
A Modular, Hybrid System Architecture for Autonomous, Urban

Driving

Dave Wooden, Matt Powers, Magnus Egerstedt, Henrik Christensen, and Tucker Balch
Robotics and Intelligent Machines
Georgia Institute of Technology

Atlanta, GA 30332

September 26, 2007

Abstract

Autonomous navigation in urban environments inevitably leads to having to switch between var-
ious, sometimes conflicting control tasks. Sting Racing, a collaboration between Georgia Tech and
SAIC, has developed a modular control architecture for this purpose and this paper describes the
operation and definition of this architecture through so-called nested hybrid automata. We show
how to map the requirements associated with the DARPA Urban Grand Challenge onto these nested
automata and illustrate their operation through a number of experimental results.

1 Introduction

In this paper we describe Sting Racing’s design and implementation of an unmanned system for entry
into the DARPA Urban Challenge. In particular, the focus of this paper is on the system architecture
and we present an extensively field tested architecture that is based on a modular structure comprised of
so-called Nested Hybrid Automata (NHA).

The vehicle that we use for this is a Porsche Cayenne (as shown in Figure 1), retrofitted for complete
computer control, and use a combination of GPS/IMU, camera, radar and LADAR data to generate
situational awareness, which is, arguably, the major challenge separating the Urban Grand Challenge 07
from the previous two Grand Challenges [1, 2].

Figure 1: The Sting Racing retrofitted Porsche Cayenne entry to the DARPA Urban Challenge.

Situational awareness constitutes one of the main sources increased difficulty from Grand Challenge
05 to the Urban Grand Challenge 07, which can be understood as the ability to operate in multiple
complex scenarios - from driving on multi-lane roads, to navigating intersections while obeying precedence
rules, to overtaking stopped vehicles. In this paper, we argue that the standard, hybrid architecture
in which a behavior-based reactive layer controls actuation, while deliberative path planning provides

1



intermediate waypoints in the configuration space, fails to cover the capabilities required by the Urban
Grand Challenge. Instead, what is required is a system capable of switching both control strategy and
sensing priorities based on the perceived state of the robot. For example, the derived perception needs
and appropriate control regimes of a robot at an intersection differ greatly from that of one driving at
high speeds on a highway.

In this paper we describe an extension of hybrid automata models (e.g. [3]) for the purpose of
situational awareness, and include a description of the installation of this approach to Sting Racing’s
Urban Grand Challenge robot. The overall arrangement of the control architecture will be divided into a
planning block and a control block. At the highest level in the control block is an arbiter which combines
the outputs of a multitude of behaviors. We chose to let the arbiter vote on the control output (desired
steering angle and desired translational velocity) in the fashion based on the DAMN architecture [4]. Each
behavior’s output is assigned a weight by the arbiter before all outputs are combined and the steering
and velocity command are executed. These weights are prescribed by the arbiter based on its current
action, and the current action is an output of the planning block.

To summarize: The contribution of this paper is the Sting Racing modular architecture, as well as a
detailed description of how it is used for solving the Urban Challenge. Moreover, a number of experimental
test results are given, illustrating how the requirements for urban driving can be mapped onto a finite
set of distinct modes-of-operation.

2 Coverage of the Required Capabilities

2.1 The Urban Grand Challenge

The two previous grand challenges organized by DARPA emphasized autonomy and robust operation
in cross-country off-road environments [1, 2]. The environment was largely assumed to be static, with
few or no moving objects. If other vehicles were encountered, one of them would be paused while the
other vehicle continued its route towards the goal. The desired route to be followed was defined by a
relatively dense list of waypoints rather than by perceptual features (i.e., roads) in the environment. The
objectives of the previous challenges therefore focused on endurance, robustness to local sensory dropouts,
and trajectory following within a corridor defined by waypoints, with local deviations to accommodate
static obstacles. As witnessed by the number of finishers in the last Grand Challenge, the lower level
sensing, control, and vehicle reliability required to drive between waypoints while avoiding sparse static
obstacles are now largely solved problems [1, 2, 5].

The Urban Challenge (UC) poses a number of very different higher-level cognition challenges for the
design of a system. First of all, navigation must be performed with respect to locally defined structures
such as lane-markings, stop lines, etc. Driving is required to perform lane keeping in situations with
widely spaced waypoints. The vehicle is required to come to a stop at a stop line. Navigation must be
performed relative to these markings, not with respect to global coordinate frames as defined by GPS.
In addition, global position estimation methods such as GPS might have limited availability. In short,
instead of being told where it is relative to a detailed path to follow, the vehicle must reason as to its
location and the associated appropriate control responses.

In contrast to earlier Grand Challenges, the vehicle is required to show situational awareness of
dynamic as well as stationary vehicles and structures within changing areas around the vehicle. Situational
awareness is required to allow the vehicle to plan its actions in response to the context. For example, if a
slow moving vehicle is in front of the car, and the lane marking is a double yellow line, then following at
an appropriate distance is the correct action. But the same situation with a slow moving vehicle alone
in a lane with dashed lane dividers might allow an overtake maneuver, provided there are no vehicles
in front and there are no oncoming vehicles with the segment needed for passage. For the overtake
maneuver, there is a need for long-range detection of vehicles in other lanes to ensure safe passage. At
intersections there is a need to detect vehicles that are waiting or approaching, which calls for long-range
lateral coverage.

Our architecture to address these challenges is based upon the assumption that the required capabil-

2



ities can be broken down into a small (enumerable) number of operating modes, each mode consists of a
collection of parameterized behaviors and a behavior arbitration mechanism. This modularization makes
design and development tractable, as well as provides a mechanism for structured, incremental testing.
Traffic laws and conventions structure the world dynamics into this small set, though robust behavior
within an operating mode requires being robust with respect to large variety of possibilities relevant to
that mode.

2.2 Driving in Urban Environments

The novel, modular architecture employed by Team Sting was arrived at by observing that the sensing,
planning, and control capabilities needed to drive down a road are fundamentally different than those
needed to park the vehicle. As such, rather than choosing a single, sense-plan-act solution in which a
unified planner produces references for a trajectory tracker, a number of distinctly different environments
were identified, based on the unique challenges posed by the Urban Grand Challenge. In fact, the
operation of the system is modeled as a finite set of ”modes of operation” that each capture a nominal
situation to be handled by the vehicle. Within each of these modes of operation, a dedicated set of
controllers is used to handle both the nominal situation and unexpected variations.

Figure 2: Sting Racing Software Architecture

Each mode of operation is represented as a hybrid automaton, as seen in Figure 3. An automaton is
composed of states and transitions among the states. For example, consider a state Follow-Lanes which
represents the behavior of driving along lanes on a road while obeying speed limits and recognizing the
speed of nearby traffic. This state would have transitions to another state, Handle-Intersection, where
the transition occurs based on a combination of the distance from the robot to the stop point (from GPS
information) and other visual cues, such as the detection of a stop line.

In the left automaton in Figure 3, nodes at the highest level of abstraction are shown. These correspond
to the high-level modes of operation Follow Lanes, Overtake Static Obstacle, U-Turn, Handle Intersection,
Park, and Unpark. Based on the specifications of the Urban Grand Challenge mission, these are the six
modes of operation that are selected by Team Sting as the minimal set of modes needed to successfully

3



complete the mission. An important additional benefit, however, associated with the modular design is
that new modes can be added, whenever the need arises further down the development cycle. Indeed,
encapsulation and ease of extendibility are a key features of this software architecture and important to
the short development cycles required for the Urban Grand Challenge.

Follow
Lane

Unpark

Blind

Park

U-turn

Follow
Lanes

Blocked

Overtake
Static Obs.

Handle
Intersection

Should
Overtake

Figure 3: Modes of operation modeled as a Nested Hybrid Automaton

The transitions between modes are guarded in the sense that environmental conditions trigger the
transitions. As such, the situational awareness component of the novel Team Sting architecture can be
thought of as the guard conditions (or transition conditions associated with the different edges in Figure
3), and the cognition component is encoded by the underlying state machine dynamics. And, for the sake
of easy reference, each of the modes of operation are roughly described. A more detailed description is
given to the Follow Lanes mode of operation. The remaining modes are discussed only cursively.

Follow Lanes

In the right figure of Figure 3, the Follow Lanes mode of operation is given. Here, each node corresponds
to a particular set of behavioral controllers as well as to a particular arbitration mechanism. In fact, the
modes that make up this high-level mode are

• Follow Lane: This mode corresponds to a set of behaviors that use visual perception to track lane
striping and that use fused LIDAR and radar data to track nearby traffic, thereby adjusting speed
and avoiding collisions.

• Overtake: Typically, transitions between the states are based on environmental or perceptual in-
formation. Overtake mode, however, is a state-based signal to switch from the larger Follow-Lanes
model into the Overtake-Static-Obstacle model. This mode corresponds to a command to the
behavior arbiter to stand still until the Overtake-Static-Obstacle model is enabled.

• Blocked: This mode uses the same behavior arbiter as the Follow-Lane mode. However, it has a
transition based primarily on time. If this mode is active for a parameterized amount of time, it
transitions to Overtake, which then signals the robot to overtake a static obstacle.

• Blind: This mode corresponds to a behavior arbiter that uses GPS and laser information to drive
in the lane because the lane detector has failed in some way. Fused laser and radar data is used to
avoid collisions and maintain speed in the lane.

4



Overtake Static Obstacle

This mode of operation governs the control of vehicle during a maneuver to overtake a static obstacle.
The four modes comprising this high-level mode include the following: Init-State, Change-Left, Change-
Right, and Done. Init-State establishes a fixed coordinate frame to govern the transitions through the
subsequent modes. Change-Left and Change-Right correspond to the tracking of lane markings one lane
to the left or right, respectively of the current lane being tracked. That is, the lane change maneuver
is achieved primarily by shifting visual perceptual attention on the road. The lane change commands
are triggered based on a combination of distance travel (relative to the coordinate frame established in
Init-State) and the presence/absence of obstacles from fused LIDAR/radar data.

U-Turn

The states of this high-level mode encode a mapping from vehicle orientation (i.e., position and heading)
to output primitive (e.g., drive forward, hard left; drive in reverse, hard right). This mapping stabilizes
the vehicle (in the presence of imperfect vehicle control) to the desired final position and heading.

Handle Intersection

Intersections are handled by cycling through a string of simple modes: Approach, Find Queue Position,
Wait For Turn, Go, and Done. Approach smoothly brings the vehicle to a stop at the stop line based
on visual perception of the lane markings, while queueing behind other vehicles. Once stopped, Find
Queue Position establishes the robot’s precedence order based on fused LIDAR/radar data. Wait For
Turn checks the interior of the intersection for traversals by the adjacent vehicles with higher precedence.
Once its turn has come, Go is triggered, and the robot traverses a path through the intersection towards
the entry point back onto the lane segment.

Park and Unpark

This pair of high-level modes guides the robot through RNDF zones and in and out of parking spots.
These states govern the path of the robot (e.g., to drive it to a parking spot) given the constraints of
Ackermann steering and encode the rules of driving in the unstructured RNDF zones (e.g., pass to the
right of oncoming traffic).

3 A Modular, Hybrid Architecture

Figure 4 provides a more detailed view of the processes comprising the Sting software architecture shown
in Figure 2. The Planning Group consists of the Mission Mapping, Mission Planning, and Situational
Awareness and Action Sequencing blocks. Similarly, the Control Group consists of the Reactive Behaviors,
Behavior Arbitration, and Vehicle Control blocks. This section describes the operation of these blocks
in detail and outlines their functionality with respect to the key software and architectural challenges
associated with the Urban Challenge.

3.1 Primitive and Integrated Perception

In order for the vehicle to estimate its own state as well as relevant environmental conditions, sensing and
estimation are needed at different levels of abstraction, frequency, and fidelity. The primitive perception
part of the software architecture collects and processes single scans/images/measurements from individual
sensory sources. In order to arrive at a comprehensive list of perception primitives, Team Sting relied
on the mission scenarios to be expected in the Urban Challenge. In particular, as safety is going to be
a critically important issue, static and dynamic obstacle detection are needed as well as scan matching
algorithms for obstacle classification. The dynamic obstacle detection is necessary also from a traffic
management point-of-view. Moreover, as the vehicle will be operating in environments in which GPS
signals may or may not be readily available, an integrated GPS/IMU primitive is needed in combination

5



Figure 4: Software processes used within the Sting software architecture and their relationship to the
conceptual architecture presented previously. Smaller boxes represent divisions of labor between software
processes (e.g. Static Obstacle Detection). Larger boxes represent divisions of labor within the conceptual
architecture (e.g. Primitive Perception).

with a vision-based method for local pose estimation, i.e., visual odometry. Finally, lane and stop line
tracking capabilities will also be needed in order to place the vehicle correctly in its local environment.
Note that these primitives are not providing all of the perceptual skills needed, but the remaining, more
complex perception tasks will be handled at the integrated perception level.

To summarize, the derived set of required primitive perception capabilities are:

• Static Obstacle Detection

• Laser Scan Matching

• Dynamic Obstacle Detection

• GPS/IMU Integration

• Stereo Obstacle Detection

• Lane and Stop Line Tracking

• Visual Odometry

The Integrated Perception functional group deals with sensor fusion, in which the data from the primitive
perception group is used in an integrated fashion to achieve higher-level perceptual tasks. These tasks
are Pose Estimation, Unmarked Road Detection, and Obstacle Tracking and Local Mapping. Two of the
key problems associated with the Urban Challenge are driving on a road network without detailed, high
accuracy information about the road location, and detecting and tracking other moving entities in the
world.

6



3.2 Planning and Control

Planning and Control tasks span a number of processes in our software architecture, due to its multilayered
hybrid continuous/discrete control strategy. Figure 5 shows the structure of these processes. At the top
of this hierarchical structure is the Mission Level Mapping block. At the beginning of a mission, a map
is produced that consists of a graph structure based on the provided RNDF. As the mission progresses,
this graph structure is augmented with information about the routes it represents. Experiences of traffic
congestion, dangerous obstacles, and impassible lanes are noted in the graph for future reference.

Figure 5: A detailed view of the planning and control architecture, presented as part of the full architec-
ture. Arrows indicating information flow are labeled with the type of information communicated.

The map produced by the Mission Level Mapping block is passed on to the Mission Level Planning
block. This block incorporates the MDF and plans a route through the graph-based map to achieve
the specified checkpoints. Information stored in the map is used to weight edges of the graph, allowing
the planner to find a route that optimizes the expected time-to-complete, rather than simply distance.
The plan is passed on to the Reactive Behaviors block. A representation of the robot’s current task
(e.g., PARK, UNPARK, DRIVE TO CHECKPOINT) is passed on to the Situational Awareness block.
The Situational Awareness block implements a nested hybrid automaton (NHA), which is driven by the
robot’s current task and perception. The NHA implements an a priori representation of the structure
of the robot’s environment and task. The nested structure allows for asynchronous transitions at differ-
ent levels of functionality. Each state in the NHA maps, in a many-to-one fashion, to actions such as
FOLLOW-LANE, DRIVE-TO-POINT, and STAND-STILL. Selected actions are passed on to the Be-
havior Arbitration block. The Behavior Arbitration block maps an action to a set of weights (which may
be zero) which is applied to the output of the behaviors provided by the Reactive Behavior block. Each
behavior provides a set of votes over discrete values of curvature within the vehicle’s drive capabilities,
and provides a maximum allowable velocity for each evaluated curvature. The Behavior Arbitration block
chooses a commanded steering angle according to the input provided by the behaviors and their respec-
tive weights, and a commanded velocity according to the minimum of the maximum allowable velocities
provided by the behaviors for the selected curvature. This commanded curvature and velocity is passed
on to the Vehicle Control block, which runs in a tight loop, controlling the actuation of the vehicle to
achieve the commanded set points.

7



3.3 Atypical and Unexpected Situations

Within the Team Sting planning and control architecture, atypical and unexpected events and situations
are addressed in two different ways. First, the transitions between states at a given level of the nested
hybrid automaton are asynchronous with respect to the state/transitions of lower levels. This reduces
the possibility for deadlock. Moreover, by using the hybrid automaton structure, existing and well known
tools for analyzing the design (e.g., assessing the reachability of bad states, finding the possibility of dead-
lock) are readily available. By dividing the complexity of the larger Situational Awareness problem into
separable components - the various high-level modes described below - the standard software principles
of modularity and encapsulation are employed. This planning architecture thus lends itself to quickly
determining the fault in the existing design as well as allowing for a revision of that component with
minimal impact on other components.

The second major way for handling unexpected situations comes from the use of a behavior-based
arbitration mechanism based on the DAMN architecture [4], as shown at the Arbitration Level in Figure
5. A number of active behaviors express appropriate commands for their respective interests (such as
avoiding obstacles or following the lane) by voting for or against values in a set of steering angles. Because
each behavior can express multiple preferences across the set of steering angles, the behavior arbiter is less
likely to arrive at a local minima or an oscillatory state. For example, a behavior dedicated to avoiding
obstacles can express that turning either left or right is appropriate for avoiding an obstacle in front of
the vehicle, and let the arbiter evaluate the other behaviors before deciding to turn left or right, as shown
in [5].

4 Nested Hybrid Automata

A hybrid automaton is a model that captures both the continuous and the discrete aspects of a dynamic
system. In particular, a continuous state (typically the position and velocities of the car) evolves concur-
rently with a discrete state (the current mode of operation), and we follow the standard definition of a
hybrid automaton (e.g. [3]) as a tuple HA = (Q,X,E,U, f,G,R, x0, q0), where

• Q – the set of discrete states

• X – the continuous state space

• E – the set of events that can trigger transitions between different discrete states

• U – the input space

• f : Q×X × U → TX – encodes the evolution of the continuous state x as ẋ = f(q, x, u)

• G : Q × Q × X × (E ∪ ε) → {0, 1} – gives the guard conditions that triggers transitions between
discrete states. In particular, a transition occurs between q to q′ if the continuous state is x, the
external event is e ∈ E or possible the ”empty event” ε (no event happened) if G(q, q′, x, e) = 1

• R : Q × Q × X × E → X – encodes the reset condition, in that the continuous state is reset to
R(q, q′, x, e) when the system transitions from q to q′ at continuous state x under event e

• q0 ∈ Q – initial discrete state

• x0 ∈ X – initial continuous state

An example of this is seen in Figure 6. In the figure, the discrete state starts out at q0 and the
continuous state evolves from x0 according to ẋ = f(q0, x, u) until time τ . At that time, the continuous
state is at x(τ−) and event e happens. The guard condition G(q0, q′, x(τ−), e) becomes 1 and the discrete
state transitions from q0 to q′. The continuous state is reset to x(τ+) = R(q0, q′, x(τ−), e), from which
it evolves as ẋ = f(q′, x, u). Different definitions of such hybrid dynamics have been given, but they all
share these basic building blocks in terms of continuous and discrete dynamics, guards, and resets.

8



x0

q0

q′

τ

τ

x(τ−)

x(τ+) = R(q0, q
′, x(τ−), e)

x

q

G(q0, q
′, x(τ−), e) = 1

ẋ = f(q0, x, u)
ẋ = f(q′, x, u)

t

t

Figure 6: Evolution of a hybrid automaton.

Now, the modular architecture proposed in this paper can certainly be cast as a hybrid automaton,
albeit an overly complex one. Instead, we have designed a Nested Hybrid Automaton (NHA) that operates
at different levels of abstraction.

At the highest level is HA0 composed of the operator assigned states

• operator-run

• operator-pause

• operator-stand-by

The only non-trivial of these states is operator-run that corresponds to the operator/user putting the
vehicle in an autonomous run-mode. Formally, we define the top level of a NHA as a standard hybrid
automaton HA0 = (Q0, X0, E0, U0, f0, G0, R0, x0

0, q
0
0), where the superscript 0 denotes level 0. The way

in which the nesting works is that each discrete state at level k−1 in the hierarchy induces its own hybrid
automaton at level k, as HAk(qk−1) = (Qk(qk−1), Xk(qk−1), Ek(qk−1), Uk(qk−1), fk(qk−1), Gk(qk−1),
Rk(qk−1), xk

0(qk−1), qk
0 (qk−1)), k = 1, 2, . . . The interpretation here is that the hybrid automaton evolves

as a regular automaton at each level. However, as a transition occurs higher up in the hierarchy, a new
automaton is instantiated at the lower level, initiated at its corresponding initial condition. Moreover,
events at higher levels can be triggered by transitions occurring at lower levels.

For instance, as seen in Figure 3 the hybrid automaton HA1(operator-run) that corresponds to the
operator-run mode at level 0 has the discrete states

• follow-lanes

• handle-intersection

• overtake-static-obstacle

• execute-u-turn

• park

• unpark

9



Each of these nodes in turn contain their own hybrid automata. The follow-lanes modes is a hybrid
automaton HA2(follow-lanes) whose discrete states correspond directly to an action in the sense that
they define an arbiter selection. In other words, no lower automata are defined here.

As an example of a discrete state that corresponds to a further nested structure is the handle-intersection
mode in that HA3(handle-intersection) consists of the following discrete states

• approach-intersection

• establish-precedence

• wait-for-precedence

• wait-for-oncoming-traffic

• traverse-intersection

If one wants to dig even deeper, HA4(traverse-intersection) in turn consists of the following discrete
states

• go

• resest-lane-tracker

• follow-points

• request-lane-tracker-lane-change

• follow-lanes-in-intersection

Rather than enumerate all of these, we show, in Figure 7 a screen shot of the different modes engaged.

5 Testing

5.1 Testing Methodology

Due to the complexity and integrated nature of the system, it is vitally important that a testing strategy is
devised that allows the designers to test different aspects of the system, the validity of design modifications
and additions, as well as the entire, integrated system. In order to accommodate these requirements,
Team Sting’s testing strategy is based on a combination of carefully engineered unit tests, integrated
mission and scenario-level tests, open-loop tests in which no autonomous control of the vehicle is allowed,
and simulated tests in synthetic environments.

Unit testing

Unit tests are tests designed to capture a targeted, isolated part of the system. Such tests have been
conducted extensively at the early stages of development by Team Sting and they are important for
capturing the basic behavior of the system from both sensing, actuation, and planning points-of-view.

Integrated system testing

One aspect of the Urban Challenge that sets it apart from previous Grand Challenges is the fact the
system is forced to switch between many different modes of operation in response to environmental
conditions. The high-level modes of operation (Follow Lanes, Overtake Static Obstacle, U-Turn, Handle
Intersection, Park, and Unpark ) identified by Team Sting as critical to a successful completion of the
race are. These high-level modes of operation must be tested in an integrated fashion, i.e. with all
low-level functionality engaged, and all transitions enabled. That is, unit tests are used to test individual
perceptual and behavioral components while integrated tests are those that test the situational awareness
modes that depend on these lower-level components. The hierarchical layering of the software system
lends itself to translation into testing strategies at different levels of abstraction and integration.

10



Figure 7: Screen shot from the execution of the Sting Racing software architecture, involving the full
functionality needed to cover the requirements for the Urban Challenge.

Open loop testing in real urban environments

As safety is a key issue that must be addressed when testing the system, Team Sting is conducting so-called
Open Loop Tests, in which the vehicle is deployed in an actual, urban environment with the software
system running. The only difference is that the proposed control signals are not allowed to actually
control the vehicle. Instead the vehicle is controlled by a human driver. This mode of operation has
proved to be very useful for evaluating the perception modules in truly complex environments. Moreover,
rough, qualitative estimates of the validity of the proposed control signals have been obtained in this
manner. In the future, Team Sting will continue to employ this strategy in combination with a formal
assessment of the proposed control signals as compared to that of the behavior of a human driver.

5.2 Experimental Results

Some examples are given in the following figures (Figures 8 - 10) of Sting Racing’s entry to the DARPA
Urban Challenge.

11



(a) (b)

Figure 8: The figure shows the operation of the Sting Racing vehcile during an overtake maneuver in
which the nested hybrid automaton is going through a number of modes, including slowing down to the
car ahead, changing lanes, and overtaking.

(a) (b)

Figure 9: An example is given in which the vehicle is executing a parking maneuver.

(a) (b)

Figure 10: An intersection is traversed by first establishing the correct precedence and then waiting for
precedence, as part of the traverse intersection mode of operation.

6 Conclusions

In this paper, we discuss the modular software and control architecture employed by Sting Racing, the
joint Georgia Tech, SAIC entry into the DARPA Urban Challenge. In particular, we discuss methods

12



for switching between different modes of operation by employing a nested hybrid automata formalism.
We discuss how to map the requirements of the Urban Challenge onto this formalism, and give some
preliminary, experimental results showcasing the operation of the software system.

References

[1] Multiple authors, ”Special Issue on the DARPA Grand Challenge 2005 (Part 1),” Journal of Field
Robotics, 23(8), 2006.

[2] Multiple authors, ”Special Issue on the DARPA Grand Challenge 2005 (Part 2),” Journal of Field
Robotics, 23(9), 2006.

[3] T.A. Henzinger. The theory of Hybrid Automata. Proceedings of the 11th Annual Symposium on
Logic in Computer Science (LICS), IEEE Computer Society Press, pp. 278-292, 1996.

[4] Julio K. Rosenblatt, ”DAMN: a distributed architecture for mobile navigation”. In Journal of Ex-
perimental & Theoretical Artificial Intelligence, 9:2, p. 339-360, 1997.

[5] J. Sun, T. Mehta, D. Wooden, M. Powers, J. Regh, T. Balch, and M. Egerstedt. Learning from
Examples in Unstructured, Outdoor Environments. Journal of Field Robotics, Vol 23, No. 11/12,
pp. 1019-1036, Nov/Dec. 2006.

13


