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Real-Time Vision-Based Relative Aircraft Navigation

Eric N. Johnson,∗ Anthony J. Calise,† Yoko Watanabe,‡ Jincheol Ha,‡ and James C. Neidhoefer§

Georgia Institute of Technology, Atlanta, GA 30332-0150

This paper describes two vision-based techniques for the navigation of an aircraft relative
to an airborne target using only information from a single camera fixed to the aircraft. These
techniques are motivated by problems such as “see and avoid”, pursuit, formation flying,
and in-air refueling. By applying an Extended Kalman Filter for relative state estimation,
both the velocity and position of the aircraft relative to the target can be estimated. While
relative states such as bearing can be estimated fairly easily, estimating the range to the
target is more difficult because it requires achieving valid depth perception with a single
camera. The two techniques presented here offer distinct solutions to this problem. The
first technique, Center Only Relative State Estimation, uses optimal control to generate an
optimal (sinusoidal) trajectory to a desired location relative to the target that results in
accurate range-to-target estimates while making minimal demands on the image processing
system.The second technique, SubtendedAngle Relative State Estimation, uses more rigorous
image processing to arrive at a valid range estimate without requiring the aircraft to follow
a prescribed path. Simulation results indicate that both methods yield range estimates of
comparable accuracy while placing different demands on the aircraft and its systems.

Nomenclature
Section II. Image Processing
�(x, y, t) active contour curve
φ(x, y) conformal mapping or speed function
I (x, y, t) normalized gray-scale image intensity function
Gσ Gaussian smoothing filter
v constant inflation term
Lφ length functional

Section III. Dynamics of the Camera Motion
ω angular velocity of camera relative to target
V translational velocity of camera relative to target
Pcamera position of target in camera frame
Pimage position of target in image frame
d parameter defined as 1/X

ηx, ηy process noise
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σηx , σηy standard deviation of the process noise
σξx , σξy standard deviation of the measurement noise

Section IV. Center Only Relative State Estimation (CORSE)
tk time at which the kth measurement is taken
zk measurement at time tk
Xm camera position in aircraft body axis
X − Xm target position relative to camera
ξk measurement noise at time tk
as aircraft acceleration
xk vector of estimator states for process model
vk discretized zero mean process noise
�k state transition matrix at time tk
I identity matrix
x̂k predicted state estimate
Pk covariance matrix of error for updated state estimate
P −

k covariance matrix of error for predicted state estimate
Kk Kalman gain matrix
uY guidance commands in the y direction
tf time at which aircraft reaches destination
VY optimal velocity solution in the y direction
Y optimal position solution in the y direction
K weight for guidance command uY

d inverse of range

Section V. Subtended Angle Relative State Estimation (SARSE)
xk vector of estimator states at time tk
tk time at which the kth measurement is taken
zk measurement at time tk
u unit vector pointing from camera to target
α angle subtended by wingspan of target
as aircraft acceleration
Kk Kalman gain matrix
x̂−

k predicted state estimate
Pk covariance matrix of error for updated state estimate
P −

k covariance matrix of error for predicted state estimate
Rk measurement noise covariance matrix
Qk process noise covariance matrix

I. Introduction

MOST present-day airborne navigation systems use multi-sensor fusion to accurately estimate vehicle states.
However, the use of multiple sensors, which typically include GPS and Inertial Measurement Units (IMUs),

can result in complex and expensive navigation systems not suitable for small, disposable UAVs. This paper focuses
on the development of a simpler and less expensive navigation system that uses only data from a single camera to
generate navigation information (relative to another vehicle) suitable for autonomous UAV guidance and control.

Birds and insects are two examples in nature that demonstrate the feasibility of using vision information to generate
navigation solutions suitable for in-flight guidance and control. This paper introduces two methods that similarly rely
on visual input for airborne navigation. The specific scenario considered involves an aircraft with a single camera
following and navigating relative to an airborne target, such as another aircraft. The methods developed are applicable
to operations such as leader-follower setups or formation flying and can be adapted to other types of UAV operations
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as well. In addition, these methods could be adapted for navigation relative to known landmarks, thus providing a
viable alternative to GPS for navigation in an earth fixed reference frame.

In each of these methods, the single camera provides noisy measurements of the target’s horizontal and vertical
position in its image plane, and an Extended Kalman Filter (EKF) is then used to estimate the position and velocity
of the aircraft relative to the target. Any changes in the relative state in the axes of the camera’s image plane will be
readily apparent to the following aircraft. However, changes in the range from the camera to the target will be harder
to determine due to the difficulty of depth perception with monocular vision. For example, when the aircraft flies
straight towards a non-accelerating target, the difference between subsequent image frames will be small, resulting
in poor estimation of the distance between the aircraft and the target. If these poor range estimates are used to control
a vehicle performing station-keeping with another aircraft, dangerous deviations from the desired location could
occur.

In many vision-based systems, this problem is solved by having multiple distinctly located cameras (or eyes).
In such systems, depth perception arises from differences between images taken simultaneously from each of the
cameras. In monocular systems, however, only differences between successive camera images can be used. Both
methods presented in this paper use monocular image sequences differently to produce valid relative state estimates.

The first method presented in this paper, Center Only Relative State Estimation (CORSE), guides the motion of
the camera to maximize the usable information available in the image sequence to derive accurate range estimates.
In this way, the performance of the state estimator can be significantly improved.1 The best camera motion for range
estimation is parallel to the camera’s image plane;2 if the vehicle flies to the target with a meandering path, more
accurate range estimates can be obtained and potentially dangerous path deviations avoided. In the CORSE algorithm,
the EKF provides the variance of the estimation error for each state. These variances are then minimized in order
to maximize the estimation accuracy. The CORSE algorithm performs this optimization by setting a performance
index to minimize the variance of the error and then solving the resulting optimization problem subject to the known
camera motions, in order to obtain an optimal flight path to some desired position relative to the target. It is shown
here that this problem can be solved analytically. The resulting optimal guidance policy is then compared to a simple
linear guidance policy using a flight simulator. For a similar example where tracking is performed with “bearing
only” the reader is referred to.4

The second algorithm presented in this paper, Subtended Angle Relative State Estimation (SARSE), uses more
information derived from camera images without resorting to controlling camera motions. In particular, the image
processing system is used to estimate the locations of the wingtips of the target in addition to just the location of the
target center. Then, the angle subtended by the wingspan of the target, relative to the camera position, is used as an
input to the EKF. The resulting performance of the SARSE algorithm is demonstrated in this paper using a flight
simulator.

This paper starts by describing the image processing techniques used by the CORSE and SARSE algorithms. Next,
the derivation of the equations describing the camera motion is presented. This is followed by detailed descriptions
of the CORSE and SARSE algorithms, including simulation-based results for each. Finally, conclusions on the work
are presented.

II. Image Processing
The image processing in this work uses an active contour to calculate the location of the center of the target aircraft

(which is used by the CORSE algorithm) as well as the locations of its wingtips and the angle subtended by the line
between the wingtips (which are used by the SARSE algorithm). This work is based on work done in3 and extended
to use a Fast Marching Level Set method13 for computational speed. For similar image processing applications, the
reader is referred to.5

A. Background on Active Contours
As described in,3 active contours are processes that use image coherence to track features of interest over time.

They fit naturally into control frameworks and have often been employed in conjunction with Kalman filtering.6

Active contours have the ability to conform to various object shapes and have been used for segmentation, edge
detection, shape modeling, and visual tracking.
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In the classical theory of deformable contours, energy minimization methods are used to move splines under
the influence of image dependent forces and constraints set by the user. There are a number of potential problems
associated with these approaches, such as contour initialization, existence of multiple minima, and the selection of
the elasticity parameters. Moreover, natural criteria for the splitting and merging of contours (or for the treatment of
multiple contours to track multiple objects) are not readily available.

In7,8 an active contour model is proposed based on the level set formulation of the Euclidean curve shortening
equation. Specifically, the model is

∂�

∂t
= φ(x, y)‖∇�‖

(
div

( ∇�

‖∇�‖
)

+ υ

)
(1)

in which the function φ(x, y) depends on the given image and is used as a “stopping criterion.” Typically the term
φ(x, y) is chosen to be small near an intensity-based edge and acts to stop evolution when the contour gets close to
an edge. One may define

φ(x, y) = 1

1 + ‖∇Gσ ∗ I‖2
(2)

where I is the (grey-scale) intensity of pixel x, y and Gσ is a Gaussian smoothing filter.7,8 The function �(x, y, t)

evolves in equation (1) according to the associated level set flow for planar curve evolution in the normal direction
with speed as a function of curvature. This concept was introduced in.9,10

The curve shortening part of the active contour evolution, namely

∂�

∂t
= ‖∇�‖div

( ∇�

‖∇�‖
)

(3)

is derived as a gradient flow for shrinking the perimeter. As explained in,7 the constant inflation term v is added in
equation (1) in order to keep the evolution moving in the proper direction.11

Thus the model represented in equation (1) will be modified in a manner consonant with length/area minimizing
ideas. The ordinary arc-length function along a curve C = (x(p), y(p))T with parameter p is changed as,

ds = (x2
p + y2

p)1/2 dp

|�
dsφ = (x2

p + y2
p)1/2φ dp

where φ(x, y) is a positive differentiable function. Then the corresponding gradient flow for shortening length is
computed relative to the new metric dsφ .

The length function Lφ is defined as

Lφ =
∫ 1

0

∥∥∥∥∂C

∂p

∥∥∥∥ φ dp

Then, by taking the first variation of the modified length function Lφ and using integration by parts as in,12 the result
is

L′
φ(t) = −

∫ Lφ(t)

0

〈
∂C

∂t
φκ �N − (∇φ · �N) �N

〉
which means that the direction in which the Lφ perimeter is shrinking the fastest is given by

∂C

∂t
= (φκ − (∇φ · �N)) �N (4)

This is the gradient flow corresponding to the minimization of the length functional Lφ . The level set version of
this is

∂�

∂t
= φ‖∇�‖div

( ∇�

‖∇�‖
)

+ ∇φ · ∇� (5)

This evolution should attract the contour very quickly to the feature that lies at the bottom of the potential well
described by the gradient flow in equation (5). We may also add a constant inflation term (as is done in7,8), to derive
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a modified version of (1) given by

∂�

∂t
= φ‖∇�‖

(
div

( ∇�

‖∇�‖
)

+ υ

)
+ ∇φ · ∇� (6)

B. The Fast-Marching Level Set Method
The specific active contour model used in this application is based on the fast marching level set method.13 Level

set methods use a narrowband approach which performs calculations on image data only in a limited region near the
active contour (also called the interface) to calculate how the contour evolves. This greatly reduces computational
requirements and enhances the method’s viability for real-time applications.

The Fast Marching method is the extreme narrowband case as it uses a band width of only a single pixel (the
calculation of the “crossing time” for each pixel uses only the direct neighbors of that pixel). In the fast marching
method the interface moves in only one direction and passes over each pixel only once. Thus a unique value of
“crossing time” is associated with each pixel. The resulting crossing time function T (x, y) is a time-invariant level
set function that satisfies the equation

φ(x, y)‖T (x, y)‖ = 1 (7)

which is a form of the well-known Eikonal equation.13 In equation (7), φ is the called the “speed function”. It can
be seen in equation (7) that for large speed function values, the corresponding crossing time will be small (which
means that pixel is processed relatively early), and for small speed function values, the corresponding crossing time
will be large.

1. The Fast Marching Formulation
Once φ(x, y) has been calculated at each pixel in the image, the goal is to numerically solve equation (7) for

T (x, y) over a subset of the image data located around the expected target location. The numerical solution of
equation (7) will result in active contours propagating across the image and “wrapping” themselves around objects
in the image. A two dimensional numerical approximation of equation (7) is:13

[max(D−x
ij T (x, y), 0)2 + min(D+x

ij T (x, y), 0)2 + max(D
−y

ij T (x, y), 0)2 + min(D
+y

ij T (x, y), 0)2] = 1

φ(x, y)2

(8)
where D in equation (8) is a difference operator notation such that, D+x

ij T = (Ti+1,j − Ti,j /
x).
In the Fast Marching method, all pixels in an image belong to one of three sets. The first set, called the “Known”

set, contains all pixels over which the interface has already passed. The second set, called the “Trial” set, contains
the pixels in the interface. And the third set, called the “Far” set, contains those pixels which have not yet been
processed. Details of the standard Fast Marching algorithm are available in13,22 and the algorithm is summarized
here as follows:

FAST MARCHING ALGORITHM

S1. Begin loop: Find the pixel in the “Trial” set with the smallest value of T (x, y) and label this pixel “A”.
S2. Add “A” to the “Known” set and remove it from the “Trial” set. Check if a stopping criteria has been reached,

if not, proceed to step S3.
S3. Add all pixels neighboring “A” that are not in the “Known” set to the “Trial” set. If any of these pixels were

in the “Far” set, remove them.
S4. Recompute the values of T (x, y) for all pixels neighboring “A” by solving equation (8). Return to step S1.

Figure 1 illustrates how the Fast Marching procedure is used to evolve an active contour on a 9 × 10 image grid
(90 total pixels) at 9 distinct steps in the solution process.

In Fig. 1 the blue pixels are part of the “Known” set, the red pixels are part of the “Trial” set, the yellow pixels
are part of the “Far” set, the green curve represents the active contour, and the pixel in the “Trial” set with the lowest
value of T (x, y) is labeled “A”. A description of the process (more detailed than the summary above) is as follows:

1. Start by solving for the speed function, φ(x, y) over the entire image.
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Fig. 1 Active contour evolution with the fast marching level set method.

2. On the initial iteration, a pixel is chosen and added to the “Trial” set (the red pixel in Fig. 1.1). T (x, y) is set
equal to zero for this pixel.

3. A heap sorting algorithm14 is then used to find the pixel in the “Trial” set with the smallest value of T (x, y)

and this pixel is labeled “A”. This corresponds with step S1.
4. Pixel “A” is then removed from the “Trial” set and added to the “Known” set. This corresponds with step S2

as well as Fig. 1.2.
5. The neighbors of “A” that are not in the “Known” set are then added to the “Trial” set. If any of these pixels

were in the “Far” set, they are removed. This corresponds to step S3 as well as Fig. 1.3.
6. Equation (8) is then solved for T (x, y) at all neighbors of “A” in the “Trial” set. This corresponds to step S4.
7. The process then loops back to 3 and iterates until a stopping criteria is satisfied. Thus Fig. 1.4 corresponds

to step S1, Fig. 1.5 corresponds to step S2, Figure 1.6 corresponds to steps S3 and S4 however only 3
neighboring pixels are added to the ‘Trial’ set since one neighboring pixel is already in the “Known” set.
Fig. 1.7 corresponds to step S1, etc. Finally, Fig. 1.9 shows the result of this procedure after several iterations.

Thus, the contour propagates across the image, and comes to rest near areas of high contrast, and in particular, near
dark objects (as explained in Section B.2). Video of an actual contour propagation using real camera imagery can
be seen here: http://pdf.aiaa.org/JournalsOnline/PDFFiles/15429423_v4n4/aiaa/15429423/v4n4/Multimedia/
23410Movie1.avi

2. Construction of the Speed Function
In this work, the speed function is calculated as follows:

φ(x, y) = α

(
1

1 + ‖∇I (x, y)‖2

)
+ γ I (x, y) (9)

where I (x, y) is the grey-scale intensity of pixel x, y and ∇I (x, y) is the gradient of the intensity (contrast) at x, y

calculated with respect to its neighboring pixels.
Since in real image data, the illumination of various parts of the image can drastically change from frame to frame,

the intensity values are normalized as follows,

I (x, y) = Io(x, y) − min(I )

max(I ) − min(I )
(10)

712

http://pdf.aiaa.org/JournalsOnline/PDFFiles/15429423_v4n4/aiaa/15429423/v4n4/Multimedia/23410Movie1.avi
http://pdf.aiaa.org/JournalsOnline/PDFFiles/15429423_v4n4/aiaa/15429423/v4n4/Multimedia/23410Movie1.avi


JOHNSON, CALISE, WATANABE, HA, AND NEIDHOEFER

Fig. 2 A. Original image, B. Processed image with noise from clouds, C. Processed image with optimized values of
α and γ .

so in each frame the maximum value of the intensity is 1 and minimum value is 0. In equation (10), Io(x, y) is the
original image intensity data from a frame grabber. For dark pixels (small values of I (x, y)) with high contrast, the
speed will be small and T (x, y) will be large (as seen in Equation (7)) which means that dark pixels will be processed
later than brighter pixels. For either bright pixels (large values of I (x, y)) or pixels with low contrast, the speed
function will be large and T (x, y) will be small meaning these pixels will be processed earlier than darker pixels.
Thus the first term in equation (9) will drive the contour to areas of high intensity gradient (edges of objects), and the
second term will help to drive the contour to dark objects. The second term helps to distinguish between objects such
as aircraft and noise such as clouds since aircraft normally appear darker than their surroundings in aerial images,
and clouds normally appear lighter than their surroundings.

In equation (9), α and γ are scaling factors for setting the relative weight of contrast and intensity. For different
weather conditions or different times of day, the optimal values of α and γ can change. To date, the values of α

and γ have been tuned “by hand” both off-line (in lab conditions) and, if necessary, at the flying site. Future work
is intended to include the development of numerical schemes to automatically tune α and γ based on weather and
lighting conditions. Figure 2 part A shows an original image and part B shows the result of processing the image
with the Fast Marching Level Set Method. Notice that in part B, the intensity gradients of the edges of the cloud have
been detected and classified as “final” contours. Part C shows the same image processed with the same method with
values of α and γ optimized to filter out the “noise” caused by the clouds. Video footage showing a situation similar
to that shown in Fig. 2 part B can be seen here: http://pdf.aiaa.org/JournalsOnline/PDFFiles/15429423_v4n4/

aiaa/15429423/v4n4/Multimedia/23410Movie2.avi and a video showing a situation similar to that shown in Fig. 2
part C can be seen here: http://pdf.aiaa.org/JournalsOnline/PDFFiles/15429423_v4n4/aiaa/15429423/v4n4/

Multimedia/23410Movie3.avi

3. Implementation for Flight Testing
When applying this method to real flight test data, the assumption is made that the target aircraft will always be

above the horizon. Future work will include enhancing the robustness of the image processing techniques to include
cases where the target is both above or below the horizon. Thus, the initial “Trial” pixels used to start the contour
propagation are located at the top of the image and the contour propagation is stopped at the horizon as shown in
Figs. 3 and 4.

In this work, in order to process each image faster, the heap sorting algorithm is only called at every iteration
until the total number of points in the heap exceeds some number (in this case 500 points). Then when the heap
size exceeds the threshold, the heap sorting algorithm is called only once for every several iterations (in this case 20
iterations).

To terminate the contour propagation for each individual image frame, two stopping criteria are examined each
time the process reaches step S2 (as described in Section B.1). The first criterion uses a minimum threshold value for
the speed function, φ(x, y) “Trial” pixel. Thus the propagation is stopped when the speed function value associated
with the pixel on the active contour with the minimum value of crossing time (pixel “A” in Fig. 1 found by heap
sorting algorithm) is less than a given threshold value.

The second criterion is used only after the target is registered in the previous frame. This criterion uses an expected
value for the number of pixels the target will occupy in each image frame. The expected value is calculated using the
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Fig. 3 Original image and the image after processing with the fast marching method (inset).

Fig. 4 Intensity saturation caused by the camera pointing to near the sun can cause noisy results.

assumption that the target will be nearly the same size in the current image as it was in the previous image (which
assumes the trailing aircraft is neither gaining nor losing distance relative to the target aircraft, and also that the target
aircraft is not maneuvering). This assumption, may limit the current overall implementation in some applications,
such as mid-air docking (where the follower must close on the leader), however, there are many other applications for
which it is well suited, such as formation flying, and tracking of ground based targets. Also, this assumption is part
of the image processing algorithm which is only a subset of the overall system. The filtering aspects of the system
should need very little modification for use in docking-type applications.

Thus, the propagation is stopped if the total number of pixels in a limited region around the previous target position
minus the total number of processed pixels (pixels in the same region that are also in the “Known” set) reaches the
expected value. This criterion is helpful in cases when the intensity in an image saturates, such as when the camera
points directly into the sun and some part of the target can not be distinguished. In such cases (see the left image in
Fig. 4) the intensity gradients may not be discernable by the algorithm, and thus contours can propagate past the target.

4. Post Processing
After the contour propagation is stopped, pixels in the “Known” set are set to 0, and all other pixels are set to 1.

From this “binary image” several contours are extracted using a threshold on the recalculated intensity gradient.
The “center of mass” for each closed contour is then calculated. The method of moments is used to find the major

and minor axes of each closed contour and the outermost points of the major axis are labeled as candidates for the
target’s wingtips. These are then used along with an expected span value and other calculated geometric characteris-
tics (such as the aspect ratio and the angle between the line segments formed by the center-of-mass and the wingtips)
to determine which closed contour corresponds to the target aircraft. The expected value of the span is calculated
based on knowledge of the actual target aircraft span, and the distance from the target aircraft (thus the assump-
tion is again used that the target is not maneuvering with respect to the trailing aircraft). These “feature points”
are shown with black crosses in Figs. 3 and 4. A video showing a situation similar to that shown in Fig. 3 can
be seen here: http://pdf.aiaa.org/JournalsOnline/PDFFiles/15429423_v4n4/aiaa/15429423/v4n4/Multimedia/
23410Movie4.avi
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III. Dynamics of the Camera Motion
In this section, the dynamics of the camera motion are derived. Consider a camera frame and an image frame as

shown in Fig. 5. Let ω be the angular velocity and V the relative velocity of the camera with respect to the target.
Also, define the positions of the target in the camera frame and in the image frame as follows:

Pcamera =
⎡
⎣X

Y

Z

⎤
⎦, Pimage =

[
y

z

]

y = Y

X
, z = Z

X

The dynamics of Pcamera can be described as

Ṗcamera = −V − ω × Pcamera (11)

To facilitate the analytic solution of the optimal control problem, an assumption is made that the camera does not
rotate either through gimbal dynamics or correction. The dynamics of Equation (11) then become:

Ẋ = −VX

Ẏ = −VY

Ż = −VZ

(12)

where VX, VY and VZ are the relative translating velocity components along the X, Y and Z-axes, respectively. The
translation-only assumption is idealistic only if one assumes the camera rotates as a result of aircraft motion. Aircraft
mounted non-rotating cameras have been in wide use for many years in the film industry and as stable observation
platforms23 and the simulation based results shown for the CORSE algorithm were generated by simulating such
a system; an aircraft with a mounted camera which translated, but did not rotate with the aircraft. However, the
translation-only assumption was used in the CORSE algorithm primarily to facilitate an analytic solution of the
optimal control problem. And if the CORSE algorithm was to be applied with small expendable UAVs (which
probably wouldn’t have a gyro-stabilized gimbaled camera mount), it would be desirable to re-derive the equations

Fig. 5 Camera frame and image frame.

715



JOHNSON, CALISE, WATANABE, HA, AND NEIDHOEFER

without using the translation-only assumption. The SARSE algorithm presented below is more general and does not
use a translation-only assumption.

The CORSE results presented below were generated using a simulated camera which translated but did not rotate
with the aircraft

For convenience, a new parameter d = 1/X is introduced in place of X.2 Then, Equation (12) yields:

ḋ = VXd2 (13)

The dynamics are considered as a second order system from the guidance inputs

V̇X = uX + ηX

V̇Y = uY + ηY

V̇Z = uZ + ηZ

(14)

where the target’s acceleration is assumed to be zero.
In the equations above, ηX, ηY and ηZ denote the process noise. The average of the process noise η = [ηX ηY ηZ]T

is zero, and its covariance matrix is given by

E[η(t)η(τ )T] = Qδ(t − τ)

Q =
⎡
⎢⎣

σ 2
ηX 0 0

0 σ 2
ηY 0

0 0 σ 2
ηZ

⎤
⎥⎦

The values of the standard deviation of the process noise (σηx , σηy , σηz) were determined by tuning them to match
empirical data collected during flight tests. These values are held constant during algorithm execution, a common
practice in similar EKF applications. While, constant process noise standard deviations could require retuning in
different conditions, the authors have found the values used to result in a robust implementation.

Thus, the dynamics of the camera motion can be represented by equations (12) through (14).

IV. Center Only Relative State Estimation (CORSE)
A. The Measurement Model

The camera gives a series of images and the target center position is detected in each image using a simplified
image processing procedure. The target center position is specified by its horizontal and vertical distance from the
center of the image, for each image at time tk in the series. The measurement is, in this case, the distance from the
center of each image to the center position of the target. Measurement noise is then added to the detected target
position, and the measurements are thus modeled as follows.

zk =
[
yk

zk

]
+

[
ξyk

ξzk

]
=

[
Yk/Xk

Zk/Xk

]
+

[
ξyk

ξzk

]
=

[
Ykdk

Zkdk

]
+

[
ξyk

ξzk

]
(15)

ξ k = [ξxk ξyk
]T represents measurement noise with zero mean and covariance so that

E
[
ξ k ξT

l

] =
{

Rk l = k

0 l �= k

Rk =
[
σ 2

ξy0

0σ 2
ξz

]

In a manner similar to that used in the process noise model development, the values of the standard deviation of the
measurement noise (σξx , σξy , σξz) were determined by tuning them to match empirical data collected during flight
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tests. These values are held constant during algorithm execution, a common practice in similar EKF applications.
While, constant measurement noise standard deviations could require retuning in different conditions, the authors
have found the values used to result in a robust implementation.

This nonlinear measurement model can be written as

zk = h(xk) + ξk (16)

B. The Process Model
The estimator states are defined as

x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

x6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/X

Y

Z

VX/X

VY

VZ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

d

Y

Z

VXd

VY

VZ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The time derivatives of X and V are given by (12–14) so the process model is represented as

ẋ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1x4

−x5

−x6

x2
4 + x1uX

uY

uZ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

x1ηX

ηY

ηZ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1x4

−x5

−x6

x2
4 + x1uX

uY

uZ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 0 0

0 0 0

x1 0 0

0 1 0

0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

η

This nonlinear model can be written as

ẋ = f (x, u) + G(x)η

This model is then discretized as follows:

xk+1 = �kxk + νk

�k
∼= I + ∂f

∂x

∣∣∣∣
xk=x̂k


t
(17)

where vk is the discretized zero mean process noise whose covariance matrix is approximated as

E
[
νk νT

l

] =
{

Qk l = k

0 l �= k

Qk
∼= GQGT
t

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 x2
1σ 2

ηX
t 0 0

0 0 0 0 σ 2
ηY
t 0

0 0 0 0 0 σ 2
ηZ
t

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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C. The Extended Kalman Filter
Applying an Extended Kalman Filter15−17 to the discrete-time system in (17), the state estimation update and

prediction equations are as follows.
Update

x̂k = x̂−
k + Kk(zk − ẑ−

k )

P −1
k = (P −

k )−1 + H T
k R−1

k Hk

Kk = Pk H T
k R−1

k (18)

Hk = ∂h

∂xk

∣∣∣∣
xk=x̂−

k

Prediction

x̂−
k+1 = x̂k + f (t, x̂k, uk)
t

P −
k+1 = �kPk�

T
k + Qk

(19)

The variables x̂k and x̂−
k stand for updated and predicted estimates of states at time tk , and Pk and P −

k are covariance
matrices of their errors, respectively. Kk represents the Kalman gain matrix.

D. The Trajectory Optimization Formulation
The trajectory optimizer outputs a path from the aircraft’s current position to a desired location relative to the

target. If the aircraft then follows this path, the accuracy of the estimated states, particularly of the estimated range,
is maximized.

As the vehicle approaches the target, the EKF (described in the previous section) gives estimates of states that
describe the position and velocity of the target center relative to the camera. However, depending on the motion of
the camera relative to the target, the range estimation might not have sufficient accuracy, because there might not be
enough lateral motion to make the range X observable.

To improve the accuracy of the range estimation, the lateral motion of the camera is controlled to minimize the
variance of the range estimation error. This is formulated as an optimization problem in which the inverse of Pk is
maximized. Since P −

k is the covariance matrix of the estimation error at time tk calculated using measurements up
to time tk−1, our approach to maximize P −1

k , given in Equation (18), is to maximize the second term H T
k R−1

K Hk .
Increasing the first diagonal element of this matrix helps to reduce the range estimation error. It is expanded as

[H T
k R−1

k Hk]11 =
(

Ŷ−
k

σξy

)2

+
(

Ẑ−
k

σξz

)2

At the same time, it is also desirable to limit the magnitude of the control uY and uZ to minimize the extra
maneuvering required for range estimation. Therefore, the optimization problem is formulated as

min
uY ,uZ

1

2

∫ tf

0

⎧⎨
⎩−

(
Ŷ−

k

σξy

)2

−
(

Ẑ−
k

σξz

)2

+ K2
Y u2

Y + K2
Zu2

Z

⎫⎬
⎭ dt (20)

which is subject to the camera motion dynamics given by Equations (12) through (14), where tf represents the
terminal time when the vehicle reaches the destination. This problem can then be solved with appropriate boundary
conditions.

To simplify the optimization problem, we limit the camera motion to the X-Y plane, with the Z position held
constant. Then Ẑ−

k is assumed to be constant and uZ = 0, the second and third terms of the performance index in
Equation (20) can be eliminated. Furthermore, to simplify the problem, constant VX and uX = 0 are assumed. This
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reduces the problem to having only two states, Y and VY . The boundary conditions are given by specifying the initial
and terminal states. {

Y (0) = Y0

VY (0) = VY0

{
Y (tf ) = Yf

VY (tf ) = VYf

(21)

E. Analytical Solution
The analytical solution for this problem can be obtained by solving the Euler-Lagrange equations18 The

Hamiltonian is defined as

H = −1

2

Y 2

σ 2
ξy

+ 1

2
K2

Y u2
Y − λ1VY + λ2uY

The corresponding Euler-Lagrange equations are

λ̇1 = −∂H

∂Y
= Y

σ 2
ξy

λ̇2 = − ∂H

∂VY

= λ1

∂H

∂uY

= K2
Y uY + λ2 = 0

(22)

where λ1 and λ2 are Lagrange multipliers. From these equations and the camera motion dynamics, a differential
equation for uY can be derived as follows:

d4uY

dt4
= 1

(σξyKY )2
uY

The explicit solutions for Y , VY , and uY are:

Y (t) = −σξy

KY

(A sin t ′ + B cos t ′ − Cet ′ − De−t ′)

VY (t) =
√

σξyKY

K2
(A cos t ′ − B sin t ′ − Cet ′ + De−t ′)

uY (t) = − 1

K2
Y

(A sin t ′ + B cos t ′ + Cet ′ + De−t ′)

(23)

where t ′ = t/
√

σξyKY . A, B, C, and D are chosen to satisfy the boundary conditions given by Equation (21).
The derived optimal path corresponding to Equation (23) is sinusoidal. Its frequency is 1/

√
σξyKY , which is

determined by the control input weight KY . Since VX is assumed to be constant, small values of KY give more lateral
motion before the vehicle reaches the destination and large values of KY give less. Because the lateral motion is what
enables an estimation of range from a single camera, greater lateral motion corresponds to a more accurate range
estimation. Therefore, small values of KY are desirable for increasing the range estimation accuracy. However, in
practical applications, it is also important to limit the magnitude of guidance input uY to avoid excessive motions,
which calls for the use of a large value for KY . Thus, there is a trade-off between the accuracy of the range estimation
and the complexity of the flight path.

One approach to deal with this trade-off is to change the value of KY by using the variance of the range estimation
error. As shown in Figs. 10 and 13, the variance of the range estimation error can be an index of the range estimation
accuracy. A smaller variance corresponds to a more accurate estimate. Thus, we can increase KY as the variance
becomes small and decrease KY as the variance becomes large to guide the vehicle to the specified relative position
with sufficient range estimation accuracy and without having to undergo excessive lateral motion.

719



JOHNSON, CALISE, WATANABE, HA, AND NEIDHOEFER

F. Simulation-Based CORSE Results
1. Camera Motion Control

The optimal guidance policy is used for the lateral camera motion. Suppose the desired target position relative to
the vehicle is at [Xf Yf ]. Since VX is a constant, considering the current time as zero, the terminal time tf can be
estimated by using the latest estimates of d and VX as

t̂fk = (Xf − X̂k)

V̂Xk

= Xf

V̂Xk

− 1

V̂Xkd̂k

Using this t̂fk as the terminal time, the flight path is re-optimized at the each time tk . In other words, the coefficient
B is solved with t̂fk at each time and the control input uYk is obtained by

uYk = − 1

K2
Y

(Bk + Ck + Dk)

= − 1

K2
Y

(
2Bk + KY

σξy

Ŷk

)

To signify that B is computed at each time, Bk is used instead of B in the above equations.
For the comparison of the range estimation results, the simulation is also performed using a linear guidance law.

uYk = −V̂Yk − 0.2(Yf − Ŷk)

2. The 6-DOF Multi-Aircraft Simulation
Figure 6 is a screen capture of the display of the flight simulator used for this work. It includes two 14 ft wingspan

fixed wing aircraft, configured as a leader and a follower. A flight controller and guidance system is already imple-
mented in the simulator. The controller is an adaptive neural network flight controller,19−21 and it determines actuator
commands based on the navigation system output and position, velocity, and attitude commands. The follower air-
craft has a camera and its image is also simulated. The synthetic images are processed and provide the same type of
output that would be expected in an actual flight. The image processor uses active contours for fast visual tracking,

Fig. 6 Multi-aircraft simulation.
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as discussed in Section II. The right top window in Fig. 6 shows a synthetic image in the simulator, and the right
bottom window displays the image processing results.

The CORSE algorithm is then applied to a two aircraft formation flight, with the camera on the follower aircraft
and the leader aircraft being the target. From the output of the image processor, the EKF estimates the leader’s
position and velocity relative to the follower. Then, using the optimal guidance policy, a relative position command
is generated from the estimate.

Values of the parameters used in the simulation are shown below.
• Sampling time


t = 0.01

• Standard deviations of measurement noise

σξy = σξz = 1.0 × 10−4

• Standard deviations of process noise

σηx = σηy = 1.0 × 10−4

• Weight for the input uY

KY = 16

σξy

(
1√

σξyKY

= 1

4

)

• Initial condition ⎡
⎢⎣

X0

Y0

Z0

⎤
⎥⎦ =

⎡
⎢⎣

100

5

0

⎤
⎥⎦,

[
VX0

VY0

]
=

[
1

0.5

]

• Terminal condition ⎡
⎢⎣

Xf

Yf

Zf

⎤
⎥⎦ =

⎡
⎢⎣

0

0

0

⎤
⎥⎦,

[
VXf

VYf

]
=

[
1

0

]

Prior knowledge of all states is assumed to be available to initialize the EKF. The initial estimates are chosen by
taking the true values and adding a random error of magnitude 1.0 × 10−4.

3. Results
An example of the resulting trajectory and the guidance input uY are shown in Figs. 7 and 8. There is an obvious

difference between the linear and optimal trajectories depicted in these figures. With the linear guidance law, the
vehicle travels almost straight to the target and there is very little lateral motion. On the other hand, the optimal
guidance law gives a meandering flight path to the target, always maintaining enough lateral velocity to estimate
the range. While such a trajectory may limit the usefulness of the technique in some applications, such as docking
or mid-air refueling, there are many other applications such as loose formation flying, or ground-based or airborne
target tracking for which it is well suited.

Figure 9 displays examples of the range estimation errors for both the linear and optimal guidance cases. Under
linear guidance, the lateral position Y and velocity VY both become small as the vehicle approaches the destination,
resulting in a loss of range observability and a relatively large range estimation error. However, with the CORSE
optimal guidance law, the range estimation error decreases to zero and the EKF provides an accurate range estimate.
The estimation accuracy is also illustrated by the computed variance of the estimation errors. Figure 10 shows a
comparison between time histories of the variance of the range estimation error, averaged over 100 trials, between
the two cases.

The estimation errors of states other than the range are relatively small in both the linear and optimal guidance
cases. Figures 11 and 12 show a comparison between the estimation and guidance results with and without the
optimal guidance policy.

721



JOHNSON, CALISE, WATANABE, HA, AND NEIDHOEFER

Fig. 7 Vehicle trajectory.

In this simulation, the follower aircraft changes its relative position from [
x = 100 ft, 
y = 10 ft, 
z = 0 ft] to
[
x = 50 ft, 
y = 0 ft, 
z = 0 ft]. In one case (Fig. 11), the relative position command is given as a step command
at a time of 20 seconds. In the other case (Fig. 12), the optimal path given by Equation (23) is utilized as the command
from 20 seconds to a fixed terminal time 60 seconds. Without the optimal guidance policy, there remains a steady

Fig. 8 Control input uY .
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Fig. 9 Range estimation error.

state error in range, and the follower aircraft is guided to the position about 20 feet farther than its command. With
the optimal guidance policy, the distance between two aircraft is accurately estimated and the follower is guided
to the desired position. Figure 13 shows a profile of the variance of the range estimation error. Thus, it is observed
that the optimal guidance policy accurately estimates range.

Fig. 10 Variance of range estimation error.
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Fig. 11 Step command for position estimation without optimal guidance.

Fig. 12 Optimal path command for position estimation with optimal guidance.

V. Subtended Angle Relative State Estimation (SARSE)
A. The Measurement Model

The SARSE algorithm differs from the CORSE algorithm in several ways. One major difference lies in the
level of image processing that is required. Unlike the CORSE algorithm’s image processing, which determines
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Fig. 13 Variance of range estimation error.

only the target center for a given image, the SARSE algorithm uses a more advanced technique to estimate the
locations of the wing tips in the image as well. These locations are then used to calculate the angle whose ver-
tex lies at the follower aircraft’s center and which is subtended by the line between the target’s wingtips (see
Fig. 14).

Fig. 14 Subtended angle relative to camera aircraft and target.
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In the SARSE algorithm, the estimator states are

x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

x6

x7

x8

x9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uX

uY

uZ

u̇X

u̇Y

u̇Z

1/r

ṙ/r

b

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

And the measurement derived from each image is

zk =

⎡
⎢⎢⎢⎣

z1k

z2k

z3k

z4k

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

uXk

uYk

uZk

αk

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

ξXk

ξYk

ξZk

ξαk

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

x1k

x2k

x3k

2 tan−1(x7kx9k/2)

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

ξXk

ξYk

ξZk

ξαk

⎤
⎥⎥⎥⎦

where r is a range to the target, u = [uX, uY , uZ] is a unit vector pointing to the target and α is the angle subtended
by the target’s wingspan whose actual length is b. Measurement noise ξk = [ξXk, ξYk, ξZk, ξαk] is modeled in the same
manner as described in Section IV.A for the CORSE algorithm. Then, the measurement model is written as

zk = h(xk) + ξk (24)

B. The Process Model
The process model of x is written as follows:

ẋ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

ẋ7

ẋ8

ẋ9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x4

x5

x6

(−aX(1 − x2
1 ) + aY x1x2 + aZx1x3)x7 − 2x4x8 − x1(x

2
4 + x2

5 + x2
6 )

(aXx1x2 − aY (1 − x2
2 ) + aZx2x3)x7 − 2x5x8 − x2(x

2
4 + x2

5 + x2
6 )

(aXx1x3 + aY x2x3 − aZ(1 − x2
3 ))x7 − 2x6x8 − x3(x

2
4 + x2

5 + x2
6 )

−x7x8

−(aXx1 + aY x2 + aZx3)x7 + x2
4 + x2

5 + x2
6 − x2

8

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where a = [aX, aY , aZ] is the vehicle acceleration and the target acceleration is assumed to be zero.
The acceleration a is modeled by

a =
⎡
⎢⎣

aX

aY

aZ

⎤
⎥⎦ =

⎡
⎢⎣

ãX

ãY

ãZ

⎤
⎥⎦ +

⎡
⎢⎣

ηX

ηY

ηZ

⎤
⎥⎦

where ã is control input.
The standard deviations for the process and measurement noise models in the SARSE algorithm were determined

in the same manner as the CORSE algorithm.
Thus, the nonlinear process model can be written as

ẋ = f (x, ã) + G(x)η (25)
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C. The Extended Kalman Filter
For the measurement and process models described in Equations (24) and (25), the extended Kalman filter is

designed as follows:
Update

x̂k = x̂−
k + Kk(zk − ẑ−

k )

Kk = P −
k H T

k (HkP
−
k H T

k + Rk)
−1

Pk = P −
k − KkHkP

−
k

(26)

Prediction

x̂−
k+1 = x̂k + f (x̂k, ask)
t

P −
k+1 = �kPk�

T
k + Qk

(27)

where x̂k is an updated estimate and x̂−
k is a predicted estimate, Rk and Qk are measurement and process noise

covariance matrices, and Pk and P −
k are their error covariance matrices. �k and Hk are obtained from the process

and measurement model as follows:

�k = I + ∂f (x̂k, ak)

∂x̂k


t

Hk = ∂h(x̂−
k )

∂x̂−
k

D. Simulation-Based SARSE Results
The image processor outputs new data whenever a camera image is updated. So the sampling time is not constant

and is calculated at each iteration. It is generally about 
t ≈ 0.02 seconds.
The process noise is assumed to be on the vehicle acceleration in each (body) axis. The values for the noise

variance are set as

σ 2
X = 0.03, σ 2

Y = 0.00015, σ 2
Z = 0.003

The measurement noise covariance matrix Rk is given by

Rk =

⎡
⎢⎢⎢⎣

0.0001 0 0 0

0 0.0001 0 0

0 0 0.0001 0

0 0 0 0.0001

⎤
⎥⎥⎥⎦

The initial values for the EKF prediction and for its error covariance are set as

x̂−
0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̂−
01

x̂−
02

x̂−
03

x̂−
04

x̂−
05

x̂−
06

x̂−
07

x̂−
08

x̂−
09

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

0

0

0

0

0.01

0

14.16

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, P −
0 = I

The initial prediction implies that the target is 100 feet ahead of the camera without any relative motion, which is
almost the same as the actual distance, and the target wingspan is assigned its actual value as well.
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Fig. 15 Relative position estimation results.

The vehicle is guided by its relative position command. In this simulation, the commands are given as follows,
with the time specified in seconds:

t < 35 : pc = [−100, 0, 0]
35 ≤ t < 50 : pc = [−100, −20, 0]
50 ≤ t < 65 : pc = [−100, −20, −10]
65 ≤ t < 80 : pc = [−100, 20, −10]
80 ≤ t < 95 : pc = [−100, 20, 10]

Fig. 16 Relative velocity estimation results.
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Fig. 17 Error in estimation of relative position.

95 ≤ t < 110 : pc = [−100, 0, 0]
110 ≤ t < 125 : pc = [−50, 0, 0]
t ≥ 125 : pc = [−100, 0, 0]

The estimation and guidance results are shown in Figs. 15 and 16. Using the estimated value, the vehicle is guided
to follow the relative position commands. (The steady state error in the x position is due to the flight controller.)
Figures 17 and 18 show estimation errors for each state. The range estimation has the largest error among all the

Fig. 18 Error in estimation of relative velocity.
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states; however, its error remains less than 5% and is small enough that the estimated range value can still be used
legitimately for vehicle guidance.

VI. Flight Test Results
A. Flight Test Hardware

The flight tests described here were image-based UAV formation flying tests where the GTMax rotorcraft UAV was
flown in a non-homogenous formation with the GTEdge fixed-wing UAV. In these tests, the GTMax was the follower;
it used the SARSE algorithm described above for navigation relative to the GTEdge which was the formation leader.
Video of the actual flight test taken from a ground-based camera can be seen here: http://pdf.aiaa.org/JournalsOnline/
PDFFiles/15429423_v4n4/aiaa/15429423/v4n4/Multimedia/23410Movie5.mpg and video of the same test
taken from the camera on-board the follower aircraft can be seen here: http://pdf.aiaa.org/JournalsOnline/
PDFFiles/15429423_v4n4/aiaa/15429423/v4n4>/Multimedia/23410Movie6.mpg

This section provides details on the flight hardware, including the the GTMax and GTEdge airframes, their
associated avionics (and data describing how the SARSE algorithms performed on this hardware), and camera
sensors used.

Georgia Tech’s GTMax UAV (see Fig. 19) utilizes a Yamaha R-Max industrial helicopter airframe with the
following characteristics:

• Rotor diameter: 10.2 feet
• Length: 11.9 feet (including rotor)
• Engine: gasoline, two-cylinder, water-cooled, 246 cc, 21 horsepower
• Max weight: 205 pounds
• Payload including avionics: >66 pounds
• Endurance of approximately 60 min (hover)
• Generator, battery, and electric starter
• Yamaha Attitude Control System (YACS).
The GTMax baseline flight avionics, including sensors and processing equipment, adds approximately 35 pounds

to the basic airframe weight. The avionics configuration used for these tests includes:
• A 266 MHz Pentium II Embedded PC, 500 MB Flash Drive, and an 850 MHz Pentium III Embedded PC, 2 GB

Flash Drive
• An Inertial Science ISIS-IMU Inertial Measurement Unit and a NovAtel OEM-4 differential GPS

Fig. 19 Georgia Tech’s GTMax UAV.
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Table 1 SARSE camera specifications.

Parameter Value

Camera model Sony FCB-EX780B
Weight 8.1 oz.
Size (L × W × H) 3.25 in. × 2 in. × 2.4 in.
Angle of View 45◦ (wide angle) to 2◦ (spot)
Effective pixels 680,000
Electrical power 1.6 W (motors inactive), 2.7 W (motors active)
Zoom 25 × optical, 12 × digital
Lighting conditions 2.5l × minimum, near IR capability

• A Honeywell HMR-2300, three-axis magnetometer, and an ultra-sonic sonar altimeter
• Vehicle telemetry (RPM, voltage, remote pilot inputs, low fuel warning) from YACS
• An actuator control interface to the YACS, 11 Mbps Ethernet data link and Ethernet switch, and a FreeWave

900 MHz spread-spectrum serial data link.
The power distribution system utilizes the onboard generator, which outputs 12V DC. It includes a hot-swappable
connection to use external power and each component has a dedicated individual circuit breaker.

The flight software runs on the two onboard computers, referred to as “Onboard 1” (the 266 MHz Pentium II used
as the primary flight computer) and “Onboard 2” (the 850 MHz Pentium III used as a secondary computer). The
baseline guidance, navigation (GPS-based) and control algorithms are run on Onboard 1 while the SARSE algorithms
are run on Onboard 2. The Ground Control Station (GCS) software normally runs on one or more laptop computers
and allows system operators to interact with the onboard systems through the spread-spectrum data link.

Georgia Tech’s GTEdge UAV uses a modified Aero-Works 33% Edge 540T airframe that has the following
characteristics: Wing span: 105 inches; Length 94 inches; Wing planform area: 1870 sq. inches; Empty weight: 29
pounds; Desert Aircraft 9.8HP Engine; Engine weight: 5.8 pounds; Propeller size: 26 × 12, Electronic Ignition. The
GTEdge baseline flight avionics configuration along with sensors and processing equipment includes:

• An FCS20 data acquisition and flight control computer featuring a 255 MHz TI-DSP with an integrated Altera
EP1S40 FPGA, A/D converters, four RS232 ports, and 12 General Purpose 5V IO pins

• Three Axis IMU, Analog Devices +/−300 degrees Solid State Rate Gyros with a Temperature Sensor, and
two 2-axis +/−10 g accelerometers (X, Y, Z, X2)

Fig. 20 Image processor outputs.
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Fig. 21 Image registered in field of view.

• An extended Kalman filter based navigation system capable of estimating Euler Angles at 100 Hz
• μBlox TIM-LF GPS module, a FreeScale Airspeed Sensor, Ethernet data link and an Ethernet switch, and a

FreeWave 900 MHz spread spectrum serial data link.
Both the GTMax and GTEdge systems are transported in an air-conditioned mobile Ground Control Station (GCS)

equipped with a generator.

Fig. 22 Leader’s center position (IP result vs. GPS estimate).
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The camera sensor used to generate image data for the SARSE algorithms is a Sony FCB-EX780B color CCD
block video camera. This camera features image stabilization, near IR capabilities, user configurable shutter control,
and data transmission rates up to 38.4 Kb/sec. Some important specifications for the camera system are given in
Table 1.

B. Image Processing
Figure 20 shows actual flight test data of the leader’s center, and left and right wingtip positions which are

detected by the follower’s image processor in successive images. An “imageRegistered” flag is 1 when the image
processor detects a target (i.e., the leader aircraft) and the flag is 0 when it does not. In Fig. 21, it is apparent that
the image processor detects the target most of the time. Fig. 22 compares the leader’s center position as detected
by the image processor with values estimated using GPS data. Lateral position (xc) has some bias, but vertical
position (yc) matches very well. The bias in xc is probably due to the yaw angle difference of the leader and the
follower.

Fig. 23 Measurement vector for the SARSE EKF.

Fig. 24 Estimated relative position.
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Fig. 25 Position estimation error.

C. EKF Measurements
Figure 23 is a measurement vector for the SARSE EKF, calculated by using the image processor outputs in Fig. 20.

The measurements are a unit vector u from the camera to the leader’s center in a camera frame and a subtended angle
by the leader’s wingspan as discussed in the description of the SARSE algorithm above.

Fig. 26 Estimated relative velocity.
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D. Relative State Estimates
Figures 24, 26, and 28 compare the Vision-estimated and GPS-estimated relative position, velocity and accel-

eration. Figures 25, 27, and 29 are the vision-based estimation errors assuming the GPS-based estimates as truth.
Because of the range estimation error, the followers range tracking was somewhat inaccurate, however, the vertical
position estimation error is relatively small, and thus was able to keep the leader in its field of view. This accurate Z

estimate is because of the accurate yc measurement from the image processor.

Fig. 27 Velocity estimation error.

Fig. 28 Estimated relative acceleration.
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Fig. 29 Acceleration estimation error.

The actual algorithmic loop time of the SARSE algorithms running on the actual flight hardware (an 850 MHz
Pentium III Processor) was approximately 0.1 seconds. In other words, the SARSE algorithm was run at approximately
10 Hz. Analysis of approximately 10 minutes worth of continuous flight data (∼6000 data points) showed that the
actual mean value of the loop time was 0.1020 seconds with a standard deviation of 0.0159 seconds. A segment of
this data is shown in Fig. 30. In Fig. 30 it can be seen that loop time was often less than 0.08 seconds and occasionally
(less than 2% of the time) slightly higher than 0.24 seconds. The rare anomalous higher loop times are attributed to
latency in the image processing algorithms.

Fig. 30 SARSE algorithm loop time on a 850 MHz Pentium III Processor.
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VII. Conclusions
In this paper, two successful vision-based techniques for the navigation of an aircraft relative to an airborne

target using only information from a single camera were introduced. This represents an important contribution to
the goal of reducing both cost and complexity of airborne navigation systems, most of which currently rely on
sophisticated sensor and communication suites, such as GPS and/or Inertial Measurement Units (IMUs), to achieve
similar results. Also, since the methods presented in this paper use only a single fixed camera, they will be of great
interest to researchers developing autonomous micro-UAVs which can typically carry only very small, lightweight
sensors and processing units with low power requirements.

The first method, Center Only Relative State Estimation (CORSE), guides the motion of the camera to maximize
the usable information available in the image sequence to derive accurate range estimates. CORSE uses very simple
image processing methods that output only the center of the target in each image.

The second algorithm, Subtended Angle Relative State Estimation (SARSE), uses a more complex image pro-
cessing technique to derive more information from each camera image in order to successfully estimate the range. In
particular, the image processing system is used to estimate the locations of the wingtips of the target in addition to
just the location of the target center. Then, the angle subtended by the wingspan of the target, relative to the camera
position, is used as an input to the EKF.

While both of these methods are successful at airborne vision-based relative state estimation using only a single
vision sensor, they have distinct advantages and disadvantages. The CORSE algorithm uses very simple image
processing whose only output is the center of the target aircraft in each image. This minimizes the amount of
processing power necessary for the navigation system, which results in a system that has minimal sensor and
processing requirements. This type of simple processing system is a very attractive feature for micro UAVs where
minimal weight and volume are critical. The disadvantage of the CORSE algorithm is that it requires the aircraft
to follow a flight path that allows observation of range. This would not be a valid option for systems in which
many aircraft are flying in close proximity to one another, or if the target and following aircraft were flying through
restrictive terrain. The SARSE algorithm uses a more complex image processing technique to locate both wingtips of
the target in each image. Thus, it may require more powerful (and subsequently larger, heavier, and more expensive)
onboard processing than the CORSE algorithm. However, using this enhanced image processing; SARSE can provide
valid range estimates without requiring the aircraft to follow any particular path. Finally, flight test data results are
presented. These results include EKF measurements, relative state estimates, estimation errors, and image processing
lock data for experiments in which the SARSE algorithms were used to perform relative navigation and formation
flying between two UAVs. Statistics show that the SARSE algorithms can be run consistently at 10 Hz on modern
flight computer hardware.
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