  The first, and simplest to implement from a certification standpoint, reports to the ground crew that a 
foreign object was ingested and initiates a maintenance action.  The second is harder to certify because it requires 
providing an indicator to the pilot, but is potentially more beneficial from a safety point of view because it addresses 
the issue of pilot response to an event.  This use is suggested by the numerous cases of bird ingestion contributing to 
accidents, some of them fatal.4  Specific pilot procedures have been developed for situations where ingestion is 
suspected, and forensic analysis has repeatedly shown that they would have been the appropriate actions to take in 
cases where rejected takeoffs motivated by bird ingestion resulted in accidents.5  When a multi-engine aircraft flies 
through a flock of birds, potentially damaging more than one engine, the pilot needs to understand the status since 
his resulting actions may be different depending on the number of engines involved.  Most FOD events occur close 
to the ground when the flight crew’s attention is focused on flying the plane.  Only after the crew stabilizes the 
aircraft at a safe altitude should they take action on the engine.2, 5  Once the aircraft is stable, the reduced workload 
in the cockpit environment provides better circumstances under which the crew can analyze the situation, and they 
would benefit greatly by having full knowledge of the engines involved and the likelihood of the event based on 
data, and this is the type of information such a system could provide.  Either of these two uses provides justification 
for the development of a FOD detection system.  This paper will not address how the system should be used beyond 
this; the objective was to make the reader aware of the utility such a system can provide. 

The critical consequence of foreign object ingestion is engine surge, potentially resulting in the loss of power.  
The flight crew can recognize foreign object ingestion through a combination of instrument readings and sensory 
cues.  These include such symptoms as a thud or bang, a fire warning, a visible flame coming out of the engine, 
vibration, yaw of the airplane caused by thrust imbalance, high Exhaust Gas Temperature (EGT), change in the 
spool speeds, smoke/odor in cabin bleed air, and Engine Pressure Ratio (EPR) change.  It is important to note that 
for impact-type FOD (due to ice, birds, runway debris, etc.), the damage is primarily to the fan and front part of the 
engine, with the extent of the damage determined by the geometry, angle of impact, hardness, relative speed, etc. of 
the object.  This is quite different from ingestion of volcanic ash, which may severely affect the hot section of the 
engine while producing no visible damage to the cooler portions in the front.6 

Given that many of the potential symptoms of FOD are not unique to that event, an automatic system for FOD 
detection should take information from multiple sources to provide confidence in its diagnosis.  Just like a pilot 
does, this system must fuse the information in a way that provides a measure of the likelihood of foreign object 
ingestion in order to determine any corrective action.  Additionally, since several of the potential symptoms are 
described in terms of human senses, alternate information sources need to be developed, and they should utilize the 
standard engine sensor suite (or a very similar suite) to address issues such as certification and retrofit.  Naturally the 
processing requirements may vary from the current systems simply due to the fact that additional signal processing 
is being added to execute these algorithms on line. 

Effective diagnostic system development requires identification and extraction of the essential signal features 
necessary for a timely, accurate assessment of the state of the system being monitored. For a given malfunction or 
event (e.g., a FOD event) this requires identification of the key components affected by the event, the parameters 
and appropriate signals to be analyzed, and the essential features within the signals that provide the minimum 
information necessary to arrive at a diagnosis i.e., reducing the dimensionality of the raw data.  In this work we 
address impact-type events and have chosen to fuse data from a Gas Path Analysis (GPA) with rotordynamic 
structural effects to provide an indication of the presence of FOD.  Changes in component efficiencies, high and low 
spool speeds, as well as changes in other engine parameters have been determined/observed during foreign object 
damage FOD events.7, 8  In some cases, these parameter changes alone may not be conclusive proof that a FOD 
event has occurred.  Incorporation of structural vibration signals provides a means to aid in positive identification of 
a FOD event.  To successfully apply available sensor fusion techniques, the same event should be detected using 
sensors that have significantly different physical characteristics (e.g., thermocouples compared to accelerometers) 
and rely on measuring physically different parameters (e.g., temperature vs. acceleration).9, 10  Fusing gas path 
performance parameter estimates with structural response information acquired during a FOD event could provide 
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conclusive evidence that a FOD event had occurred. For example, model mismatch or sensor bias11 could 
conceivably result in gas path performance parameter estimate changes similar to those experienced during a FOD 
event.  Similarly, vibration signals alone may possess FOD-like characteristics depending on the maneuver e.g., a 
rapid change in thrust demanded from the engine would result in temporary impulse-like force imbalances which are 
transmitted through the engine structure. The combination of available evidence i.e.,  specific changes in gas path 
performance parameter estimates combined with application of state-of-the-art signal processing techniques applied 
to structural vibration signals (e.g, wavelet analysis12, 13),  could provide the “finger print” necessary to positively 
identify a FOD event.  In the present investigation we are detecting impact events, so we assume that the component 
most affected by a FOD event in a turbofan engine is the fan, with any damage incurred resulting in changes in fan 
efficiency and efficiency rate of change.8  Fan structural changes resulting from a FOD event could manifest 
themselves as abrupt, short duration changes in the vibration signal due to the object’s impact upon the fan disk, 
extracted using wavelet analysis, as well as changes in the amplitude of vibration and the amplitude of vibration rate 
of change due to FOD event-induced rotor imbalance. 

This paper describes the proof-of-concept development and application of a FOD event detection scheme, 
utilizing features extracted from rotor structural data (accelerometer signals) and analytical measurements (gas path 
analysis). Figure 1 provides an overview of the fusion system. The vibration data-driven portion of the system 
utilizes a wavelet-based algorithm developed as part of the work presented in Turso et al.14  Selected features are 
extracted from the gas path analysis and the engine’s vibration monitoring system and assessed via two fuzzy 
inference engines respectively, each providing a “possibility” distribution for FOD event occurrence. The inference 
engines (or “experts” used in the present context) assign degrees of membership to these features, which are 
subsequently transformed into basic probability assignments for the gas path and vibration components, and are 
fused via Dempster’s combination algorithm.15  The features being categorized in the gas path analysis are fan 
efficiency and time rate-of-change of fan efficiency. For the vibration component, the acceleration signals are 
processed using a wavelet transform-based algorithm, with a new wavelet being created for the specific purpose of 
finding abrupt changes in noisy accelerometer signals due to FOD events. Two additional features extracted are the 
amplitude of vibration (determined via a single-frequency Fourier transform calculated at the rotational speed of the 
engine), and the rate-of-change in amplitude due to a FOD-induced rotor imbalance.  The system developed fuses 
information at the feature level16 and is intended to provide a reduced information set to a decision maker, i.e., the 
decision level fusion. 

The paper is organized as follows. Following the parallel paths shown in figure 1, Section II provides a 
description of hypothesized FOD event effects on the gas path analysis and structural response of a (simulated) 
turbofan engine as well as the techniques used to extract selected features from the gas path analysis and vibration 
signals.  The bottom box of figure 1 encompasses Section III, which describes the method used for basing a decision 
(e.g., whether or not a FOD event has occurred) on imprecise, uncertain information from multiple sources i.e., the 
features extracted from the gas path analysis and vibration signals. Details of the fuzzy inference engines (one for 
each expert) and fusion algorithm are provided. Section IV presents the results for three cases where: 1) the experts 
are in perfect agreement that a FOD event has occurred, 2) the information extracted leads to uncertainty in the 
fused, final conclusion, and 3) the evidence presented leads to direct conflict among the experts. An alternate 
method for presenting the fused information is also presented. Conclusions are provided in Section V. 
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II. Signal Conditioning and Feature Extraction from Gas Path and Vibration Sensor Measurements 
 

A. Gas Path Analysis Feature Extraction via Kalman Filter Estimation 
 

For approximately two decades techniques based on the Kalman filter (figure 2) have been applied to turbofan 
engine diagnostics.17, 18  Specifically, Kalman filters have been used for detection of engine degradation via 
estimation of a set of health parameters—parameters that give an indication of the health of the engine—which are 
in general not measurable themselves (e.g., compressor or fan efficiency), and are calculated via knowledge of 
measurable quantities. The degradation monitored may be gradual in nature e.g., worn components result in 
increased internal clearances resulting in decreased component efficiency, or may be due to an abrupt event as is the 
case when foreign objects are ingested into the engine.  Because the Kalman filter uses gas path measurements in its 
computations, it implicitly fuses some of the same data a pilot uses to diagnose a FOD event. 

The Kalman Filter algorithm19 is an optimal state estimator specifically designed for linear stochastic processes 
with the calculations being performed recursively, i.e., only requiring present observations and the previously 
estimated state variables. The estimator gain, K in figure 2, provides for tuning of the estimated state variables 
depending on the value of the innovation function, ŷδ-yδ . The estimated state variables are optimal in the least-

squares sense. A state-variable model of the system is used in the estimator as part of the on-board diagnostic 
system. 
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Extraction of relevant features:
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Figure 1: FOD-event Gas Path Analysis/Structural Response Evidence Fusion Architecture. 
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When using the Kalman filter as a health parameter estimator, the health parameters are interpreted as 
additional state variables to be estimated. These additional state variables are typically assumed to be constants, with 
the corresponding entries in the system matrix of the state-space system representation set to zero. The resulting 
state space representation is 
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with [ ]TTT δhδx referred to as the augmented state vector, and δu(t), δy(t), and δh(t) are the control input, 

output, and health parameter deviations from nominal values respectively. The specific health parameter (or 
parameters) used by the fusion system is dictated by the component (or components) most likely to be affected by a 
FOD event.  It has been shown that fan efficiency, as well as fan flow capacity, are likely to be affected by a FOD 
event8 thus, for the present investigation, fan efficiency is the health parameter of interest.   We assume that the 
larger the impact, the larger the deviation in the health parameter values.  The features extracted from the efficiency 
estimate are the denoised versions of the estimated fan efficiency and the rate-of-change of the fan efficiency. For a 
FOD event, significant changes in the efficiency and rate-of-change in efficiency are expected to be coincident.  
Figure 3 presents an example of the estimated efficiency, which shows the effect of sensor noise on the estimate. 
The other feature used by the fusion system, rate of change of efficiency, requires taking the derivative of a noisy 
signal, which results in an amplification of the noise rendering this feature unusable in the present context. Thus, a 
means is required for effectively denoising the efficiency estimate prior to calculating its rate of change.  Figure 3 
also shows the efficiency estimate after denoising using a running average. The noise level is significantly 
decreased, which allows for easier detection of significant changes in the efficiency rate-of-change.  The time lag 
introduced by the running average (approximately 0.5 seconds) is considered acceptable given the present 
application, with the tolerable time lag ultimately dictated by the end use of the system. 
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Figure 2: Overview of the Kalman Filter parameter estimator. 
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B. Vibration Signal Feature Extraction 
 

Much of the specific information concerning the vibration signatures associated with FOD events (e.g., rotor 
frequencies excited during foreign object impact on the fan disk) in turbofan engines is not available in the open 
literature. Also, analytical structural models of aircraft engines, such as Finite Element Models (FEMs), are typically 
computation-time intensive due to the vast amounts of time-dependant spatial data they produce, and do not lend 
themselves for direct application to diagnostic system development and testing.14  Due to the lack of high-frequency 
FOD-event test data in the open literature, a Reduced-Order turbofan structural Model (ROM) was synthesized from 
a finite element model modal analysis of the rotor assembly of a large turbofan jet engine to support this 
investigation. The resulting ROM transient response was benchmarked against the finite element code and 
considered to be adequate for the present investigation. Use of the ROM provided a factor of 40 decrease in run time 
compared to the FEM, which correspondingly decreased the development time of the fusion system. An example 
transient response from an inherent rotor imbalance and FOD of the turbofan model (exaggerated to highlight the 
effects) is shown in figure 4.  A rotor vibration sensor signal measured at the fan bearing (a typical location on a 
turbofan engine) during a FOD event would consist of the response of a dominant low-frequency lateral mode 
excited from an impulsive moment at the fan disk/rotor shaft due to the initial impact of the foreign object upon the 
fan disk. Higher frequency lateral modes would also be excited due to the high frequency content of the foreign 
object impact, and appear in the sensor signal immediately after the event. Possible longer lasting effects due to 
resulting permanent blade damage i.e., an imbalance force occurring at a frequency corresponding to once per 
revolution of the rotor, may also appear. Rotating equipment tends to have a relatively small degree of inherent 

a)

c)

b)

Delta Fan Eff.

Noisy Delta Fan Eff. Estimate

Smoothed Estimate

Time (sec)

a)

c)

b)

Delta Fan Eff.

Noisy Delta Fan Eff. Estimate

Smoothed Estimate

a)

c)

b)

a)

c)

b)

Delta Fan Eff.

Noisy Delta Fan Eff. Estimate

Smoothed Estimate

Time (sec)

Figure 3: (a) Kalman Filter delta fan efficiency estimate, actual delta efficiency, and smoothed estimate, (b) 
rate-of-change of delta fan efficiency estimate prior to smoothing, (c) rate-of-change of delta fan efficiency 
estimate based on smoothed delta efficiency estimate. 
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imbalance after manufacturing20 which is also included in the reduced order structural model for a “steady state” 
response. The FOD-event depicted in figure 4 produces no permanent imbalance (structural damage). A permanent 
imbalance would have resulted in increased steady-state amplitude after the FOD event.  The hypothesized sequence 
of events is predominantly based on intuition and qualitative assessments by the authors. 
 

 
 
 

Consider the simulated bearing accelerometer signals shown in figure 5. At 3.44 seconds, a 0.5 lbm foreign 
object hits the fan disk with a speed of 300 mph at a radius of 20 inches. The event is modeled as a pulse of width 
0.05 seconds, with a magnitude determined using the method presented in Turso.14  A fan disk eccentricity of 0.001 
inches is assumed. The event results in no additional permanent imbalance. As shown in figure 5a, the event is 
barely noticeable in the time trace for a noise-free situation. However accelerometer signals on in-service engines 
are typically noisy. In addition to “process noise” i.e., random motion of the aircraft due to wind gusts and 
compensating maneuvers being transmitted from the airframe to the engine, there is a significant amount of sensor 
noise which may mask the occurrence of a FOD event. Figure 5b shows the noise-corrupted bearing accelerometer 
signal with a signal-to-noise ratio of approximately 3.5 (11 dB). Observation of the signal shows no well-defined 
point in time at which one would identify a FOD event occurrence. Had there been permanent imbalance, the event 
may have been detected by the increased amplitude of vibration (this is the type of information available in current 
vibration monitoring systems).  However, if no additional permanent imbalance is induced, this would be among the 
most difficult scenarios to detect for a diagnostic system, and highlights the need for an additional feature to be 
extracted from the signal which can effectively identify the abrupt change at the time of a FOD event. Wavelet 
decomposition, reconstruction, and conditioning will provide this additional feature.21, 22 

Pre-FOD 
-Inherent rotor imbalance

FOD Event 

Post-FOD 
- Moment due to impact
- Possible additional imbalance due to 
permanent blade damagePre-FOD 

-Inherent rotor imbalance
Pre-FOD 
-Inherent rotor imbalance
Pre-FOD 
-Inherent rotor imbalance

FOD Event 

Post-FOD 
- Moment due to impact
- Possible additional imbalance due to 
permanent blade damage

Post-FOD 
- Moment due to impact
- Possible additional imbalance due to 
permanent blade damage

 
Figure 4: Representative response at bearing location to a moderately-sized FOD event. 
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C. FOD event Detection using Wavelet Analysis of Rotor Bearing Vibration Signals 
 
Over the past decade the discrete time wavelet transform (DTWT) has been applied to a wide range of signal 

analysis problems e.g., de-noising of signals as well as time localization and reconstruction of short duration 
changes.13, 21, 22  The DTWT is considered to be a viable candidate for the present study due to the nature of the 
signal characteristic of interest i.e., an abrupt change in a bearing vibration signal due to a FOD event, corrupted by 
noise.   

The DTWT is the discrete-time counterpart of the continuous-time wavelet transform (CWT) 
 

dt
a

tΨ)y(t
a

1
)CWT(a, ∫ 






 −= ττ         (2)             

 

whereΨ(t) is the basic or mother wavelet and aa)//τ)-Ψ((t are the wavelet basis functions which are scaled 

via the parameter a (by compressing or stretching the mother wavelet) and shifted in time by τ . The operation 
performed in Equation 2 on the original signal y(t) may be interpreted as the correlation of the signal y(t) with 

aa)//Ψ(t , shifted by τ/a.22  Thus, the CWT computes the component of y(t) that is similar to aa)//Ψ(t . If 

little (or no) similarity exists between the two, then the CWT will be small (or zero). Larger values of CWT indicate 
better correlation.  

In discrete-time the wavelet transform takes the form 
 

)nτkψ(ay(k)an)DTWT(m, o
k

m
o2

m

o −= ∑ −−     (3) 

 
where m is the scale (degree of dilation) and n corresponds to the net translation in time (in terms of the sample time 
τo) of the wavelet at a specific scale. Thus wavelet transformation provides a means to locate the occurrence of 

a)

b)

a)

b)

 
Figure 5: Bearing Accelerometer output signal corresponding to a FOD event. (a) Noise free system 
response. (b) System response with process and sensor noise. 
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events of varying frequency content in time. The base value of scaling parameter ao and the time shift τo are typically 
set equal to 2 and 1 respectively for computational efficiency, analogous to the Fast Fourier Transform23 (FFT). 

The coefficients corresponding to the low-frequency portion of the input signal (the approximation coefficients) 
and the high-frequency detail coefficients at a given scale in a wavelet decomposition are provided by successive 
low pass and high pass filtering operations respectively.22  Reconstruction of the approximations and details at a 
specified scale m is performed via the corresponding inverse wavelet transform  
 

)(kψn)DTWTD(m,(k)D
n

nm,m ∑=      (4) 

 

∑=
n

nm,m (k)φn)DTWTA(m,(k)A        (5) 

and is implemented via banks of reconstruction or synthesis filters.22 
Figure 6 presents a wavelet analysis of the noisy accelerometer signal shown in figure 5 at a scale-8 

approximation with the Daubechies 8 wavelet.22  The signal sampling rate of 10,000 Hz was determined to be the 
minimum at which the frequencies of interest i.e., those corresponding to the lateral modes of vibration of the rotor, 
could be obtained without aliasing.23  There is a noticeable correlation between the wavelet (at the chosen scale) and 
the change in the signal due to the occurrence of the FOD at the time of impact. However, similar characteristics 
occur at other times which illustrates that the wavelet chosen (as well as several other wavelets tested, not presented 
here), may have difficulty highlighting a subtle change buried in a low signal-to-noise ratio (SNR = 3.5) signal. 
 

 
 
 Mallett24 proposed a technique for identifying a wavelet specifically designed for edge detection in computer 
vision systems.  A signal (or 2-D image in the original application) is passed through a smoothing function (e.g., a 
low pass filter) and differentiated multiple times. The combination of smoothing and differentiation results in a 
wavelet customized to the application. This technique was adapted to identify the FOD event-induced short-time 
change in accelerometer signals. The smoothing filter chosen for the present investigation is the Daubechies 8 
wavelet decomposition. As shown in figure 7, the accelerometer signal is passed through an approximation filter 
bank three times and subsequently passed through a detail filter. This provides a means to focus on a subband of the 
original signal where the feature of interest is thought to lie, the net effect being a low-pass filtering or smoothing 

a)

b)

a)

b)

 
Figure 6: Wavelet analysis of noisy bearing accelerometer signal (a) accelerometer signal, (b) corresponding 
Daubechies wavelet inverse transform, scale 8 approximation. 
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operation.  The result is differentiated three times to produce the feature used by the structural expert (i.e., structural 
component fuzzy inference engine) in the next step of the fusion process. 
 

 
 
 Figure 8 presents the wavelet decomposition of the same accelerometer signal shown in figure 6, using the 
custom wavelet described above. The exact time of the event is precisely determined using this technique. Indeed, 
the event is modeled by imposing a pulse whose magnitude is a function the of foreign object impact characteristics 
presented in Turso,14 on the fan disk. The two spikes shown in figure 8 result from the rising and descending parts of 
that pulse “filtered” through the mechanical (i.e., rotor-bearing) system.  The event input profile to the model (i.e., 
the pulse input described above) was considered to be appropriate for a significant, structurally damaging event, i.e., 
where the foreign object absorbs virtually none of the energy of impact, resulting in complete and immediate 
transfer of energy to the fan disk.  This would be the case for hard objects such as ice, for example.  For other 
scenarios, pulses of lower magnitude or with non-infinite rising (or descending) slopes may require higher-order 
differentiation for detection. 
 
 
 

HD

LD

HR

LR

Fan Bearing 
Accelerometer 

Signal

LD

LR LR

Scale 1 Detail

Scale 1 Approximation

Scale 3 Detail

HD

LD

LR

HR

Low Pass Reconstruction FIR 
Filter

Low Pass Decomposition FIR 
Filter

High Pass Decomposition FIR 
Filter

High Pass Reconstruction FIR 
Filter

Downsample
by a Factor of 2

Upsample
by a Factor of 2

LD

LR

HD HR
3

3

dt

)(d
Wavelet Feature

To Fuzzy Inference 
Engine

HDHD

LDLD

HRHR

LRLR

Fan Bearing 
Accelerometer 

Signal

LDLD

LRLR LRLR

Scale 1 Detail

Scale 1 Approximation

Scale 3 Detail

HD

LD

LR

HR

Low Pass Reconstruction FIR 
Filter

Low Pass Decomposition FIR 
Filter

High Pass Decomposition FIR 
Filter

High Pass Reconstruction FIR 
Filter

Downsample
by a Factor of 2

Upsample
by a Factor of 2

HDHD

LDLD

LRLR

HRHR

Low Pass Reconstruction FIR 
Filter

Low Pass Decomposition FIR 
Filter

High Pass Decomposition FIR 
Filter

High Pass Reconstruction FIR 
Filter

Downsample
by a Factor of 2
Downsample

by a Factor of 2

Upsample
by a Factor of 2

Upsample
by a Factor of 2

LDLD

LRLR

HDHD HRHR
3

3

dt

)(d
3

3

dt

)(d
Wavelet Feature

To Fuzzy Inference 
Engine

 
Figure 7: Wavelet transform-based vibration feature extraction implemented using an analysis and 
synthesis FIR filter bank. 
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Figure 8: Noisy bearing accelerometer signal analyzed using custom wavelet a) accelerometer signal b) 
Wavelet feature extracted identifying time of impact. 
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Figure 9: Vibration features extracted during a simulated FOD event at 2.0 second. (a) Fan accelerometer 
signal with DFT-generated amplitude superimposed. (b) Amplitude rate-of-change. (c) “Wavelet feature” 
produced by processing the signal through the algorithm shown in figure 7. 
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If a permanent imbalance results from a FOD event, two other features extracted from the accelerometer signal 
may assist in the diagnosis. These are the vibration amplitude and rate-of-change of amplitude determined from the 
magnitude of a single-frequency discrete Fourier transform,23  
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-n
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The analysis frequency corresponds to the rotational speed of the rotor and would practically be obtained from a 
once-per-revolution signal used to gauge engine rotational speed. Large amplitudes accompanied by high amplitude-
rates-of-change would be indicators that a FOD event has occurred. An example of the three features obtained from 
the fan bearing accelerometer signal is shown in figure 9 for a simulated FOD event (using the combined-effects 
model mentioned earlier) at 2.0 seconds. 
 

III. Evidence Fusion Based On Imprecise Information 
 

 The majority of diagnostic system development utilizes simulated data, at least in the initial phases.  For many 
components in the initial phase of design, the only dynamic data available is provided by simulation models.  Even 
when actual data is available for diagnostic system development, the data many times is not acquired under in-
service conditions.  Thus the diagnostic system must be robust to model uncertainty as well as to uncertainties due to 
usage and off-design operation; it must provide a diagnosis based on imprecise information.  The system should 
have the capability to fuse together multiple sources of evidence in order to enhance confidence in the diagnosis.  
Until recently many of these systems have utilized Bayesian-based probabilistic methods such as Bayesian Belief 
Networks and Bayesian Hypothesis Testing.15  Use of a Bayesian method implies that the conditional probabilities 
required are determined via testing, i.e., the probabilities that observations made given the occurrence of certain 
events are based on actual data (or well-understood distributions presented in the literature) and precisely known. 
This many times is not the case due to the prohibitive costs of running the necessary tests or the rarity of the event. 
Indeed, as mentioned previously, the component may not even exist for the diagnostic system being designed.  A 
means for reducing the available evidence, i.e., the features extracted from sensors via Kalman filters, or vibration 
signals described earlier, and developing a measure of the possibility of FOD occurrence is required.  The output of 
the system will be imprecise as well, providing a range of probabilities (upper and lower bounds) in lieu of a crisp or 
exact output which, in the present context, could provide a misleading impression of the state of the system. 
 Data or sensor fusion, is the process by which raw data is obtained from several sensors, based in significantly 
different phenomenology observing the same event, and converted to a measure of how likely the event is to occur.25  
The measure may be the basis for a decision or may simply be for informational purposes.  The fusion may be 
performed at the raw data level, feature level, or decision level, or combinations of each. Typically, raw data is 
reduced to a compact set of features, which provides an efficient means for expert diagnosis. The features are fused 
by an “expert,” in this case a fuzzy logic-based inference system,26,27 into a diagnosis (opinion) based on the 
evidence available. Each expert’s opinion is in turn fused by combining the “weight of evidence” provided by each 
expert via an appropriate rule. Consider as an example the “gas path expert” shown in figure 10. The estimated fan 
efficiency deviation and rate-of-change of efficiency deviation, i.e. features, are input into the set of fuzzy 
membership functions that categorize the evidence as indicating a low, medium, or high likelihood of FOD event 
occurrence.  Each degree of membership is combined using a multiplicative AND operation, with the mean of 
maximum defuzzification operation providing a FOD, NOFOD, or UNCERTAIN expert decision. Design of 
membership functions and aggregation rules are based on expert knowledge.27  In a probabilistic decision setting, 
with say, the a posteriori probability of FOD occurrence being determined via Bayes’ law, a crisp probability of a 
FOD event, PROB(FOD), would imply that PROB(NOFOD) = 1-PROB(FOD). In the context of evidence theory 
however, there may be evidence that supports both propositions due to incomplete knowledge of the system. In the 
latter case, all of the possibilities must be accounted for and converted into “basic probability assignments” (bpa), 
otherwise known as probability masses, which are essentially sets of probabilities which contain the actual 
probabilities. The output of the fuzzy aggregation rules therefore form a “possibility” distribution15, 28, 29 from which 
the bpa are determined, and obey a rule analogous to that required of crisp probabilities m(FOD) + m(NOFOD) + 
m(UNCERTAIN) = 1.0. Transformation from fuzzy degree of membership, to possibility assignment, to bpa is 
described in Vachtsevanos29 and Yen.30  The fuzzy inference engine for the gas path expert is shown in figure 10.  
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For the vibration expert portion of the fusion, the same process is performed to arrive at the bpa. The vibration 
expert fuzzy inference engine is shown in figure 11.  
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Figure 10: Gas path expert membership functions and implication operations. 
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Figure 11: Vibration expert membership functions and implication operations. 
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 The final step in the fusion requires combining the bpa provided by each expert. The original method used in 
evidence theory is Dempster’s rule of combination15 
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 The bpa mi (aka probability masses or belief structures31) represent the degree or weight of evidence that 
supports a given proposition. In the present context the bpa are designated as m(FOD), m(NOFOD), 
m(UNCERTAIN).  Another interpretation for the belief structure could be the proposition: “a FOD event has 
occurred. Given the evidence based on the features extracted from the data, the bpa are m(T), m(F), m(T,F),” i.e., 
some of  the evidence supports that a FOD event has occurred, some that a FOD event has not occurred, or some 
supports either proposition. The subscripts denote the sources (or experts) assigning the weights to the evidence. 
There may be more than two sources.  The factor K in the denominator of Equation 7 is used to remove the effect of 
conflicting expert opinions, essentially ignoring the conflict, which, as Shafer points out32 may result in an erroneous 
diagnosis. Dempster’s rule was later modified by Yager32 to incorporate conflict among experts as additional 
uncertainty—removing the 1-K term in the denominator of Equation 7 and adding K onto mass corresponding to the 
uncertain set.  This provides a more prudent means for incorporating conflicting opinions which, in actuality, would 
lead to decreased confidence (i.e., greater uncertainty) in the final decision.   
 In order to effectively process the features extracted, each with its own respective processing time delays and 
duration, the fusion algorithm requires that the features are provided to the fuzzy classifier in a pseudo synchronous 
fashion, i.e., the transient values of the features are “latched” at their maximum values in order to ensure that all of 
the information is ultimately processed by the fusion.  For the present study, a fusion horizon, the data window over 
which the fusion is performed, is five seconds.  For final implementation, several overlapping data windows may be 
used to ensure adequate signal coverage for the event of interest. 

IV. Evidence Fusion Applied to Simulated FOD Events 
 

 The data fusion process presented in figure 1 was applied to simulated data from a combined-effects gas 
path/vibration model of a large turbofan engine.14, 33  The event occurs at cruise conditions under multivariable 
closed-loop control, demonstrating the fusion system’s ability to differentiate between conditions resulting purely 
from the FOD event and those due to the response of the controller.  Figures 12 through 14 present the bpa 
determined by a) the vibration expert, b) the gas path expert, and c) the result of the fusion of the two using Yager’s 
modification to Dempster’s rule of combination. The results in figure 12 correspond to a simulated FOD-event 
occurring at 2 seconds due to a 0.5 lbm hard object hitting the fan blade at a relative speed of 300 mph at a radius of 
20 inches. The simulated data was also used to calculate the gas path and vibration features shown in figures 3 and 
9. As shown in the figure both experts consider the features observed to be conclusive evidence of FOD, with all of 
the probability mass assigned to m(FOD) within one second of the event. The majority of the delay is due to the 
calculation of the fan efficiency estimate running average, required to provide a smooth rate-of-change feature 
calculation.  The fluctuation observed in the bpa for the experts and fusion immediately after the event is due to the 
combined effect of noise and event severity on the fuzzy classification of the features.  The fuzzy membership 
functions (shown in figures 10 and 11) are curves of various slopes, with regions of small and high slope depending 
on the values of the features.  As the features transition from values corresponding to NOFOD (zero slope) to 
regions corresponding to FOD (again, zero slope), the larger slopes result in greater sensitivity to variations in the 
features, i.e. greater sensitivity to noise. 
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 Figure 13 shows the fusion corresponding to a somewhat more benign FOD event. The foreign object hits the fan 
at the same position and speed as before, with a mass of 0.35 lbm. Neither expert commits to a decision regarding a 
FOD event, which is illustrated by the non-zero masses for the UNCERTAIN and NOFOD categories several 
seconds after the event.  The structural expert provides somewhat less confidence than the gas path expert that a 
FOD event has occurred, and the fused m(FOD) is slightly higher than the two individual experts.  Thus, from the 
point of view of the overall system, this can still be viewed as reinforcement since the experts agree that there is not 
enough evidence to declare that a FOD event has occurred.  Even though no definitive answer is reached, this shows 
that the experts are in agreement on the limits of their ability to diagnose with confidence.  The observed delay in 
arriving at the final fusion is primarily due to the effect of noise in the classification of the features (which, as 
described previously, would have a more pronounced effect for less significant events), the algorithm processing 
time, and the subsequent redistribution (recalculation) of the bpa.  As shown in figure 9a, the final value of the 
vibration amplitude feature may be slightly affected by noise at times after the event has occurred.  This may have a 
slight effect on the final fusion value, however the final value of the structural expert’s bpa is overwhelmingly 
dominated by the change in amplitude due to the event, and to a much lesser extent, the noise. 
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Figure 12: Basic probability assignments determined by (a) the vibration expert, (b) the gas path expert, 
and (c) the fusion. Strong evidence supporting FOD. 
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 Figure 14 presents the results of the fusion where there are conflicting opinions among the experts, i.e., the gas 
path analysis suggests that a FOD event has definitely occurred, while the features observed by the vibration expert 
indicate that there is virtually no evidence supporting the occurrence of a FOD event. The non-zero 
m(UNCERTAIN) essentially indicates that it is at least plausible that a FOD event could have occurred. Thus, for 
example, the fusion output presented in figures 13 and 14 may be put in terms of the Belief that a FOD event has 
occurred (BE(FOD)) and Plausibility that a FOD event could have occurred (PL(FOD)) given the evidence 
observed.  BE(FOD) is defined as the mass resulting from evidence directly supporting FOD occurrence, i.e., 
m(FOD), while PL(FOD) is defined as the mass not supporting m(NOFOD), i.e., 1 – m(NOFOD).  Figure 15 shows 
the evidence fusion of figures 13 and 14 in terms of the belief that a FOD event has occurred and the plausibility that 
a FOD event has occurred. The actual probability of FOD occurrence (PROB(FOD)) is bounded by the belief and 
plausibility where BE(FOD) is considered to be the lower bound and PL(FOD) is considered to be the upper bound. 
In the case where BE(FOD) equals PL(FOD), PROB(FOD) = PL(FOD) = BE(FOD). Thus, one could say that the 
fusion shown in figure 12 results in PROB(FOD) = 1.0 i.e., m(NOFOD) = 0.0, PL(FOD) = 1 – m(NOFOD) = 
BE(FOD) = m(FOD) = 1.0. 
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Figure 13: Basic probability assignments determined by (a) the vibration expert, (b) the gas path expert, 
and (c) the fusion. Marginal evidence supporting FOD. 
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Figure 14: Basic probability assignments determined by (a) the vibration expert, (b) the gas path 
expert, and (c) the fusion. Conflicting Evidence. 
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Figure 15: Post-fusion Plausibility and Belief functions for (a) Marginal evidence supporting FOD (refer to 
figure 13), and (b) Conflicting Evidence (refer to figure 14). 
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V. Conclusions 
 

 The FOD event data fusion system developed combines feature-based evidence from multiple sources, thereby 
making an assessment more reliable and enhancing confidence in a diagnosis. This system provides a feature-level 
fusion and does not provide a “crisp” diagnosis or, for that matter, a policy for corrective action. The information set 
(i.e., the range of probabilities of FOD occurrence) provided by the feature-level fusion would be used by a 
decision-level fusion for diagnosis and corrective action depending on the policy adopted – neither of which is 
addressed in this paper.  
 The fusion is shown to provide a reliable assessment for two “experts” in agreement i.e., where both see the 
evidence as strongly supporting the possibility of FOD occurrence. Where uncertainty or ignorance exists about the 
features being observed, the experts provide an uncertain assessment, with the uncertainty quantified by the 
plausibility and belief of occurrence (which would both be equal to 1.0 in the previous scenario). For situations 
where the fusion shows direct conflict among experts i.e., one of the experts concludes that a FOD event has 
definitely occurred and the other concludes that a FOD event has not occurred, this uncertainty band my be quite 
large, with the results indicating that one (or more) of the sensors providing information may be malfunctioning. 
Although two sources, or “experts,” fed opinions into the fusion for the present investigation, more sources of 
opinion16 (i.e., sources generating mass assignments based on categorization of the evidence) could easily be 
incorporated.  
 The effectiveness of the fusion system relies heavily on the design of the fuzzy classifier (i.e., the membership 
functions) which, as mentioned previously, is designed using expert knowledge. In the case of the present design, 
the designer was confident of what feature values (calculated based on simulation results) would constitute a high 
likelihood of a FOD-event and a low likelihood of FOD event. The exact shape of the membership functions, which 
dictate the performance (e.g., response characteristics) of the fusion algorithm at intermediate feature values, was at 
the discretion of the designer, and may not represent the optimal shape for the application considered. The 
membership functions may be easily adjusted to provide more accurate feature classification in the event that 
empirical data is available and analysis of the data suggests that a redesign is necessary. 

The use of fuzzy inference techniques combined with the Dempster-Shafer-Yager Theory of Evidence provides 
a theoretical justification for drawing conclusions based on imprecise or incomplete data, which can be easily 
adapted to other applications.  The method presented provides a prudent technique for decision making in situations 
where there is significant uncertainty beyond that which would be encountered using probabilistic methods i.e., test 
data to support the generation of probabilities and probability distributions is not, nor ever will be, available and 
only “expert” opinions are available.  
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