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Numerous techniques exist to optimize aircraft and spacecraft trajectories over cost func-
tions that include terms such as fuel, time, and separation from obstacles. Relative weighting
factors can dramatically alter solution characteristics, and engineers often must manually
adjust either cost weights or the trajectory itself to obtain desirable solutions. Further, when
humans and robots work together, or when humans task robots, they may express their per-
formance expectations in a “fuzzy” natural language fashion, or else as an uncertain range
of more-or-less acceptable values. This work describes a software architecture which accepts
both fuzzy linguistic and hard numeric constraints on trajectory performance and, using a
trajectory generator provided by the user, automatically constructs trajectories to meet these
specifications as closely as possible. The system respects hard constraints imposed by system
dynamics or by the user, and will not let the user’s preferences interfere with the system
and user needs. The architecture’s evaluation agent translates these requirements into cost-
functional weights expected to produce the desired motion characteristics. The quality of the
resulting full-state trajectory is then evaluated based on a set of computed trajectory features
compared to the specified constraints. If constraints are not met, the cost-functional weights
are adjusted according to precomputed heuristic equations. Heuristics are not generated in
an ad hoc fashion, but are instead the result of a systematic testing of the simulated system
under a range of simple conditions. The system is tested in a two degree of freedom (2DOF)
linear and a 6DOF nonlinear domain with a variety of constraints and in the presence of obsta-
cles. Results show that the system consistently meets all hard numeric constraints placed on
the trajectory. Desired characteristics are often attainable or, in those cases where they are
discounted in favor of the hard constraints, fail by small margins. Results are discussed as a
function of obstacles and of constraints.

Nomenclature
a dynamic equations for physical system
bc boundary conditions on trajectory-optimization problem
D domain of planning problem
F i trajectory feature vector for planning state si
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g cost functional for optimization
H Hamiltonian of the optimization problem
H0 set of user-imposed hard constraints on planning problem
HISTi eecord of variables used to generate solution to optimization problem
J (x, u, t, {�i}) domain-dependent multi-objective cost function with weights �i

J i integrated cost over trajectory (xi , ui , ti)
Li feature vector limits (constraints) for planning state si (L0 = initial/default limit set)
λ costate of the dynamic system
{O} set of k obstacles {o1, o2, . . . , ok}
P0 trajectory planning problem 〈bc, �0, L0〉 with boundary conditions bc = 〈t0, x0, xf 〉
S0 set of user-imposed soft constraints on planning problem
t time
ti vector of trajectory time points {t1, . . . , tm} for planning state si

u control actuation vector at single time t

ui control actuation vector over the m trajectory time points for planning state si

V fuzzy language database which converts words into trajectory features
�i cost function weighting factor vector used in planning state si

x position/velocity state vector at a single time t

xi position/velocity state vector over the m trajectory time points for planning state si

X solution 〈J n, Ln, tn, xn, un〉 returned for planning problem P0

Z set of fuzzy logic rules

I. Introduction

INTELLIGENT robotic systems will play an important role in future space and planetary surface operations.
Whether exploring on their own or accompanying and supporting human pioneers, they will need the capability

to reason, plan ahead, and make decisions based on goals, the environment, and the desires of human or robotic
teammates. Embodied robots must also translate mission goals into appropriate physical responses.

Balancing competing costs, while satisfying certain hard constraints, is an important component of “appropri-
ateness.” In space exploration problems, fuel and power conservation are dominant issues, whether the agent under
discussion has a limited tank of fuel for positioning or, despite recharging capability, has a limited power bud-
get constrained by battery weight. Timeliness is also a concern, as many scientists may wish to use a vehicle’s
capabilities for a variety of projects before its life span ends. Preserving vehicle health is another priority, and all
of this must be done while respecting the dynamic constraints of the vehicle, and the dynamic properties of its
environment.

Human users, whether on-site astronauts or ground-based controllers, might express their desired balance of these
costs linguistically: “get this done quickly,” “be very careful,” “maximize your range.” When communicating with
other humans, this works very well—often better than attempting to fix numerical values to desired characteristics.
As humans, we are very adept at giving and understanding these linguistic expressions even if we cannot precisely
describe them in objective terms.

We can, for example, easily identify “aggressive driving” when we see it on the roads. An aggressive driver’s
behavior is marked by high traveling speeds, frequent lane changes, sudden accelerations, and the maintenance of
slim safety margins to other vehicles. What is a “high traveling speed?” Even once the context is fixed (e.g., interstate
vs in-town), the linguistic term has some fuzziness to it. Certainly, it implies a speed higher than the legal, posted
speed limit. It probably means a speed higher than the average speed of the other drivers. But is someone driving 5
mph faster than road speed an aggressive driver? And on the other extreme, is there a speed so high that we can say
that we have gone past “aggressive driving” and are into a region of “reckless driving?” When, exactly, is that line
crossed? The answers to these questions are easy for humans to intuit, but difficult to formalize.

These concerns follow us into the realm of trajectory optimization. Robot trajectories need not be optimal. In
some domains, we may accept satisficing trajectories that are adequate but not optimal. But in the space domain
in particular, we will always be concerned with conserving fuel and power. Even if we want an “aggressive, fast”
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trajectory, we will still want it to be the most fuel-efficient aggressive trajectory. We are concerned with fuel even if
the result is not the fuel-optimal solution.

Trajectory optimization, at its most general, will have multiple objectives and constraints. Multiple objectives in
particular give rise to multiple possible solutions. Consider a two-objective case: we desire to save both time and
fuel. These objectives compete. The most fuel-efficient trajectory is rarely the most time-efficient, and visa versa.
There might be several solutions that take the same minimum time, and we would be interested in the most fuel-
efficient one. Or, we might examine all of the minimum fuel solutions and pick the fastest of those. Or, we might
want an intermediate solution—one that is neither the fastest nor the most fuel-efficient, but that balances the two
objectives. We may have an initial estimate of relative importance in saving time or fuel. How can we communicate
such preferences to the numeric trajectory solver so that it will find the “right” optimal?

In addition to these fuzzy preference ideas, we may also have trajectory constraints, typically imposed to meet
dynamic performance limits and to ensure safety (collision avoidance). Beyond that, we might further impose
limits on either control inputs (e.g., actuator travel limits or thruster saturation) and on system state. Some of
these limits could be “soft,” like a posted speed limit that can be exceeded given appropriate circumstances (e.g.,
to avoid an erratic driver). Other limits are “hard,” such as acceleration limits imposed to avoid pilot/astronaut
blackout.

There are many approaches to solving the constrained multi-objective optimization problem [1], including evo-
lutionary algorithms, mixed integer linear programming (MILP), and optimal control theory. To a greater or lesser
extent, each handles soft and hard constraints. All, however, include an iterative refinement loop to find solutions that
best match user preferences: that is, to find the “optimal optimal” solution. As a common thread throughout the multi-
objective optimization literature, it is tacitly understood that a human user interacts directly with the optimization
algorithm, injecting preference information to focus the optimization on areas of interest to the user.

This work seeks to take the human user out of that loop as much as possible. Before optimization ever begins, classes
of motion are typified with linguistic expressions: aggressive, curious, careful. Fuzzy logic [2] is an appropriate tool
for approaching the problem of translating natural language utterances into numeric terms [3]. Words are correlated
to fuzzy state values the system believes best represent user preferences for the resulting trajectory: the numbers we
need to take the human supervisor out of the optimization loop. Some iteration may be required to ensure that the
user’s expectation matches the fuzzy definition of the linguistic expressions. However, once that process is complete,
the autonomous “supervisor” can balance optimization objectives without user input.

Here we consider a planetary rover and an Earth-observing satellite as motivating examples. The planetary rover
example is a very simplified case with two degree-of-freedom (2DOF) and linear dynamics that provides initial
insight into the algorithms required to inject preferences into the trajectory-generation process. The satellite case
has more realistic six degree-of-freedom (6DOF) dynamics. The satellite’s hypothetical job is to provide imaging
to support ground-based decision making. It can execute fuel burns to change its orbit in response to user demands
on the ground. These user demands may have varying levels of urgency. Some may be matters of curiosity, but no
urgency at all, in which case the satellite is free to execute maneuvers whenever it is most fuel-efficient to do so. It
may also need to maneuver around other space objects (perhaps other satellites that require observation).

This paper proposes an architecture to compute preference-optimal trajectories. A cognitively inspired expert
system moderates the trajectory generation and optimization process.At initialization, a solution technique is selected
based on problem characteristics. If an initial trajectory estimate is required for the solution technique, one is
generated, again with consideration for the problem characteristics. Expressed user preferences are transformed via
fuzzy methods into an initial set of weights or other parameters, and the selected solution technique is run.

The expert system also considers the results generated by the chosen algorithm. Often in these problems, one or
more user-defined constraints or preferences will not be met after the first iteration. Making changes to the weight
vector or to other parameters may solve the problem; so may a different initial trajectory estimate or the use of a
different solution technique (e.g., if the problem will not solve using the first technique). Given its knowledge base
and the current history of repair attempts for this problem, the expert system continues to search for an appropriate
trajectory. Below, related literature is introduced to motivate the posed problem and algorithm choices made. Next,
the preference-optimal trajectory generator is introduced at the system architecture and algorithm level. Planar and
6DOF systems are introduced, with results used to evaluate the fuzzy logic and iterative weight-adjustment strategies
over a series of simple and complex domain examples.
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II. Related Work
Incorporating user preferences into a trajectory-generation feedback loop requires assimilation of representations

and techniques across multiple disciplines. Below, we motivate our work through connection to the literature in natural
language, motion planning, multi-objective optimization, and fuzzy set theory. Emphasis is placed on defining the
technological needs for insertion of preferences into trajectory-generation processes and identification of gaps in
existing techniques.

A. Natural Language
Verbal or written instructions are one possible mode of interaction between a human and a robotic vehicle [4].

With respect to motion words, descriptive verbs such as “swagger,” “slink,” “slide,” and “sway” effectively convey
the nature of motion, but the specific choice of verb is open to interpretation [5]. Translated to our problem, the
speaker has numerous choices to describe how a route from a location A to B is traversed. What verbs the speaker
selects indicate to some extent the “manner of motion” required for the robot.

There is no appreciable literature dealing with the transformation of verbs to numbers. There is, however, a
literature on assigning numeric values to spatial expressions such as “near” or “in front of” [6–8]. Researchers use,
among other techniques, a potential field (first developed for robotic path planning [9]) as a membership function
in the fuzzy set theory sense; fuzzy terms like “crisp” and “scruffy” appear frequently. Essentially, one point or line
is selected (by the researchers) to represent the ideal of “near,” “along,” or “in front of” some object in the space.
This becomes the minimum for the potential field, which can be visualized as a bowl. The minimum of the potential
field “bowl” is located at the ideal value set for “near,” “along,” etc. This paper extends this idea to motion words.
First, we define a “state feature space” composed of state features such as average forward velocity and maximum
acceleration. A collection of points in state feature space is taken as the ideal representation of a verb or adverb/verb
pair, like “jog” or “move stealthily.” Fuzzy membership functions are then defined around these areas, so that similar
but not identical kinds of motion can still be included in these classifications. This provides flexibility when trying
to satisfy the multiple constraints and maximize the combination of objectives such terms imply, while maintaining
the user’s preference for motion type.

B. Path and Kinodynamic Planning
Path planning focuses on finding a path through free space from an initial to a final location [10]. The robot’s

dynamics are not generally considered for holonomic robots. For nonholonomic robots, dynamic constraints that
directly affect path, such as a turning radius, are used to reject infeasible paths. When following the path, the
robot is typically pre-programmed with a simple trapezoidal velocity profile that ramps up to a constant velocity,
then decelerates to the final zero-velocity state. For slow, wheeled robots, especially those in a laboratory or office
environment, this model usually suffices to move the robot around. Behavior-based motion control [11] is the next
step, in which environmental cues trigger pre-programmed responses. The resulting actions can be sophisticated or
even appear emotional [12]. Although research has begun to make parameters that define these behaviors adaptive to
environmental stimuli, they are still reactive, favoring simplicity and real-time response over optimization [13,14].

While most behavior-based protocols can be represented with a Markov decision process (MDP), another branch
of research looks at hybrid dynamic systems [15,16]. In such systems, discrete events trigger shifts between different
continuous dynamics. In the cited work, a simulated mouse agent adjusts its trajectory in response to the environment
by changing weights. The weights, however, correspond to repelling and attracting potential functions for local
navigation, not useful for global or multi-objective optimization. “Programming by reward” is a technique that
elicits different dynamic behaviors from a system [17]. Like our research, it uses preference information to create
these differences. Unlike our research, it injects the preference information into machine learning algorithms for
the development of motion behaviors. These behaviors can form an optimal policy, given preferences. However, the
“interiors” of the behaviors are still black boxes. The number of lane changes in the authors’ driving example can be
optimized for a safe driver and for a reckless driver, but the dynamics of those lane changes are unexamined. Our
multi-objective trajectory-optimization application requires control of the low-level inputs that result in the desired
behaviors, rather than assembling pre-typed behaviors into a policy.

Trajectory or kinodynamic planning incorporates velocity (dynamics) into planning processes. Methods based on
velocity obstacles [18,19] are conceptually similar to path planning “roadmap” methods, with infeasible velocities
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modeled as velocity space obstacles. Spline methods [20,21] decouple path and velocity planning; once a clear path
through space is found, interpolating splines find smooth trajectories along them. Randomized kinodynamic planning
[22] explores the state space in a random fashion, working forward from the start state and backward from the goal
state until the search trees meet. All these methods search for dynamically feasible trajectories, but have a single
parameter or fixed function to define “optimality.” Velocity obstacle and spline methods have been used to generate
time-optimal trajectories [23,24] and randomized methods are often used as starting points for linear programming
methods to generate fuel-optimal trajectories.

C. Multi-objective Optimization
Trajectory planning is a multi-objective problem with constraints, typically including fuel use, traversal time, and

obstacle clearance as often-competing parameters to balance. While different approaches have been developed, they
have one common feature: a parameter set that can be adjusted to reflect user priorities. Genetic and evolutionary
algorithms (GAs and EAs) have become popular search and optimization tools [25]. A population of potential
solutions is generated and encoded, and then evaluated, with the most promising solutions modified or maintained over
multiple generations that ultimately yield one or more solutions. Since there is rarely a single point where all objectives
are simultaneously maximized or minimized, evolutionary multi-objective optimization (EMO) frequently makes
use of Pareto optimality [26,27] in which a set of nondominated solution vectors are identified. These Pareto-optimal
solutions are defined as the Pareto front. Recent GA/EA research has concentrated on ways to encourage population
diversity to enable exploration of the entire Pareto front, and the addition of elitism, which stores nondominated
individuals so that they will not be lost. Most work to date has studied two or three objectives, for which Pareto-front
graphs are examined to select a solution from the nondominated set. Open questions remain for “many-objective
optimization.” It has been shown that, as the number of objectives increases, Pareto dominance becomes nearly
useless in ranking individuals [28]. Also, for deployed applications it is infeasible to evaluate a comprehensive
nondominated solution set, and thus incorporating user preference into EAs is an emerging area of study.

There are two additional considerations to note when deliberating the use of EAs for trajectory optimization.
First, EAs do not explicitly calculate gradients along the solution set. A good fitness function and the judicious use
of crossover and mutation ensures that the solutions will tend to follow the gradient down to the minimum, but
this is accomplished by selecting evermore-fit individuals, not by taking advantage of trends. In some cases, this is
a strength—EAs are robust to discontinuities in the solution space, particularly prevalent at constraint boundaries.
However, when gradients are available, their use typically speeds convergence. Second, EAs are an unconstrained
optimization technique. Sometimes, constraints can be recast as objectives. An assortment of penalty functions can
be invoked, penalizing the fitness of solutions that do not meet the constraints, although this increases the risk of
degenerating into a random walk. Another approach iteratively shrinks the search space to focus on zones where the
constraints are met [29]. These approaches work, some faster than others, and most have a set of parameters (such
as the “rate of shrink” [29]) that must be set and then tuned by the user.

More deterministic methods have also been employed to develop a Pareto front. Isoperformance [30,31] sets a
required performance level, indicated by a fixed value for the cost function. This can be the single output of a complex
system, such as the displacement of a space telescope subjected to disturbance forces. Design-variable sets that give
the desired performance level are recorded. From one of these sets, a nondominated front is further selected. A user
would then select a single solution from among the nondominated solutions. Adaptive weighted-sum methods [32]
can be used when the cost function is a weighted sum of terms. Traditional Pareto-front exploration samples weights
at constant fixed intervals, potentially missing important front features. The adaptive weighted-sum approach begins
with a constant-interval weight mesh, then refines the mesh in areas with large gaps in cost. Inequality constraints
are also added to restrict calculations to areas where the Pareto front is believed to exist.

These techniques are promising for multi-objective design optimization (MDO), or more generally in any appli-
cation where a user wants to obtain an entire nondominated set of solutions for consideration. If we were interested
in only planning a route between two specific points, the time required to form the Pareto front of trajectories using
one of these techniques might be worthwhile. However, our interest is in calculating many trajectories in similar,
but not identical, environments. Since the trajectory-generation process is itself computationally intensive, we avoid
computing a full Pareto front for any one set of boundary conditions.
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To this end, MILP has become increasingly popular as a relatively fast way to generate and optimize trajectories
[33]. Derived from the operations research field, recent increases in computing speed have allowed MILP to be
considered for real-time applications. Equality and inequality constraints can all be handled robustly. MILP can
approximate nonconvex and logical constraints. Obstacle avoidance is achieved by placing inequality constraints
directly on the path space, forcing the trajectory outside the region of the obstacles; penalty functions are not
used. The cost functional could, in principle, include many terms, although applications typically focus on either
fuel- or time-optimal trajectories. MILP has been applied to aerospace applications such as spacecraft rendezvous
and multisatellite reconfiguration [34,35]. However, as its name suggests, it is suitable only for problems with linear
constraints, including dynamic constraints. For space-based planning, researchers typically employ simplified models
such as the linear Hill’s/Clohessy–Wiltshire equations [34] and gravity-free (flat space) dynamic system formulations
[35]. MILP does not handle nonlinear constraints, except by linearizing them. This is appropriate for some domains,
but not for all. For example, trajectory planning for a satellite (or satellite formation) over a highly elliptical orbit
or over more complex gravity fields is not amenable to linearization. More fundamentally, as with EA, MILP does
not support user preferences except through cost functions and constraints. As will be shown, although we adopt an
optimal control trajectory planner to handle nonlinear dynamic systems, our architecture could also adopt MILP as
its trajectory planner upon which our preference-based deliberation structure is placed.

D. Optimal Control Trajectory Planning
Optimal control methods [36,37] have been extensively used to solve complex trajectory planning problems, and

are applicable to linear or nonlinear dynamic systems. The calculus of variations is used to frame the problem as a
system of differential equations subject to conditions imposed at the initial and final time. Generally, a cost functional
is of the form:

J =
∫ tf

t0

g(x(t), x′(t), t)dt (1)

where x(t) is the state vector and x′(t) is its derivative. A variation in the functional, δJ , can be defined for small
changes of g(x(t), x′(t), t). If a relative minimum for J exists, it is necessary that δJ be zero at that point, yielding
the Euler equation. The problem is then to find an admissible input (or control) vector u∗(t) that causes a system
described by the differential equations in Eq. (2) to follow an admissible trajectory x∗(t) that minimizes Eq. (3) cost.

x′(t) = a(x(t), u(t), t) (2)

J (u) =
∫ tf

t0

g(x, a(x, u, t), t)dt (3)

At all points along an admissible trajectory, Eq. (2) holds and can be rewritten:

a(x(t), u(t), t) − x′(t) = 0

This dynamic constraint set with Lagrange multipliers λ forms an augmented cost functional:

Ja(u) =
∫ tf

t0

g(x(t), u(t), t) + λT
[
a(x(t), u(t), t) − x′(t)

]
dt (4)

The extremals of the functional are where δJa is zero. Finding δJa and setting it to zero results in three necessary
equations. They are most commonly expressed in terms of the Hamiltonian H, defined as:

H(x(t), u(t), λ(t), t) = g(x(t), u(t), t) + λT [a(x(t), u(t), t)] (5)
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The necessary conditions are then:

x∗′
(t) = ∂HT

∂λ
(x∗(t), u∗(t), λ∗(t), t)

λ∗′
(t) = −∂HT

∂x
(x∗(t), u∗(t), λ∗(t), t)

0 = ∂H
∂u

(x∗(t), u∗(t), λ∗(t), t) (6)

for all t ∈ [t0, tf ]. For a fixed final time and a fixed final state, we have boundary conditions x(t0) = x0, x(tf ) = xf ,
which enables constants of integration to be determined. Solving the system of equations returns the function
(trajectory) that minimizes the cost functional.

If the final time and final state are free, a new boundary condition called the transversality condition is produced:

H(x∗(tf ), u∗(tf ), λ(tf ), tf )δtf − λT (tf )δxf = 0 (7)

When xf is fixed and tf is free, as in this work, δxf = 0, so H(tf ) = 0. Except for certain special cases, there is
no way to analytically solve the optimal control problem. A variety of numerical methods have been employed,
including shooting methods [38] and collocation. The shooting method uses initial value problem (IVP) solutions as
a starting point to “shoot” towards the solution of the optimal control boundary value problem (BVP). A stable BVP
may require the integration of unstable IVPs (ones highly sensitive to changes in boundary values), a drawback that
led to the development of the collocation approach. In collocation, the actual solution to differential equations (6) is
approximated over a mesh, defined by “knot points.” The approximation is made to satisfy the boundary constraints
at t0 and tf , and further to satisfy Eq. (6) at each knot point and at the midpoint of each interval between them. An
initial guess for the solution must be provided; the solution technique will alter the current solution estimate to bring
its residual (a measure of error) to within acceptable bounds.

There are many ways to solve a collocation problem. Solution methods fall in general into two classes: direct
and indirect. Direct methods [39] model the approximate solution as composed of basis functions; the solution is
improved by altering a vector containing the coefficients for the basis functions. This allows vector optimization
algorithms such as sequential quadratic programming, Newton–Gauss, or Levenberg–Marquardt to be applied [40].
Direct methods are considered faster and more robust than the indirect methods. Indirect methods [41] link knot
points with continuous approximating functions (e.g., splines) over each subinterval. The coefficients of each of these
functions must then be solved. This makes indirect methods more computationally intensive than direct methods.
Their advantage is in flexibility; the basis functions in the direct methods must be chosen such that every function
could be a feasible trajectory. The indirect method has no such constraint.

The optimal control problem’s solution is governed by a single cost functional. Multiple objectives can only be
optimized via an aggregation method. Since some constraints are likely to be nonconvex, this means that certain
solutions along the Pareto-optimal front may be missed. Typically, a sufficient number of other solutions that also
satisfy the user’s preferences also exist where they can be detected. Optimal controls problems can incorporate
constraints and discontinuities. Equality constraints on the state (such as satisfying system dynamics) are adjoined to
the cost functional via Lagrangian multipliers, as discussed above. Constraints on the control inputs can be handled
via Pontryagin’s Minimum Principle and the resulting switching curves. Inequality constraints can be handled by
the introduction of a function of a dummy variable, xn+1, whose derivative is defined as:

x′
n+1(t) ≡ [f1(x(t), t)]2 ⇑ (−f1) + [f2(x(t), t)]2 ⇑ (−f2) + · · · + [fl(x(t), t)]2 ⇑ (−fl) (8)

where ⇑ (−fi) is a unit Heaviside function defined by:

⇑ (−fi) =
{

0, fi(x(t), t) � 0

1, fi(x(t), t) < 0
(9)
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for i = 1, 2, . . ., l (where l � m, the size of the control vector). This derivative is always positive or zero: the fi

terms are squared, and the unit Heaviside function is either 0 or 1. xn+1 can then be defined as:

xn+1(t) =
∫ t

t0

ẋn+1(t)dt + xn+1(t0) (10)

We require boundary conditions xn+1(t0) = 0 and xn+1(tf ) = 0. Since the derivative is never less than zero, xn+1(t)

must be zero for all t− if xn+1(t) were to become greater than zero, by its definition there is no way to reduce it back
to zero to meet the boundary condition at tf . This is a constraint of the form f (x(t), t) = 0 treated by the method of
Lagrange multipliers.

The switching curves and Heaviside function are discontinuous, making them problematic for many numeric
solvers. They can be approximated by a series of increasingly steep polynomials. However, the unchanging nature
of xn+1 presents a further problem. Collocation solvers require gradient information to reduce the error between the
current approximate solution and the true solution. Since xn+1 is identically zero for the entire trajectory, it provides
no gradient information. In our particular case, the collocation solver required a Jacobian matrix which, when the
Heaviside approximation was added, contained a full row of zeroes and so would not solve. Adjusting the Heaviside
approximation further to provide gradient information in the allowable solution region amounted to instituting a
penalty function, which is another way to treat state-inequality constraints.

Penalty functions are often used in path and trajectory planning for obstacle avoidance [9–12,18,19]. Often cubic
in form, these penalty functions are centered over an obstacle and monotonically decrease as they move away from
its center. Typically, they go to zero at some influence limit away from the obstacle, but this is not required. For
our work, penalty functions assume a fixed value at an obstacle’s center, at the edge of the object, and at a fixed
distance from the edge of the object. These constant values are then connected through smooth cubic functions, the
coefficients of which can be varied to achieve these conditions for obstacles of different sizes. With an optimal control
approach, the value of the penalty function is added to the cost functional. As cost is minimized, the trajectory will
move away from obstacles. However, if other costs are sufficiently great, it may be numerically less expensive to
accept the penalty—which means planning a path through the obstacle. Penalty functions do not offer guarantees on
constraint satisfaction, which means solutions generated via optimal control methods must be validated for obstacle
clearance.

E. Fuzzy Set Theory
Above we reviewed available techniques for trajectory optimization with multiple objectives and nonlinear

dynamics. The primary element missing from these methods is the ability to inject user preferences initially and
at intermediate points during trajectory-optimization processes. Because a human user will expresses preferences
through natural language adverb/verb expressions as discussed above, we require a connection between these words
and the mathematical cost and constraint formulations common to all trajectory-optimization protocols. We employ
fuzzy set theory to perform this translation. The main idea behind fuzzy set theory is that a member of a set may
belong only partly to that set [2]. Classically, individuals either are or are not contained in a set. An individual may
be 50% hot and 50% not hot, or 30% hot and 50% warm, for example. Complements, like “hot” and “not hot” must
sum to 100% but noncomplementary attributes may not. For example, the vertical line in Fig. 1 indicates the generic
feature value F is about 45% “low,” about 60% “medium,” and 0% “high.” The triangles in Fig. 1 are membership
functions. They correlate “crisp” numeric values, as measured in the real world, to these fuzzy levels. A fuzzy rules
set then acts on these “fuzzified” inputs. For example, “If air temperature is LOW, turn heater fan to “HIGH” and “If
air temperature is MEDIUM, turn heater fan to LOW.” The fans speeds will have similar fuzzy membership function
correlating speeds like “HIGH” and “LOW” to revolutions per minute. These outputs are scaled by the membership
function of the inputs.

Natural language, while a desirable input modality, is inherently ambiguous. From interpreting sounds into words to
parsing the words into sentences to interpreting the possible shades of meaning of a sentence, there are ambiguities.
Classical mathematics does not manage ambiguities well. Fuzzy techniques, on the other hand, deal with them
substantially better [3]. Fuzzy optimization applies fuzzy set theory to optimization problems. Fuzzy techniques
are not themselves used to solve the problem, but are rather applied to candidate solutions to rank them. They are

149



LENNON AND ATKINS

Fig. 1 A fuzzy membership function.

often used in conjunction with EAs, where the EAs generate candidate solutions and the fuzzy methods rank them
before selection and breeding occur. Recent work [6] has shown that an expanded and fuzzified notion of Pareto
dominance seems to perform more in accord with common sense than strict Pareto dominance, and should not have
the same problem as Pareto dominance (e.g., that all solutions become equally good) as the number of objective
functions increases to infinity. We combine fuzzy sets with optimal control trajectory planning to gain the benefits of
gradient-based numerical optimization while employing fuzzification to translate “common sense” user preferences
into numerical objective weights and constraints.

III. Architecture
Figure 2 shows an outline of the agent’s processes [42]. At the center sits the evaluation model, overseeing

all activities. The human user interacts with this module, monitoring events rather than directly participating in
trajectory-generation processes. The evaluation module, EVAL, accepts a planning problem, P0, which can be posed
by the user or by any suitable high-level planner that builds task-level actions to achieve its goals, some of which
may require vehicle motions.

A trajectory planning problem P0 is defined as {D, {O}, H0, S0, bc}. Domain D describes system dynamics and
the parameterized cost functional J to be minimized. {O} represents the set of obstacles in the environment. H0

describes the hard constraints (limits on state space values) to be met, whereas S0 is a set of soft constraints that
indicate user preference, but are ultimately flexible. H0 are numeric; S0 may be numeric or fuzzy linguistic terms.
Fuzzy terms must eventually be converted into soft numeric limits; L, the set of all limits, includes H0 and the
extended S0. Members of L may be upper limits, lower limits, or range limits (when we want the state feature to
be within an upper and a lower limit). The boundary conditions bc = {t0, x0, xf } are split and can include all of the
usual optimal controls cases (e.g., fixed or free final time or state, final state constrained to a fixed or moving surface).
The goal is to return feasible and optimal solution X = {J n, Ln, tn, xn, un}, where J n and Ln summarize solution
cost and the feature limits/constraints, respectively, of the nth iteration and the set {tn, xn, un} specifies the full-state
trajectory (i.e., time sequence tn, position/velocity vector sequence xn, control inputs un) to be executed. This goal
is achieved through intelligent selection of a trajectory planning function and selection and adjustment of a weight
vector Ωi that influences the relative importance of terms in the cost functional J . EVAL incrementally builds a
history of activities {HIST} = {HIST1, HIST2, . . .} with HISTi including a record of the function used by TPLAN,
the initial solution estimate, and the weight vector Ωi used for the ith iteration. EVAL can then use {HIST} to identify
which weight-adjustment strategies it has already employed, to avoid infinite loops. Fig. 3 shows the possible paths
through the architecture. Initialization combines the hard and soft constraints and selects initial weights which are
expected to meet them [43]. The system loops until all H0 are met or a loop is detected in the weight vector. If H0

and S0 are both met, the successful trajectory is returned. If H0 are met but S0 are not met, a second loop is used to

150



LENNON AND ATKINS

Fig. 2 System architecture.

Fig. 3 Paths through the architecture.

151



LENNON AND ATKINS

attempt meeting S0. New trajectories are compared to the best found so far, using the 2-norm of the error vector as
a measure of quality. In any case, the trajectory which satisfied the hard limits but not the soft limits is stored, so
that a legal trajectory is guaranteed to be returned. The process continues as for the hard-limit case, except that if a
trajectory is found which again satisfies the hard limits but not the soft ones, this solution is compared to the prior
best trajectory. If it is a “better” solution, it replaces the former best trajectory in memory. Currently, the 2-norms
of the respective error margin vectors, marginerror, are compared to determine which solution is “better,” and the
solution with the smaller overall error margin norm is kept. The error margins are defined as:

margini
error,j =

{
F i

j − L0
j , F i

j ¬ ◦ L0
j

0, F i
j ◦ L0

j

(11)

where the operator ◦ indicates that a feature meets its corresponding limit, whether they are below an upper bound,
above a lower bound, or within a range. For the ith trajectory planner iteration, the j th feature is compared to the
j th element of the vector of limits. An element of marginerror is negative when a lower limit is violated and positive
when an upper limit is violated. The sign of marginerror,j is used by WADJ to determine the direction of the weight
change in subsequent iterations, although the 2-norm ensures positive error margins for trajectory-quality estimates.

We now examine each of the architecture components in more detail.

A. Initialization
To guide the search toward an acceptable solution, the initialization routine INIT (Figs. 2 and 3) translates

knowledge about the domain D, constraints L0, and obstacles {O} into choices for the trajectory-generation routine
TPLAN, any seed information x0 required by TPLAN, and an initial weight vector Ω1.

Almost any trajectory-generation tool set that optimizes over a weighted cost function can be incorporated into
the architecture. With multiple tools in place, information for choosing between them must be made available.
Figure 4 illustrates choices between a MILP module [35], a receding horizon planner (RHP) [40], and MATLAB’s
collocation-based boundary value solver BVP4C [41]. User-provided information as well as domain information
guides the choices, although making a choice among multiple solvers is beyond the scope of this work, which relies
strictly on collocation, a strategy we consider more flexible than MILP to handle nonlinear dynamics and more mature
than receding horizon algorithms. Depending on the choice of trajectory planner TPLAN, some initial guess may
need to be supplied to the trajectory generator (e.g., for collocation). We use a cubic spline which satisfies boundary
conditions x0 and xf . In the future, it may be desirable to use a rapidly-expanding random rree (RRT) [22] if the area
in which the robot moves is cluttered with obstacles. The RRT can find a dynamically plausible (but nonoptimal)
trajectory through the space. This solution can then be used as an initial guess for one of the optimization routines.
Once TPLAN and any inputs it requires are chosen, the limits L0 are used to compute the initial weight vector Ω1

and an extended version of the limits themselves, as described below. When no hard or soft constraints are specified,
INIT defaults to equal weights (Ω1

default) for all terms of the cost functional.
This computation of Ω1, shown in Figure 5, accepts limits in either the form of qualitative adverbs (e.g., “quickly”

or “safely”) with optional adverbial modifiers (e.g., “very”) or numeric constraints on a trajectory feature (e.g.,
“maximum speed �5 m/s”). The numeric constraints may be either hard or soft. We deal firstly with the adverb
constraints, all of which are considered soft constraints. Each adverb our system understands is defined in terms
of the trajectory features we can extract. For example, “quickly” involves maximum forward speed (max-speed)
and average forward speed (avg-speed). We further define fuzzy levels for each feature. “Quickly” involves “high”
max-speed and “high” avg-speed. These definitions are stored in the fuzzy language database V. The ranges for these
values are defined based on vehicle-performance constraints and a typical definition of each adverb relative to these
constraints.

We used the same data that generated the weight-adjustment curves to correlate feature levels to weight levels (see
Sec. III. D), resulting in our fuzzy rule set Z. We cannot use the weight-adjustment equations themselves, as they
require constants that cannot be calculated until the first set of trajectory data is available. But we can say that “low”
values of a given weight produce “high” values of avg-speed, for example. We define ranges for the weight levels
as well. Since all of our fuzzy levels are defined geometrically as triangles with fixed endpoints, their centroids are
fixed along the weight axis. Defuzzification for each weight correlated with each feature is the process of looking up
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Fig. 4 Initialization procedure.

this centroid value. This numeric information is also contained within the fuzzy rule set Z and is represented by the
generic fuzzy membership function depicted in the upper right of Figure 5.

Numeric soft constraints in S0 are then also fuzzified (so that “4 m/s � max-speed � 5 m/s” becomes “max-speed
high”) and appropriate fuzzy weight levels found by referencing Z. This procedure circumvents the necessity for
quantitative equations which could directly correlate hard or soft numeric constraints to weight values. We have
a general understanding that “max-speed high” requires “time weight high,” and fuzzy estimates of what values
constitute “high” for both parameters. After our first trajectory has been computed, we can estimate adjustments on
weights given constraint error margins, but INIT must estimate weights to compute the first trajectory from which
error margins are extracted. Abstractly, S0 represents the user’s preferences for vehicle’s behavior. These preferences
must be combined into a single weight vector, and then reconciled with H0, the user’s requirements or hard constraints
on the vehicle’s behavior.

S0 yields weights that are combined into a centroid weight vector Ω1 that represents an average over each feature’s
“ideal” weight vector. The “mass” used for this centroid computation is an optional adverbial qualifier that can be
stated in the adverb constraint. So “safely but a little quickly,” where “little” is the adverbial qualifier, places more
emphasis on weights resulting from “safely” than weights computed from the “quickly” term. If there are additional
hard numeric constraints on features in H0, we fuzzify those constraints as we did for the numeric soft range
constraints. Then we check if the current weight vector Ω1, when fuzzified via the rules in Z, correlates to that fuzzy
level. For example, if we require a hard limit “max-speed � high” and the relevant weight in Ω1 is “low,” are we
likely to generate an acceptable behavior? If we are not, the weight value in the required fuzzy range closest to the
current weight value is selected. If we require a “high” weight to elicit “high” max-speed, but our current weight
is “low,” the algorithm will select the value in the “high” fuzzy weight triangle closest to the “low” triangle. Since
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Fig. 5 Calculating �1 and extended S0.

this overrides the centroid calculation that was built on user preference, it is done only for hard limits H0, which we
assume the user needs rather than wants.

B. Trajectory Generation
The TPLAN trajectory planning module takes as input the INIT weight vector Ω1 as well as a model of the

domain and cost-functional terms. It returns a full state trajectory, including position, velocity, and control inputs
at each time step. Users can incorporate their preferred trajectory generator (TPLAN) into this architecture. In our
experimental domains, we have used the collocation-based BVP4C solver [41] and an extension BVP4C2 [44] for
the split BVP. Limited modifications were required for our adaptation. First, although BVP4C and BVP4C2 can
theoretically solve for a free end time, to make a problem with free end time converge to a solution requires a very
good initial guess, both as to the shape and the duration of the trajectory. We instead provided the solver with an array
of possible final times and made the assumption of smoothness between them. The solver iterated over each possible
final time in the array and the costs for each resulting trajectory were compared. If the lowest-cost trajectory was
in the middle of the array, the times on either side of the lowest-cost trajectory were taken as new upper and lower
time limits for a new array with smaller steps between final times. If the lowest-cost trajectory was at either end of
the array, the current time step was preserved and the lowest-cost trajectory was used as either the new high or low
end of the array. Second, although the collocation routines are fairly robust, they are still sensitive to certain numeric
artifacts. We discovered, for instance, poor convergence for certain final times. The algorithm converged well for
some tf + dt and for tf − dt, but for tf itself, no good answer would be found. Other variables, including continuation
schedules (where obstacle potential functions or vehicle step-response outputs are slowly brought from some smooth
approximation to their sharper, final shape) and obstacle placement (obstacles symmetric with respect to the initial
path guess especially) could also cause problems. Our automated data generation scheme does not easily detect such
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cases, not a prohibitive limitation in our experiments, however. In many of these cases, the nonconvergence was not
pathological; desired error bounds of 0.1 m might be exceeded by errors of 0.2 m, for instance. Further, these cases
were rarely the lowest-cost trajectories, and thus we assumed we could select the lowest-cost convergent trajectory
in the presence of nonconvergent trajectories.

C. Feature Extraction
Feature extraction (FEXT) is a computational process that takes as an input the generated trajectory and extracts

from it certain gestalt properties useful in evaluating the trajectory. Total battery power expended, total time, maximum
speed, average speed, and maximum acceleration during the traverse are typical features. Some are maximum or
minimum values which are straightforward to express in L0; others are averages or percentile values that give an
overall impression of the trajectory. The “percent plateau” values, for example, are the output of a routine which
checks the velocity and acceleration profiles for significant periods of time (at least 10% of the total duration)
during which the relevant value fluctuates no more than 1% of its total range. This was intended to give a numerical
approximation to the human technique of looking at a trajectory profile and estimating how “flat” it is.

The features can be defined independent of a domain, but may not apply to all domains. An average rotational
rate is meaningless in a 2DOF simulation that has only linear motion in the x–y plane. Average vehicle separation is
inapplicable to a single vehicle domain. Likewise, certain adverbs or verbs may not be relevant to all domains, even
though they exist outside of them. We might prefer an Army field vehicle to move “stealthily,” for example, but there
is little call to require a space robot to behave in such a fashion.

D. Weight Adjustment
The development of good weight-adjustment (WADJ) heuristics was a key part of this work [42,43,45]. Our goal

was to automate the process by which cost-functional weights are tuned. This is typically done by hand, by a domain
expert, until the desired results are achieved. We have attempted to encode these desired results into the limits L0,
as functions of the features defined above. What remains is to extract domain expert knowledge and techniques and
automate the adjustment process. Many of the features in our set can be expressed as functions of the weights used
in the cost functional. Despite different dimensionalities, cost functionals, and system dynamics in the 2DOF and
6DOF systems we simulated, we were able to generate WADJ heuristics with a common procedure in both cases.

Each test matrix covered a combinatorial set of cost-functional term weights, Ω. Since a cost functional can
always be normalized, we examined relative weights rather than absolute magnitudes. Early experimentation led
us to conclude that a range of two orders of magnitude in relative weights, from 0.1 to 10, would be sufficient to
see a broad range of dynamic behaviors. We varied the magnitude of the commanded motions and also the number
of obstacles in the field to ensure answers were not specific to a single problem instance. Once we had collected
the trajectories, we used the feature extractor FEXT to compute overall trajectory features of interest. For features
relating to time (e.g., velocity, acceleration, power), strong power relationships between the feature values and the
ratio of the energy- or fuel-term weight and the time-term weight (W1/W2) emerged:

time_ feature = c1

(
W1

/
W2

)−α

(12)

The exponent −α in these equations was approximately constant across field sizes, although the coefficient c1

varied. Similarly, for path-based features, such as minimum separation from obstacles (min-sep), there was a linear
relationship between the feature and the influence limit (LIM) in the obstacle penalty function:

path_ feature = c2LIM (13)

LIM is simply the distance over which the obstacle penalty function goes to zero, as measured from the edge of the
obstacle. Rather than attempt to calculate tables for all possible constant coefficients c1 and c2 of these equations
for all possible field sizes, they are computed online, using the current weight and feature values to back out the
coefficient value. The coefficient, together with the desired feature value (e.g., the limit, if it was passed), are then
used to recompute the weights. As more obstacles are added to the field, the rules’ accuracy is affected. They remain,
however, useful rules-of-thumb for guiding weight adjustment, as our results show.
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The effects of changing the fuel/time weight ratio or the energy/time weight ratio and LIM were largely inde-
pendent. For example, our data showed little or no change in proximity to obstacles as a function of changing the
W1/W2 ratio. This allowed us to decouple them, an important and useful assumption. They are not, however, entirely
independent. As LIM decreases, for example, more direct paths which save both fuel and time can be found. The
effect is not dramatic, but can mean the difference between a successful and unsuccessful solution. If the standard
WADJ rules have failed to find a solution that mediates between competing time and fuel goals, a secondary WADJ
rule will change LIM to take advantage of this secondary effect and find a successful solution.

We were concerned that the 6DOF spacecraft domain with nonlinear dynamics would not be amenable to this
WADJ rule-generation process. Results for the 6DOF domain were, in fact, very similar to those for the 2DOF
domain. A notable difference was the torque weight term, which is unsurprising given the coupled nature of the
rotational and translational mechanics. Our torque heuristic is discussed below.

IV. Two Degree-of-Freedom Point Rover
A simplified two-dimensional (2D) domain model was developed as an intuitive baseline case for our architecture

and as a method of developing initial modules to populate the Fig. 2 architecture. We began our investigations with
a 2DOF point-robot model, imagining a rover-like robot traveling in a plane, using electric motors for propulsion.
We used this highly simplified domain to gain an intuition into the process of adjusting the cost-functional weights
and computing, then evaluating, the resulting trajectories. The model has simple linear dynamics:[

x′(t)
x′′(t)

]
=

[
0 1
0 −cs/m

] [
x(t)

x′(t)

]
+

[
0

u(t)/m

]
(14)

where m is object mass and cs is the coefficient of sliding friction. We assume an idealized system without motor
saturation and perfect trajectory tracking. Our cost functional was an aggregated, weighted sum which penalized
electrical energy use, time, and nearness to obstacles. To evaluate the performance of our system for the 2D robot
domain, five different logical sets of constraints L0 of varied complexity were enforced on four different obstacle
fields {O} for a total of 20 trials. The field extended from (x, y) coordinates (−5 m, −5 m) to (5 m, 5 m) with zero
velocity required at start and end. The obstacles in {O} are denoted as a set containing their center in the (x, y) plane
and their radius r , all in meters:

{O} = {{{(0.5, −0.5), 1}, {−4.0, −2.5}, 0.5}, {(4.0, 3.0), 0.5}},
{{(1.5, 2.5), 2.0}, {(−4.2, −3.5), 0.5}, {(−3.2, −4.0), 0.5}},
{{(1, 1.2), 3}},
{{(0.0, −3), 0.5}, {(4.0, −3.5), 0.5}, {(−3.5, 0.5), 1.0}, {(−1.0, 0.5), 0.5}, {(1.0, 3.7), 0.5}, {(4.0, 3.0),

0.5}, {(0.5, −0.5), 1.0}}}
We defined 28 possible hard limits (H0) and 72 soft limits (S0). The simplest constraint set enforced one hard

and two soft constraints; the most extensive (Constraint Set 5) had two hard constraints, two explicit numeric soft
constraints, and four soft constraints arising from the fuzzy constraint to move “moderately safely:”

L0 = {{H0 = {max-speed � 4.2}, S0 = {somewhat quickly}},
{H0 = {max-acc � 1.0, min-sep � 1.7}, S0 = {safely}},
{S0 = {a little quickly, exceedingly inquisitively}},
{H0 = {max-acc � 1.0, max-speed � 4.0}, S0 = {10 <= energy � 15, 1.0 � avg-speed � 2.0}},
{H0 = {maxacc � 1.0, max-speed � 4.0}, S0 = {10 � energy � 15, 1.0 � avg-speed � 2.0,

moderately safely}}}
Each of the 20 test cases was run from a default weight vector Ω1

default = [1, 1, 1, 1] and from a Ω1 provided by
INIT. The first three of these weights were applied to cost-functional terms minimizing time, energy, and the obstacle
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penalty function [43]. The fourth “weight” was the LIM used to parameterize the fall-off radius on the obstacle
penalty function. Only the collocation TPLAN was used for trajectory generation. Illuminating examples from our
set of 20 tests are presented in Table 1. Our second L0 constraint set had S0 of “safely,” which included constraints on
avg-speed, max-speed, maximum acceleration (max-acc) and minimum separation between the robot and obstacles
(min-sep). We added two further numeric constraints, max-acc �1.0 and min-sep �1.7. We iterated from the base
case and from an initial trajectory whose weights were selected by INIT. Results for Obstacle Set 1 are summarized
in Table 1.

This time, the base case required three additional iterations to converge to an acceptable solution. The base case
itself was too fast for “safely,” so weights affecting speed and acceleration features were changed. The trajectory
resulting from these Ω1 passed too closely to obstacles, so LIM was increased in Ω2. Forcing the path out and around
the obstacles without changing the time-affecting weights resulted in a trajectory that was again too fast, and these
weights were adjusted in Ω3. The trajectory generated using these parameters (Figs. 6 and 7, dashed lines) satisfied
all constraints. INIT, in this example, provided a starting point that resulted in a final weight set/trajectory much
different from those from the base case. Because of the fuzzy level “medium high” required for min-sep in “safely,”
LIM starts out twice as large as in the base case. However, the time-affecting weights were still at levels that made it
undesirable to plot a path between two obstacles to save time due to the min-sep requirements. So the final iteration
has weights requiring a longer and slower traverse (Figs. 6 and 7, solid lines). The trajectories are quite different
given the different weight sets. Both, however, satisfy the required constraints.

The results after one iteration (labeled Default1 and INIT 1) and after completion (Defaultn and INITn) were
examined for both starting weight vectors. Figure 8 shows the total number of failures for each of the four cases
Default1, INIT 1, Defaultn, and INITn. INIT 1 shows a clear advantage over Default1, with both fewer failures to meet

Table 1 Summary for 2DOF example

Ωi max-speed avg-speed max-acc min-sep

Base case (Ω0) 1, 1, 1, 2 1.3 1.1 1.3 1.7
Ω1 1.69, 1, 1, 2 1.0 1.0 1.1 1.6
Ω2 1.69, 1, 1, 2.13 1.1 0.9 1.1 1.7
Ω3 2.04, 1, 1, 2.13 0.9 0.8 0.9 1.7
INIT(Ω0) 14, 3, 1, 4 1.7 0.9 1.3 1.6
Ω1 9.15, 1, 1, 4.25 0.7 0.5 1.0 1.7

Fig. 6 Paths for 2DOF example.
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Fig. 7 Resource use for 2DOF example.

Fig. 8 Failures for each 2DOF case out of 28 H0 and 72 S0.

H0 and S0. We were not formally working within an anytime planning framework, but this significant improvement
in solution quality for the first iteration would be of benefit should we extend the work in that direction.

Final results are not nearly as dramatically different as initial results. Our different starting points in these cases
did not, after repeated applications of WADJ, result in significant differences in final solution. (We believe that this
demonstrates the robustness of our approach.) However, INITn converged to an acceptable solution in, on average,
5.25 iterations, whereas Defaultn required on average 6.10 iterations, and it never found an acceptable trajectory on
the first try. Figure 9 shows a histogram of number of iterations each solution required before returning. Overall,
INITn has more valid solutions with fewer iterations than Defaultn. Although the sample is not large enough to
analyze statistically, it seems that problems were of two main types: either the process converged quickly, either after
just one iteration (INITn) or after four iterations (Defaultn), or else it required many more iterations (six for INITn,
seven for Defaultn) to trade back and forth between competing requirements. The effects of obstacle arrangement
did not have a strong affect on the number of S0 failures, as shown in Fig. 10. Failure rates in S0 were impacted by
the constraint set, as might be expected. Figure 11 gives the failure rates. Constraint Sets 1 and 4 had the overall
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Fig. 9 2DOF iterations through the architecture.

Fig. 10 2DOF S0 failure rates by obstacle set.

Fig. 11 2DOF S0 failure rates by constraint set.

highest rates. In Constraint Set 1, competing hard and soft constraints forced the desired max-speed into a 0.2 m/s
window, a difficult value to achieve.

The Constraint Set 4 failure rates reflect a weakness in the WADJ rule-generation method. Constraint Set 4
included two H0 upper constraints on max-acc and max-speed, and then S0 numeric range constraints on energy
and avg-speed. Except for Obstacle Set 4 (the easier obstacle set in Fig. 10), the energy constraint was uniformly
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violated. Maneuvering around obstacles requires more energy than predicted by the fuzzy rules obtained from the
WADJ curve data generated in empty space or in a field with one obstacle.

Out of all 40 test cases run to completion, five were able to meet all H0 and S0. In matters of solution quality, we
found that initialization made little difference when meeting H0. By the final iteration, the margins by which the H0

had been met were similar, regardless of whether or not the system had started from initialized weights. The margin
by which S0 of the returned trajectory were made or failed also did not appear to depend on initialization. However,
if this architecture were used to support anytime planning, the initialization had clear benefits. The first trajectory
returned using initialized weights tended to meet more constraints overall and meet them by better margins. When it
failed a constraint, the initialized solution tended to fail it by less than the solution returned by the default weight set.

V. Six Degree of Freedom Deep Space Satellite
The 2DOF experiments showed our architecture could be useful, but the 2DOF point rover problem was highly

simplified and linear. As a next-step extension, we adopted a 3D, 6DOF (space) domain example with flat space
(gravity-free) dynamic properties that were nonlinear in attitude, but less complex than orbital motion. We assumed a
spacecraft with impulsive thrusters for translation and reaction wheels for torque generation, following the modeling
described in Henshaw [44]. The general state-space form of a rigid body in deep space is given by:

x′(t) =

⎡
⎢⎢⎣

v′
p
ω′
σ ′

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
v

−H−1S(Hω)ω

Gσ (σ)ω

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

u(t)/m

0
H−1τ(t)

0

⎤
⎥⎥⎦ (15)

where p is the spacecraft position vector in the inertial reference frame, v is its inertial velocity vector, ω is the angular
velocity vector expressed in the body frame, and σ is a representation of attitude (a modified Rodrigues vector [46]).
H is a matrix of moments of inertia, S is the matrix representation of the cross product, u is the translational control
input (force) vector in the body frame, m is the spacecraft mass (presumed constant over each trajectory planning
problem), τ is the vector of rotational control input (torque), and Gσ is an expression which, when multiplied by ω,
gives the rate of change in σ :

σ̇ = Gσ (σ )ω = 1

2

(
I − S(σ ) + σσT − 1 + σT σ

2
I

)
ω (16)

The mass used was 1 kg and Ixx = Iyy = Izz = 1 N-m/s2, simulating a “microsatellite” rather than a full-scale plat-
form. Maximum thruster output was ±30,000 N in each axis. Maximum torque output about each axis was smooth
until a saturation value of ±1000 N-m. We have the same concerns for 6DOF as for 2DOF: fuel and power must be
conserved, goals must be accomplished in a timely fashion, and obstacles must be avoided. Our inputs are different
in this case. Rather than a continuous electrically powered motor, we have saturating thrusters for 3DOF translation
and an electrically powered reaction wheel for 3DOF attitude control. As a result, the cost functional has the form:

J =
∫ tf

to

(
W1 ‖u(t)‖1 + τ(t)T W2τ(t) + W3 + W4 max

i∈{O}(oi(ri))

)
dt (17)

The first term, the one-norm of the thruster force, results in a minimum-fuel control law. This control law is, however,
discontinuous (which violates the assumptions of our numeric solver) and thus is approximated with steep but
continuous functions, such as a cubic spline made to increasingly approximate a step function [44]. The second term
represents electrically powered rotational actuators. This form of the cost functional is an energy-minimizing term,
a standard cost representation for electrically powered systems. The third term minimizes time over the integral. The
fourth term is the obstacle penalty function.As in the 2DOF case, the obstacle penalty function contains a cubic spline
term that penalizes proximity to obstacles. This function also includes a velocity-based component that penalizes
speed near the obstacle. Since the cost functional is an integral over time, a penalty based purely on clearance to
the obstacle can be minimized by being very close to the obstacle but going very fast, so that the sum over time is
less—not a vehicle behavior we would typically wish to encourage.
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A. Development of Weight-Adjustment Heuristics and Fuzzy Rules
For the 6DOF weights, the TPLAN code BVP4C2 assumed that the force weight W1 was normalized to one, and

all other weights were relative to this. As a result, it was more intuitive to work with the W1 as the denominator in
the weight ratios for our 6DOF spacecraft domain. All of the code written to implement these 6DOF heuristics uses
torque/force and time/force weights, rather than the inverse as in the 2DOF case. A subset of the WADJ heuristics
and fuzzy rules reflects this inversion and the heuristics are labeled W2/W1 and W3/W1 as implemented. Our weight
vector Ω included W1 the force weight, W2 the torque weight, W3 the time weight, and LIM. Since the obstacle
penalty function weight W4 is never adjusted, we do not include it in our weight vector representation.

To develop WADJ rules, we followed the general procedure outlined in Sec. again in 6DOF. We did not test
different field sizes for 6DOF, however, as we were confident from the 2DOF case that results would scale well.
(This confidence was well-placed; our WADJ curves were generated at a scale of 50 m while our test cases were on
the order of 10 to 20 m.) We tested pure translation, translation plus rotation, and a translation in the presence of
obstacles. For the translation in the presence of obstacles, the final state orientation was identical to the initial state
orientation; rotation was not required, but it was not forbidden, either. Following the insights gained in the 2DOF
domain, we plotted “per second” features (speeds and accelerations) versus the ratio of the weight of the translational
inputs (here, thruster force) W1 to the time weight W3. The results for the feature avg-speed are shown in Fig. 12.
Once again, there is the power relationship between speed and the force/time weight ratio. We found this to be the
case for the other force- and time-based quantities as well. The path-based features (e.g., min-sep) were once again
linear with the influence limit of the obstacle penalty function. Unlike the 2DOF case, the trajectories were much
more likely to be plotted through obstacles. To handle this, we added an implicit hard constraint to every trajectory,
min-sep >0 m. If the path went inside an obstacle, the trajectory failed and LIM was adjusted to move the path out
of the obstacle. This solved that problem.

Torque presented us with a challenge. Our WADJ test for torque included a translation and a rotation, so that
we would see the effects of dynamic coupling. Following the intuition we had from the translational features, we
tried plotting the ratio of the torque weight W2 versus the time weight W3. However, since torque and the resulting
rotational motions are the source of nonlinearity in the system, initial results indicated no power law for WADJ, thus
at first we were concerned this heuristic may not be applicable. Upon further examination, however, we identified a
more promising heuristic. Figure 13 shows the torque data grouped by time and force. First, the data were grouped
by their torque/force weight ratio (W2/W1), but plotted versus the time/force ratio (W3/W1) as shown in Fig. 13.
Each line in Fig. 13 represents a fixed W2/W1 ratio. Even though that ratio is fixed, the amount of torque applied can

Fig. 12 WADJ curve for avg-speed in 6DOF domain.
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be increased or decreased by adjusting the W3/W1 ratio. Conversely, if the W3/W1 were known and fixed, changing
the W2/W1 ratio could jump the torque up or down that family of linear curves. Was there a predictable relationship
between the slopes of the lines in Fig. 13 and W2/W1? Figure 14 shows that there was. Our torque heuristic was
implemented as follows: first, all nontorque features were checked for limit failures and, if there were failures, the
weights were adjusted. Then the torque feature was checked. If it failed, the desired torque value was divided by the
current W3/W1 value to get the slope of the line we would like to be traversed in Fig. 13. Then the power relationship
shown in Fig. 14 was used to calculate the necessary W2/W1 ratio from the desired slope. The fuzzy rules were
generated as they had been for the 2DOF case. The WADJ data were reverse engineered so that “very high,” “high,”
etc., weight values were correlated back to the trajectory features they elicited. We again found that the range from
2−3, 2−2, . . . , 22, 23 was sufficient to describe the WADJ relationship.

Fig. 13 First-stage WADJ heuristic to determine torque in 6DOF.

Fig. 14 Second stage in torque heuristic in 6DOF.
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B. Results
Six different sets of constraints L0 were enforced on four different obstacle fields {O} for a total of 24 trials.

Spherical obstacles are denoted as a set containing their center in space (x, y, z) and their radius r , all in meters:

{O} = {{{(6, 6, 0), 1}},
{{(3, 2, 3), 0.5}, {(8, 5, 8), 0.5}, {(14, 12, 12), 0.5}}
{{(6, 6, 12), 0.5}, {(11, 11, 22}, 0.5}, {(16, 16, 32), 0.5}},
{{(20.38, 25, 25), 1}, {(27.31, 21, 25), 1}, {(27.31, 29, 25), 1}}}

However, one constraint/obstacle pairing proved to be intractable and BVP4C2 could not converge on a solution.
This trial (Constraint Set 4, Obstacle Set 4) is omitted from the following results. There were, overall, 20 hard limits
(H0) and 60 soft limits (S0). The simplest constraint set enforced one soft constraint; the most extensive (Constraint
Set 5) had two hard constraints, two explicit numeric soft constraints, and four soft constraints arising from the fuzzy
constraint to move “moderately safely”:

L0 = {{H0 = {max-speed <= 5.5 m/s}, S0 = {somewhat quickly}},
{S0 = {exceedingly efficiently}},
{S0 = {a little quickly}},
{H0 = {max-acc <= 1.3, max-speed <= 4}, S0 = {2.7 <= force <= 5.4, 1.8 <= avg-speed <= 4}},
{H0 = {max-acc <= 1.3, max-speed <= 4}, S0 = {2.7 <= force <= 5.4, 1.8 <= avg-speed <= 4,

moderately safely}}}

Each of the 23 successful test cases was run from a default weight vector Ω1
default = [1, 1, 1, 1] and from a

Ω1 provided by INIT. Again, only the collocation TPLAN BVP4C2 was used for trajectory generation. The results
after one iteration (labeled Default1 and INIT 1) and after program completion (Defaultn and INITn) were examined
for both starting weight vectors. Figure 15 shows the total number of failures for each test case. As in the 2DOF
case, these are INIT 1, the solution generated using the weights suggested by INIT, INITn, the solution generated by
running the INIT 1 solution to conclusion through the architecture, Default1, the solution generated using a default
weight vector with all weights equal and LIM = 1, and Defaultn, the Default1 solution run to completion.

The results for soft-limit failures S0 are similar to the 2DOF case. The INIT procedure results in noticeably fewer
soft-constraint failures after only one iteration. There are more hard-limit H0 failures with INIT due to our examples
with competing constraints, but again no hard-limit failures were present in the final solutions. Margins of success

Fig. 15 Failures for each case out of 20 H0 and 60 S0.
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and of failure were largely comparable between the methods, and similar average numbers of iterations through
the architecture were needed to complete the trajectory. However, using INIT did have one advantage, as shown in
Fig. 16: a majority of the runs starting with INIT finish in one or two runs, while those starting from default weights
need a minimum of three runs. Analyzing the S0 failures by obstacle set shows trends similar to the 2DOF case,
although the median failure rate is higher. In the 2DOF case, the median S0 failure rate was 50% ± 6% and there
was no clear relationship to the obstacle set. For this 6DOF case, the median S0 failure rate was 65% with a spread
of 12%—greater variability, but no clear trends by obstacle set.

Fig. 17 shows the percentage of S0 failures by constraint set. Here we see definite trends, with some constraint
sets being apparently simple to entirely satisfy, while others had 100% S0 failure rates. Constraint Sets 2 and 3 had
small numbers of noncompeting soft constraints and no hard constraints. Constraint Set 2 had a soft numeric range
limit on thrust; Constraint Set 3 was “a little quickly,” which defuzzified into soft constraints on max-speed and
avg-speed. With no other requirements, these constraints were solved much more successfully. INITn solved them
entirely for all obstacle cases; Defaultn had small errors with Obstacle Set 1 and Obstacle Set 4. Constraint Set 1
was very similar to Constraint Set 1 in the 2DOF case; we set a hard limit on max-speed and also the soft preference
for “somewhat quickly.” The hard limit was toward the low end of the fuzzy ranges that define “quickly,” forcing the
system to hit a small window of feature values that would satisfy both. While this constraint set gave the 2DOF case
some problems, here it was entirely successfully solved in all cases that went to completion.

Fig. 16 Number of iterations through the architecture.

Fig. 17 6DOF S0 failures by constraint set.
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We also note that for these first three constraint sets, INIT 1 returns remarkably better initial solutions than Default1.
By happenstance, the default weights produce results that do not meet any of the S0, while INIT 1 achieves at least
partial success in that. So we see here one practical application for INIT : in those cases where there are few or
noncompeting constraints, it provides an excellent initial guess compared to using default weights. Constraint Sets
4 and 5 were clearly less successful. Constraint Set 4 included two hard upper limits on max-acc and max-speed and
two soft-range limits on force and avg-speed. It appears that when the suggested weights for the force and avg-speed
ranges were combined, the force terms were much more sensitive to the change away from their own desired values.
Further, the hard limit on max-acc was greatly exceeded in all initial cases. By the end of the iterations, the hard
limits were all met, but force was failed in all cases: failed under the lower limit of the range. By requiring such
a low max-acc, we were required to use less thrust than specified by the soft range. Similarly, all final avg-speeds
failed low, as the trajectory had to go slowly enough to meet the upper limit on max-speed (a hard limit). Essentially,
the stated soft constraints in Constraint Set 4 had to fail for the hard constraints to be met. Since this was the case,
there was almost no way for the system to succeed, whether or not the weights had been initialized. So we see no
difference in the failure rates for the INITn and Defaultn cases. Constraint Set 6 contained the most constraints,
several of which were in competition. Here, trying to compute weights that satisfy all constraints actually decreases
result quality relative to the solution generated from the default weight vector. This appears to be a case in which
highly constrained optimization is extremely sensitive to initial conditions. It suggests that, when there are more than
2–4 constraints on a problem, we may need to “seed” more than one initial solution to arrive at the best answer.

Constraint Set 5 added the soft fuzzy preference “moderately safely” to Constraint Set 4. This defuzzified into four
more soft-range constraints. We were practically guaranteed a certain failure rate, since the upper limit of “safely’s”
avg-speed constraint equaled the lower limit of the soft-range constraint on avg-speed from Constraint Set 4. Of
course, if we failed low on avg-speed, as we did for all of the Constraint Set 4 cases, we would be making the “safely”
constraint, decreasing our overall failure rate. Soft constraints on max-acc and max-speed arising from “safely” were
sometimes met when the hard constraints were met, again decreasing the failure rate. (And when they were failed,
they failed low as in Constraint Set 4.) We saw very large failure margins which were greatly reduced by the end of
the iterations.

Constraint Set 6 was “very energy-saving,” which decomposed into soft-range constraints on force and torque.
But since the only torque needed in the trajectories was that required to avoid obstacles, the trajectories all failed low;
they could not use enough torque to satisfy the “low torque” constraint. “Low force” was more typically made, or
failed high with very small margins (0.05, 0.02 N) for the completed cases (Defaultn, INITn). Since the nonlinearity
of the system is in its rotational dynamics, and since we wish to show that our architecture will work with nonlinear
systems, we decided to rewrite the xf to include explicit rotational changes, and rerun it over the set of obstacles under
Constraint Set 6. The results are presented separately. For many of the runs, a solution was returned after between
one and three iterations (Fig. 16). For one or two iterations, the weights are converged upon with no overshoot. For
those default weight cases that took three iterations, some converged monotonically to the correct weights, while
others overshot on the second iteration and corrected with the third.

C. Torque
In our original data set, only one of eight completed trajectories (4 Defaultn, 4 INITn) met the “low torque”

requirement. The rest were too low to be considered “low” by the standards of our fuzzy rule set. Since none of
our goal states required a rotation, the only rotations required were those needed to avoid obstacles. These did not
use sufficient torque to be considered low. So, to test the torque WADJ rules, we included a rotation change in each
axis at the goal state and reran the tests. We also had some concerns about the possible interaction of force and
torque. In WADJ, all features except torque are first checked for adjustment. Then the selected W3/W1 ratio is used
together with the desired torque value to calculate a slope from Fig. 13; that slope is then used to pick a W2/W1

ratio via the equation in Fig. 14. The “low force” requirement was keeping W3/W1 small, and the heuristic is less
well-conditioned for W3/W1 less than 1. Although meeting mixed constraints is an important goal, we also wanted
to isolate the torque response to the WADJ process, since it is so different from the other WADJ heuristics. So we
created additional test cases: Constraint Set 7, “low torque,” and Constraint Set 8, “medium torque.”

Figure 18 shows our overall failure rates for these three constraint sets (Constraint Sets 7 and 8, and the revised
Constraint Set 6); each case had 16 runs (four soft constraints run over four obstacle sets). The Default1 and INIT 1
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Fig. 18 6DOF S0 failures for Constraint Sets 6, 7, and 8.

cases are high again, not unexpectedly, and the failure rates for the completed runs are much lower. All seven failures
at run completion were torque failing low; of those seven, four were from the “medium torque” Constraint Set 8.
W2/W1 was continually adjusted down to discount it, to allow for greater torque in these cases, but what was required
was that W3/W1 be increased. Since there was a tacit assumption that some other state feature would be relying on
W3/W1 and that it may have been adjusted to affect that other feature, the torque WADJ never altered W3/W1, and
W2/W1 could not be adjusted sufficiently before time_limit was reached. Our current TPLAN cannot handle direct
maximization of trajectory qualities; it can only minimize. We have found that we can minimize features which are
inversely related to our feature of interest for a maximizing effect; thus by penalizing time, we can usually force an
increase in speed. Another TPLAN might allow for direct maximization of features.

Figure 19 shows the number of iterations required for these runs. All of those runs which took four or fewer
iterations to return a solution returned a complete success. The utility of INIT is again shown in the large number
of runs that returned successful trajectories after only one or two iterations; eight (two-thirds of the total) of the
trajectories created using INIT were solved in two or fewer iterations, while only three trajectories created using
default weights met this standard.

We have demonstrated that WADJ heuristics can be developed for a deep-space 6DOF domain with nonlinear
dynamics. Our results were, if anything, better in the 6DOF domain than in our 2DOF domain, with smaller S0

failure margins and larger success margins for H0. The average number of iterations required to find a solution was
commensurate with the 2DOF case, also arguing that the technique implemented in the architecture will scale well

Fig. 19 Iterations required for Constraint Sets 6, 7.
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with the dynamic complexity of the domain. The surprising similarity of the 2DOF and 6DOF WADJ curves, even
to the values of the coefficients, is noteworthy. That also argues for the potential for a general application to the
optimization of dynamic systems.

The performance of our TPLAN, BVP4C2, was less robust and slower than we had hoped. Prior work on this
algorithm required extensive hand-tuning of several sets of gains just to solve a single trajectory problem. We were
running it, on average, 5.2 times per problem for 24 fairly different problems. So these difficulties are not entirely
unexpected. In the future, however, a different TPLAN should be selected for work with nonlinear systems.

VI. Conclusions
We have presented an architecture for optimizing trajectories over user preferences as well as hard constraints.

Through insertion of a “feedback loop” to iterate over weighting factors, our approach extends traditional optimization
methods requiring a statically weighted sum of all objectives. Through convergence to a single solution that meets
constraints and is consistent with preferences, our approach is more computationally efficient than multi-objective
methods that must compute the multidimensional Pareto frontier, and then extract an “acceptable” solution from the
nondominated solution set. The presented 2DOF and 6DOF examples demonstrate our architecture can efficiently
identify trajectories that satisfy hard constraints and natural language preferences. The WADJ heuristics consistently
direct the weights toward values that meet hard and soft constraints and are robust to differences in initial weight
sets. The fuzzy logic enables a more natural human interface, opening a route to easy tasking of autonomous agents
by nonexpert users (e.g., hospital staff commanding a robotic assistant, war fighters with a Future Combat System
robot, the elderly using a companion robot). However, the ability to meet hard numeric constraints is not lost in
adding the fuzziness. This allows the system to be used as an “automated graduate student,” overseeing trajectory
generation, rejecting those which do not meet required hard constraints, and making intelligent adjustments to the
weights to move the solution in the required direction. Substantial knowledge engineering and preprocessing was
required to develop the fuzzy rules, the WADJ rules, and the TPLAN implementation. But once this offline process
had been completed, the system was applicable to a wide range of obstacle and constraint conditions with no further
adjustments. This makes the architecture useful for robots operating long-term in a consistent environment, but not
so useful for “one-off” operations such as technology demonstrations.

VII. Discussion and Future Work
In the future, a more sophisticated version of INIT could look at the constraint set as a whole and recognize

potential conflicts. Currently, the system will execute many iterations to satisfy conflicting constraints. An early
detection of this kind of possible conflict, or else a software monitor that detects a pattern of cycling back and forth,
would both be useful to have. INIT should also be invariant to the order in which constraints are processed. In this
implementation, the order in which the hard constraints are considered impacts the returned weight vector. After
the soft constraints have been aggregated via a centroid computation, INIT cycles through the hard constraints and
checks to see if the currently suggested weights are liable to meet them. If they are not, INIT adjusts the weights up
or down as needed. If competing constraints are being considered, the last one addressed by INIT will be favored,
rather than a median weight which might satisfy both.

The WADJ process could also be rendered more sophisticated. After the INIT cycle, the “adverbial modifiers”
like “very” or “somewhat” are lost in the weight-adjustment process. The endpoints of the fuzzy regions for the
soft constraints are fixed, without regard to the strength of the user’s preference. Nor are they currently considered
when deciding which of several competing soft constraints must fail. The assumption has been that the INIT process
would put the solution in approximately the correct region in weight space, and further iterations would reflect that.
That assumption does not necessarily hold, as the WADJ rules can cause oscillations of initially very large, then
decreasing, magnitude in weight space. Something that preserves the knowledge of soft preference strength past the
INIT phase would help this adhere more closely to true user preference, and perhaps reduce total iterations needed.

A more sophisticated notion of error margins in FEXT might also be of use here. A WADJ algorithm that seeks to
minimize the entire vector of errors, rather than each error individually, would be computationally more expensive
(an optimization within an optimization), but could yield superior results with fewer iterations. Other forms of WADJ
specific to other cost functionals could be explored. A cost functional based on a linear quadratic regulator (LQR),
in which components of the state vector like the velocities are directly penalized, could replace the time component
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of the cost functionals used here. Of course, these new terms would still have weighting terms and the relationships
between them would have to be investigated, following the procedures outlined here.

We would like to augment EVAL with an understanding of the adverbial modifiers, as mentioned above, so that
preferences the user described as weaker would be violated in favor of meeting more strongly held preferences.
Additionally, some mechanism whereby the original set of limits L0 can be revisited and perhaps altered by the
architecture is an avenue of further research. There could be cases where the slight easement of a limit could lead
to an overall acceptable solution; we would like to be able to identify these cases and flag them for the user. In this
vein, the addition of “firm” versus “hard” or “soft” constraints might be considered: those constraints which the user
very greatly prefers to be met, but which do not indicate total failure if failed.

Some optimization routines use negative weights in the cost functional, to allow certain terms (e.g., a quality
measure) to be maximized. Users must be very careful when doing this, because it becomes possible for the term
to grow without bound as time goes to infinity. The cost goes to negative infinity, dominated by this term times its
negative constant. If the user has determined that, due to the properties of his particular problem, this will not happen,
then such a term can be used. This work does not investigate the possibility of adding such terms, and we could look
to that in the future as well.

Finally, this work considered only cases with static obstacle sets. Research with dynamic obstacles is required
to determine whether our architecture remains tractable in such cases if the obstacles follow known paths. Due to
the computational complexity of performing numeric solutions to the calculus of variations problem, this technique
cannot be used, as is, as a reactive or real-time planner. However, other work [40] has investigated the use of optimal
controls as part of a receding-horizon planner, for example, that along with MILP could provide a more real-time
TPLAN algorithm for our architecture.
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