
17th AIAA Computational Fluid Dynamics Conference AIAA Paper 2005-4873
June 6–9, 2005 / Toronto, Ontario
Numerical Methods and Code Optimization II session 44-CFD-10

Computational Simulations and the Scientific Method

by Bil Kleb and Bill Wood

c©why the lucky stiff, used by permission.

As scientific simulation software becomes more complicated, the
scientific-software implementor’s need for component tests from
new model developers becomes more crucial. The community’s
ability to follow the basic premise of the Scientific Method
requires independently repeatable experiments, and model
innovators are in the best position to create these test fixtures.
Scientific software developers also need to quickly judge the
value of the new model, i.e., its cost-to-benefit ratio in terms
of gains provided by the new model and implementation risks
such as cost, time, and quality.

This paper asks two questions. The first is whether other
scientific software developers would find published component
tests useful, and the second is whether model innovators think
publishing test fixtures is a feasible approach.

1 Introduction

This paper is the second installment of the discussion begun
by AIAA Paper 2004-2627, “CFD: A Castle in the Sand?”,
which argues that software unit-testing practices are essential
for advancing computational simulation capabilities as models
become more complex.1 That paper called for model and

1 Bil Kleb and Bill Wood, CFD: A
Castle in the Sand?, AIAA Paper 2004-
2627, 2004.

algorithm innovators to publish succinct test fixtures so that
subsequent implementors can independently verify they have
correctly translated the new innovation to source code, i.e.,
so the Scientific Method’s notion of independently-verifiable
experiments can be used. This installment provides an
alternative presentation of those ideas in light of copious
feedback generated by the first paper.

As growth in computational power facilitates higher-fidelity
computational simulation techniques, the number and variety
of building-block components also increases. While this
increased complexity is forcing a change from the cottage
industry of one person/one code to team software development
to address increasing software system size,2 the community

2 L. Cambier and M. Gazaix, elsA:
An Efficient Object-Oriented So-
lution to CFD Complexity, AIAA
Paper 2002-0108, 2002; N. Kroll,
et al., MEGAFLOW—A Numerical
Flow Simulation System, ICAS 98-
2.7.4, 1998; and Natalia Alexandrov,
et al., Team Software Development for
Aerothermodynamic and Aerodynamic
Analysis and Design, NASA/TM 2003-
212421, 2003.

is not yet routinely publishing independently verifiable tests
for new models or algorithms to address the code-verification
complexity. The survey results of table 1 show that only 22%

Table 1: Survey of new component
publishing that includes the percent
of articles introducing new models
that contain tests. Upticks indi-
cate articles with component tests,
downticks indicate articles lacking
component tests, and dots indicate
articles that did not appear to intro-
duce a new model.

journal vol(#) articles %

JCP 192(2) 0

192(1) 23

191(2) 27

IJNMF 43(10–11) 0

43(9) 20

43(8) 67

22

of new models published are accompanied by tests suitable for
independently verifying the new model.

To sustain our growing numerical simulation capability,
we need to become competent software developers;3 and

3 James J. Quirk, “Computational Sci-
ence: Same Old Silence, Same Old
Mistakes, Something More is Needed”,
in Adaptive Mesh Refinement – The-
ory and Applications, edited by Tomaz
Plewa, et al., Springer-Verlag, 2004,
pp. 1–26.

one measure of software development competence is sound
software testing practices. For example, before inserting a new

This material is declared a work of the U.S. Government and is not subject
to copyright protection in the United States.

Version: 2005/06/01 21:28:07 UTC

mailto:Bil.Kleb@NASA.Gov?cc=Bill.Wood@NASA.Gov&subject=Scientific%20CS
mailto:Bill.Wood@NASA.Gov?cc=Bil.Kleb@NASA.Gov&subject=Scientific%20CS
http://whytheluckystiff.net


component into a system, software developers will perform a
set of component-level tests. Based on feedback from the first
paper,4 everyone agrees with the need for component-level

4 Bil Kleb and Bill Wood, CFD: A
Castle in the Sand?, AIAA Paper 2004-
2627, 2004.

testing in the computational simulation community but there
is disagreement about how to implement it.

While each development group could independently derive
component-level tests for each model they choose to imple-
ment, this duplication is unnecessary and would not likely
catch the special cases that the original innovator would
likely know intimately. Besides, the Hatton studies of scien-
tific codes underscores the difficulty in achieving consistent
implementations: 1 fault per 170 lines.5

5 Les Hatton, “The T Experiments:
Errors in Scientific Software”, IEEE
Computational Science and Engineer-
ing, 4(2), 1997, pp. 27–38; and Les
Hatton and Andy Roberts, “How Ac-
curate is Scientific Software?”, IEEE
Transactions on Software Engineering,
20(10), 1994, pp. 785–797.

This paper calls for institutionalizing component-level
testing in the computational simulation community and offers
one possible route toward implementation. The paper begins
by exploring the current practice, recalls basic tenets of the
Scientific Method, proposes a course of action, gives a couple
brief examples, and finishes with some concluding remarks.

2 Current Practice

For the sake of discussion, consider the components of a
Computational Fluid Dynamics (CFD) code. While developing
such a code, a team will pull components, such as flux functions,
boundary conditions, turbulence models, transition models,
gas chemistry models, data structures, and so on—each from
a different original publication. For example, consider 24
components that comprise the FUN3D flow solver6 listed in 6 fun3d.larc.nasa.gov

table 2. Now, consider the potential interactions between

Table 2: Components in the FUN3D flow solver. Data provided by Eric Nielsen of NASA.

Turbulence model Transition model Boundary conditions Flux limiter

Flux reconstruction Time relaxation Convergence acceleration Flux functions

Entropy fix Transport properties Data structures Gas chemistry

Time integration Preconditioners Flux Jacobians Governing equations

Multiprocessing Domain decomposition Preprocessing Postprocessing

Grid sequencing Grid adaptation Grid movement Load balancing

these components as indicated by the lines in figure 1.
While arguments can be made about whether all components
necessarily influence all the other components (as drawn), even
the most ardent detractor has to concede that this system is
nevertheless a complicated set of interrelated components.

As the number of components increases, the potential inter-
actions grow as n2/2, where n is the number of components.
The task of finding an error in a system of interrelated com-
ponents is daunting, but this task becomes untenable if the
components have not been independently verified. Rational

2 of 8

AIAA Paper 2005–4873

http://fun3d.larc.nasa.gov/


Turbulence model

Transition model

Boundary conditions

Flux limiter

Flux reconstructionTime relaxation

Convergence acceleration

Flux functions
Entropy fix

Transport properties

Data structures

Gas chemistry

Time integration

Preconditioners
Flux jacobians

Governing equations

Multiprocessing

Domain decomposition
Preprocessing

Postprocessing

Grid sequencing

Grid adaptation

Grid movement

Load balancing

Figure 1: Potential component interactions in the FUN3D flow solver.

verification of this complicated system must proceed in two
steps: (1) verification of components and (2) verification of
their interactions.

The current computational verification and validation
literature recommends verification on the system level by
using the Method of Manufactured Solutions (MMS).7 While

7 Christopher J. Roy, “Review of Code
and Solution Verification Procedures
for Computational Simulation”, Jour-
nal of Computational Physics, 205(1),
2005, pp. 131–156.

this is a necessary step in every code-verification process, it has
not yet been widely practiced due to implementation overhead8

8 MMS typically requires the addi-
tion of arbitrary boundary conditions
and source functions. In addition,
selection of the appropriate basis func-
tion remains an art, and so far, only
smooth-valued solutions have been
manufactured.

and because if this system-level test fails, the debugging task
could be in any of n components in addition to the roughly
n2/2 component interactions. Therefore, before attempting
MMS on a system of components, each component should be
independently verified.

Consider for example, the dilemma created by the de-
but publication of the popular Spalart-Allmaras turbulence
model.9 The document contains a mathematical description

9 P. R. Spalart and S. R. Allmaras, A
One-Equation Turbulence Model for
Aerodynamic Flows, AIAA Paper 92–
0439, 1992.

of the model and then shows comparisons with experimental
boundary layer profiles that require a complete CFD code
system. This scenario is sketched in figure 2, in which New

Figure 2: Current method of translating
the “paper” model to numerical results.

Component is the mathematical description of the new turbu-
lence model and the author’s code are indicated by Component
Code A and System Code A. The boundary layer profile output
appears at the bottom.

The dilemma is that no isolated tests of the turbulence
model itself, either mathematical or numerical, are presented.
So, when another CFD code development team (path B)
elects to install this new model in their system, a comparison
with boundary layer profiles does not assure the model was
implemented in the same way as the original because the other
code components are completely different. The specific effects

3 of 8

AIAA Paper 2005–4873



of the turbulence model become lost in the large computational
simulation infrastructure, and there is no credible means to
determine that both codes are using precisely the same model.
As a consequence of this implementation risk and the lack of
test data, the implementor is unable to quickly determine the
value of the new model.

3 The Scientific Method

In a computational context, component-based verification
testing is the engine behind the Scientific Method that Roger
Bacon first described in the thirteenth century: a repeating
cycle of observation, hypothesis, experimentation, and the need
for independent verification.10

10 Roger Bacon, Opii: Majus, Minus,
and Tertium, c.1267.Popularized by Francis Bacon and Galileo Galilei, the

Scientific Method has since become a means of differentiating
science from pseudoscience. The Scientific Method is fueled
by the idea that hypotheses and models must be presented to
the community along with the description of experiments that
support the hypothesis. The experiments that accompany
a hypothesis must be documented to the extent that others
can repeat the experiment—Roger Bacon’s independent
verification.

This last notion, that others should be able to repeat an

Figure 2: Current method (repeated for convenience).

4 of 8

AIAA Paper 2005–4873



experiment is currently not widely practiced by computer
simulation software community. In part, this is due to the
large body of software required by a modern simulation
capability. While electronic documentation methods such as
Quirk’s Amrita system11 can go a long way toward solving this

11 www.amrita-cfd.org
issue, the fact remains that our experiments must be small
enough and isolated enough to be independently repeatable
and widely applicable. Ultimately, an implementor should be
able to come to the same conclusion as another implementor
based solely on the numerical evidence.12

12 Michael Hemsch’s restatement
of Shewhart’s 1st Law of Data
Presentation—for the original, see page
58 of W. A. Shewhart, Economic Con-
trol of Quality of Manufactured Prod-
uct, D. Van Nostrand Company, 1931.

4 Proposed Practice

How can the computational simulation community leverage
the Scientific Method?—by having innovators publish a set
of tests when they present a new model or algorithm so
implementors can gage the innovation’s value and reliably
make the transition from the mathematics to the numerics.
This notion is depicted by the pages labeled Component
Verification in figure 3, where model innovators publish
component test fixtures so that developer B can verify the
numerical implementation of the mathematical model or
algorithm in isolation before inserting it into her simulation
system. The tests, or numerical experiments, should consist

Figure 3: Proposed method of translating the “paper” model to numerical results.

5 of 8

AIAA Paper 2005–4873

http://www.amrita-cfd.org


of simple input/output combinations that document the
behavior of the model. In particular, boundary cases and
any other special cases should be documented. For example,
the temperature domain of Sutherland’s viscosity law or the
nonrealizable initial states for a linearized Riemann solver flux
function.

Wherever possible, tests should be written at the mathe-
matical level,13 but some actual discrete values should also

13 These tests could also be published
in terms of Method of Manufactured
Solutions at the component level.

be presented. The latter is particularly advantageous if the
experiments are designed to expose boundary areas that
are sensitive to divided differences, nonlinear limiters, or
truncation error. (Examples are given in section 5.)

All subsequent developers that implement the model and
publish their results would be required to document which of
the original verification experiments they conducted. Over
time, the popular techniques could have a suite of tests
formally sanctioned by a governing body such as the AIAA
so that any implementation would have to pass the standard
tests to be considered verified. Otherwise, the community is
left to suffer the fate of unquantified uncertainties as described
by Youden’s two seminal works.14

14 W. J. Youden, “Systematic Errors
in Physical Constants”, Physics Today,
1961, pp. 32–43; and W. J. Youden,
“Enduring Values”, Technometrics,
14(1), 1972, pp. 1–11.

5 Examples

The last paper contains examples for the CIR Scheme,15 and
15 The one-dimensional version of Roe’s
Flux Difference Splitting flux function.

the Van Albada limiter function. In this paper, two simple
components are discussed: the Sutherland viscosity law and
the modified Newtonian law.

Table 3 shows a succinct component test fixture for Suther-
Table 3: Sutherland’s viscosity law
component test fixture.

input output

T (K) µ (kg/s-m)

200≤ T ≤ 3000 K∗ T 1.4

T+110.4

199 error

200 1.329×105

2000 6.179×105

3000 7.702×105

3001 error

∗where K = 1.458×10−6.

land’s viscosity law, which gives the viscosity of air as a
function of temperature. The mathematical form is presented
along with boundary points and a value from the middle of
the domain. While this example is trivial, it demonstrates the
very localized level at which components should be considered.

For example, the flux function example presented in the
previous paper was attacked on the grounds that it would
be impossible to cover all the discretization settings in which
it would be applied, e.g., finite volume, finite difference, or
finite element. These considerations are an indication that the
component is being defined at too high a level.

Another component examined is the Modified Newtonian
law, which gives pressure coefficient as a function of surface
inclination according to,

Cp = Cpmax sin2 θ (1)

where θ is the surface inclination angle in degrees, i.e., the
angle between the incoming flow and the surface normal
vector. The stagnation pressure coefficient is governed by

6 of 8

AIAA Paper 2005–4873



shock relations,

Cpmax =
2

γM2
∞


[

(γ + 1)2M2
∞

4γM2
∞ − 2(γ − 1)

]γ/(γ−1) [
1− γ + 2γM2

∞
γ + 1

]
− 1


where M∞ is the freestream Mach number and γ is the ratio
of specific heats.

Table 4: Modified Newtonian Law component test
fixture.

input output

θ (deg) M∞ γ Cp

0≤ θ ≤ 90 5≤ M∞ 1≤ γ ≤ 3 Eq. 1

0 100 1 2.000

45 100 1 0.500

0 100 1.4 1.839

0 5 1.4 1.809

0 4.9 ∀ error

91 ∀ ∀ error

-91 ∀ ∀ error

Where ∀ indicates “for all valid values”.

A sample component test fixture for this law is shown
in table 4. Again, it begins by defining the valid input
domains with pure math. Next, certain limiting cases
are provided along with a sampling of interior points.
Finally, boundary cases are shown and suggested error
messages are given.

Other examples of component-based testing are
available for an advection-diffusion solver that was
written during an exploration of using test-driven
development for scientific simulation codes.16

16 Bill Wood and Bil Kleb, “Exploring
eXtreme Programming for Scientific
Research”, IEEE Software, 20(3), 2003,
pp. 30–36

6 Concluding Remarks

To sustain our growing numerical simulation capabili-
ties, we need to become competent software developers
by increasing our use of component testing practices.
The implementation path offered here is to have model
innovators publish simple, component-level verification
test fixtures so that implementors can verify their
implementation according to the basic premise of the
Scientific Method—independently-verifiable experi-
ments.

Based on feedback from the first paper in this series,17 most

17 Bil Kleb and Bill Wood, CFD: A
Castle in the Sand?, AIAA Paper 2004-
2627, 2004.

readers agree that component-level testing should be standard
practice in the computational simulation software development
community. However, two questions remain:

Do scientific software developers want published
component tests?

Is the proposed solution palatable by model innovators?

If the answer to either is “no,” then how should we proceed?
Unless feedback on this paper dictates otherwise, the next

installment of this series will present a more detailed example
by using Test-Driven Development,18 a promising extension of

18 See for example,
c2.com/cgi/wiki?TestDrivenDevelopment,
last accessed June 1st, 2005.

agile programming methodologies.

7 of 8

AIAA Paper 2005–4873

http://c2.com/cgi/wiki?TestDrivenDevelopment


Acknowledgments

All the folks mentioned in the first paper19 plus all the folks
19 Bil Kleb and Bill Wood, CFD: A
Castle in the Sand?, AIAA Paper 2004-
2627, 2004.

that responded directly during the Portland conference plus
all the independently received comments/suggestions plus the
three anonymous journal reviewers for AIAA’s Journal of
Aerospace Computing, Information, and Communication, and
David Coppit, Professor of Computer Science at The College
of William and Mary.

About the Authors

Bil Kleb, a lifetime senior AIAA member, has
worked in the area of computational aerothermo-
dynamics at NASA’s Langley Research Center for

the past 15 years. Since 1999, Bil has been active in the
agile software development community20 and has given several

20 For agile software development’s
succinct, but surprisingly powerful
manifesto, see agilemanifesto.org.

invited lectures on team software development for scientific
software. For the past two years, Bil has been a steward of the
FUN3D software development team21 and has been serving

21 fun3d.larc.nasa.gov
on various agile software development conference committees
since 2002.

For those that measure by certificates and degrees, Bil has a
B.S. and M.S. in Aeronautical and Astronautical Engineering
from Purdue University, an M.B.A. from The College of
William and Mary, a Ph.D. of Aerospace Engineering from the
University of Michigan, and a commercial pilot certificate with
instrument rating.

Email: Bil.Kleb@NASA.Gov

Bill Wood has worked in the field of CFD in the
Aerothermodynamics Branch at NASA’s Langley
Research Center since 1991, earning a Ph.D. in

Aerospace Engineering from Virginia Tech in 2001. He served
on the program committee for the software development
conference XP/Agile Universe from 2002 to 2004 and is now
serving on the Agile 2005 conference committee.

Email: Bill.Wood@NASA.Gov

Colophon

This document was typeset in Computer Modern font with
the LATEX typesetting system using the handout option of
the AIAA package,22 version 3.8. The handout class option

22 www.ctan.org
used here strives toward the layout style espoused by the
visual information design expert Edward Tufte.23 Also 23 Edward R. Tufte, The Visual Display

of Quantitative Information, Graphics
Press, 1983; Edward R. Tufte, Envi-
sioning Information, Graphics Press,
1990; and Edward R. Tufte, Visual Ex-
planations: Images and Quantities, Ev-
idence and Narrative, Graphics Press,
1997.

employed were the color, rcsinfo, bibentry, varioref,
wrapfig, threeparttable, booktabs, wrapfig, hyperref,
and nohyperref packages.

8 of 8

AIAA Paper 2005–4873

http://www.agilemanifesto.org/
http://fun3d.larc.nasa.gov/
mailto:Bil.Kleb@NASA.Gov?cc=Bill.Wood@NASA.Gov&subject=Scientific%20CS
mailto:Bill.Wood@NASA.Gov?cc=Bil.Kleb@NASA.Gov&subject=Scientific%20CS
http://www.ctan.org/

	Introduction
	Current Practice
	The Scientific Method
	Proposed Practice
	Examples
	Concluding Remarks

