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To detect salient ground targets precisely and rapidly during aerial reconnaissance, this paper describes a novel

object recognition method based on the feature selection of a biologically inspired model and biogeography-based

optimization. As a promising approach to object recognition, the biologically inspired model is a hierarchical system

of building an increasingly complex and invariant feature representation, which closely follows the process of object

recognition in the visual cortex. These scale- and position-tolerant features are constructed by alternating between a

template-matching and a maximum-pooling operation. Because of the many patches extracted in the standard

biologically inspired model, the random mechanism may extract patches from irrelevant parts of an image and

consume a lot of time. In this work, a feature selection method is proposed based on a new population-based

evolutionary algorithm called biogeography-based optimization to choose the proper set of patches with high

accuracy of classification and recognition. A support vector machine classifier is used for evaluation of the fitness

function in biogeography-based optimization and to calculate the recognition rate in testing. A series of experiments

are conducted, and the comparative results demonstrate the feasibility and effectiveness of the approach.

Nomenclature

Acc = classification accuracy
D = dimension of C2 feature vector
Gxy = output of Gabor filter at position �x; y�
E = maximum emigration rate
Hi = one habitat (solution)
I = maximum immigration rate
Iter = maximum number of iterations
Ln = normalized summation of selected patches
ms = mutation rate of modifying a habitat
N = population size
NΣ = size of a grid cell
nelite = number of elitism
ni = size of the patch Pi
Pi = one patch extracted at the C1 layer
Ps = probability of the habitat containing exact species
Sk = number of species
wa = weight associated to the error rate
wf = weight associated to the normalized summation of selected patches
x = horizontal coordinate
y = vertical ordinate
β = sharpness of the exponential function
γ = aspect ratio of Gabor filter
θ = orientation of Gabor filter
λ = wavelength of Gabor filter
λk = immigration rate of the kth solution
μk = emigration rate of the kth solution
σ = effective width of Gabor filter

I. Introduction

N OWADAYS, unmanned aerial vehicles (UAVs) [1] have beenwidely applied to information acquirement, threat reconnaissance, cooperative
surveillance, heterogeneous cooperation [2], and high-speed strikes [3]. Automatic target recognition is a key problem to be solved for

fulfilling these complicated tasks. The target-tracking performance is necessary for improving in aerial tasks, and researchers have proposedmany
algorithms such as the shape-matching approachwith optimized edge potential function [4], vision-based featurematching [5,6], navigation [7,8],
and real-time task scheduling [9]. However, understanding how the visual cortex recognizes objects is a critical question for neuroscience [10].
Establishing an emulating cortex recognition system has always been a challenging issue. References [11–13] have investigated the biological
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feasibility of explaining aspects of higher-level visual processing. The aim of object recognition can be understood by representing objects as
collections of view-specific features and taking the view that the basic recognition processes occur in a bottom-up way. Although these models
have been tested on some natural images and performwell on some specific datasets, these neurobiological models of object recognition in cortex
are difficult to apply in real-world scenes.

As described by Riesenhuber and Poggio, the hierarchical model [14,15] is consistent with the physiological data and quantitative theory from
primates’ visual cortex. This model consists of a hierarchy of layers with both linear (S units, performing template matching) and nonlinear
operations (C pooling units, performing a maximum operation). It can handle the complex visual tasks and make testable predictions. A standard
model of the visual cortex [16] summarizes object recognition in a quantitative way and consists of four layers of alternate simple S units and
complexC units. Some experimental results have verified that this model can quantitatively duplicate the generalization properties of remaining
highly selective for particular objects while being invariant to a range of scales and positions. Serre et al. established an extended standard model
[10,17] by learning the feature vocabulary from images, and they applied it to the real-world object recognition. In this framework, a prototype is
an image patch, which can be randomly selected from training images.C2 feature extraction can be interpreted as the best match between the S2
units and given prototypes. Deng andDuan proposed hybridC2 features and a spectral residual approach [18]. Their approaches can be applied to
fast location of object regions. However, the model in [18] has some shortcomings in random mechanisms. As the prototypes are randomly
selected, the reliability of the matching requires a large number of prototypes, which makes the computational burden extremely high [19,20].
Furthermore, this biologically inspired model (BIM) is a feedforward procedure, which takes the first process in the ventral stream of primate
visual cortex into account. To achieve stable performance, a large number of patches are randomly sampled from training images. As many
patches are required to be extracted from the background instead of target regions, mismatches would easily appear. Without a prediction–
verification loop to remove redundant patches, this feedforward procedure greatly increases the computational burden and results in a large
number of mismatches.

To solve this problem, there has been recent interest in developing feature selection algorithms to reduce the side effect of too many patches. In
[19,21], Huang et al. developed the enhanced BIM by removing uninformative inputs via imposing sparsity constraints and applying a feedback
loop tomiddle-level feature selection. A boosting-based feedback algorithmwas proposed to replace the randompatch selection stage in the BIM.
This algorithm can significantly reduce the number of prototypes formatching, and thus greatly speeds up the classification procedure. Eliasi et al.
[22] applied two clustering methods, K means and sequential backward feature selection, to S2 layer features optimization. However,
this sequential backward feature selection scheme was conducted only on patch sizes in the S2 layer and C1 scales band. Thus, it could not
guarantee the best set of patches and features from training. Mutch and Lowe [23,24] improved the BIM by using sparsity, lateral inhibition,
and a simple feature selection technique based on the binary support vector machines (SVMs). Through selecting the features with high weight,
the resulting model with dropping features can improve classification performance with more economical computational resources. However,
these extensions of feature selection can hardly guarantee that the set of selected patches are globally optimal ones. To solve this problem,
some metaheuristic search algorithms, like particle swarm optimization (PSO), genetic algorithm, and evolutionary optimization, have
been proposed for feature selection [25–27]. The experimental results show that these optimization algorithms are suitable for solving feature
selection problems.

By applying the mathematics of biogeography to evolutionary computation, Simon [28] proposed a new bioinspired computing algorithm:
biogeography-based optimization (BBO). BBO shares information between individuals just as species migrate between islands to get better
solutions [29]. Markov models are also derived for BBO with selection, migration, and mutation operators [30], which can provide theoretically
exact limiting probabilities for each possible population distribution for a given problem. BBO has shown good performance, both on benchmark
problems [28] and on real-world problems (e.g., aircraft engine sensor selection [28], economic load dispatch [31], and satellite image
classification [32]).

To reduce the heavy computation load and achieve high recognition rate in reconnaissance missions of UAVs, this paper proposes a novel
feature selection scheme on the basis of BIM and BBO. We attempt to adopt this optimization procedure to get the best set of patches in training
and to reduce the number of patches or features by eliminating redundant patches. The relevant properties of data can be obtained by selecting the
most informative patches. With the patches extracted in the standard BIM, the feature selection scheme by using BBO can choose a number of
patches with high recognition rates and few redundant patches. The set of patches is evaluated by recognition rate, which can be calculated by
using a SVMclassifier and the fitness function in BBO.Ourmodel can significantly reduce the number of redundant patches, and hence achieve a
high recognition rate, which is difficult for fast object recognition in aerial surveillance.

The rest of the paper is organized as follows. Section II first presents a brief description and mathematical formulation of the feature selection
problem in BIM and BBO strategies, and then it gives a detailed description of our presented approach. The parameter settings and simulation
studies are discussed in Sec. III. Our concluding remarks and future work are contained in Sec. IV.

II. Detailed Implementation of Our Presented Approach

A. Biologically Inspired Model of Visual Cortex

The architecture of the BIMhas two primary layers: the S layer and theC layer. It consists of four layers of computational units: S1,C1, S2, and
C2, where simple S units alternatewith complexC units. The overview to obtain the output of this biologically inspiredmodel of the visual cortex
can be summarized as follows:
Step 1: Obtain the responses of the S1 layer (i.e., simple cells in the first visual cortical stage).

In this layer, an initial gray-value input image is firstly analyzed by amultidimensional array of simpleS1 units. Batteries ofGabor filters [33]
are applied to an input image, which have been shown to provide a good model of cortical simple cell receptive fields and good orientation
and frequency selectivity for image processing. This processing can been described by

Gxy � exp

�
−
X2 � γ2Y2

2σ2

�
× cos

�
2π

λ
X

�
(1)

whereX � x cos θ� y sin θ and Y � −x sin θ� y cos θ. Orientation θ, aspect ratio γ, effectivewidth σ, and wavelength λ are four filter
parameters that can be adjusted. The ranges of x and y are associatedwith the scales of theGabor filters, and θ controls the orientations. After
convolving the input image with the filters, 64 maps (16 scales × 4 orientations) are obtained and arranged in eight bands. Each filter band
contains two sizes at all four orientations.

Step 2: Get the C1 features, corresponding to complex cells.
TheC1 units describe complex cells in the visual cortex, corresponding to cortical complex cells that show some tolerance to shift and size.
As the key procedure to generate aC1, nonlinearmax operation selects themaximumofS1 units in a local area and processes the responses of
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different positions and different scales. We subsample the S1 maps using a grid cell of size NΣ × NΣ and then take the maximum of all
elements within the grid. For each orientation, a band contains S1 units in two different sizes and various positions. TheC1 features can build
the position invariance property by taking themaximum-pooling operation over different positions. Similarly, taking this operation over two
sizes enables us to build the scale-tolerantC1 units. As different orientations are not taken in this maximum operation, eachC1 unit contains
responses of four orientations.

Step 3: Compute the S2 units through the learning process.
In the extended standard model, the learning is conducted in the S2 stage. This part consists of two stages: the learning stage and the
classification stage. In the former stage, the learning process corresponds to selecting a set of prototypes or patches for the S2 units. During
training, large numbers of patches of various sizes at random positions and all four orientations are extracted at theC1 layer. One patchPi of
size ni × ni contains ni × ni × 4 elements. Then, those patches are stored as prototypes of the S2 units after the training process ends.
In the classification stages, the S2 units describe the similarity between C1 images and prototypes via convolution operation as

S2 � exp�−βkP − Pik2� (2)

where β defines the sharpness of the exponential function, P is one patch obtained from the test image, andPi is one of the patches from the
stored prototype. The default value of β is chosen as 1. This process can be realized with the radial basis function [34], which is a real-valued
function for which the value depends only on the distance from the origin. Each S2 response depends on the Euclidean distance between the
new input and the stored prototype in a Gaussian function.

Step 4: Acquire the final C2 features.
The final set of C2 responses is computed by taking a global maximum operation over all scales and positions for each S2 output
corresponding to one prototype. Since each prototype corresponds to a group ofS2 images, a vector ofNC2 values is produced for each input
image,whereN corresponds to the number of stored prototypes.All these steps ensure that theC2 features have the property of shift and scale
invariance, which can be used in a classifier for the final analysis of object recognition.
The major limitation of the BIM is that the patches are extracted randomly. High reliability of the match depends on a large number of
randomly selected prototypes, which leads to high computational burden. Furthermore, as many patches are extracted from the background
instead of target regions and the patches have varying degrees of usefulness for the classification task, mismatches would easily appear. The
feedforward procedure in the BIM greatly increases computation cost and causes the mismatches, which is almost impossible for practical
recognition applications without the prediction–verification loop to remove redundant patches.

B. Basic Principles and Mathematical Description of BBO

As presented in [28], BBO is a population-based biologically inspired optimization method, inspired by mathematical biogeographic models.
Biogeography is the nature’s way of distributing species. It is used in BBO to determine the mutation rate to prevent the local trapping of the
algorithm.

InBBO, each possible solution is like an island, with their features characterizing habitability. The goodness of each solution is called its habitat
suitability index (HSI). A good solution is analogous to an island with a high HSI, and a poor solution represents an island with a low HSI [28].
High-HSI solutions resist change more than low-HSI solutions, whereas low-HSI solutions tend to copy good information from high-HSI
solutions. As a result, the shared information remains in the high-HSI solutions and appears as new features at the same time in the low-HSI
solutions. In biogeography, this procedure is similar to some representatives of a species migrating to a habitat, whereas other representatives
remain in their original habitat. Poor solutions accept a lot of new features fromgood solutions thatmay improve the quality of those solutions. The
usage of migration operator probabilistically shares information between solutions based on the fitness values, and thus enables BBO to enhance
the exploitation performance.

BBO consists of two mechanisms: migration and mutation. It has certain unique features as mentioned next:
1) Although their characteristics change as the optimization process progresses, all solutions survive forever. Without the crossover operation,

solutions get fine-tuned gradually as the process goes on through the migration operation. Elitism operation is adopted to improve the algorithm
with more efficiency.

2) Due to its new type of mutation operation, solutions do not have the tendency to cluster in BBO, which is different from PSO.
3) By probabilistically sharing information between solutions, poor ones accept new features from good ones, which may improve the quality

of those solutions. This is a unique feature of the BBO algorithm to make constraint satisfaction much easier.
In BBO, a habitat H is initialized randomly with a vector of D integers that characterize habitability integers [35]. Then, each individual of

population is evaluated by a fitness function before optimizing. As a follow-up, migration and mutation steps are taken to reach the global
optimum. Inmigration, the information is shared between habitats that depend on emigration rates μ and immigration rates λ of each solution. The
kth (k ∈ f1; : : : ; Ng) individual has its own μ and λ for S number of species, which are computed, respectively, by [28]

μk �
ESk
Smax

(3)

λk � I
�
1 −

Sk
Smax

�
(4)

where E is the maximum emigration rate, I is the maximum immigration rate, and in general, the immigration and emigration curves are straight
lines for the special case ofE � I. Therefore, a habitat with few species (i.e., low-HSI poor solution) has lower μ and higher λ, whereas the habitat
withmore species (i.e., high-HSI good solution) has higher μ and lower λ. In themigration operator, poor solutions acceptmore useful information
from good solutions. Each nonelite habitat can be potentiallymodified on the basis of a habitatmodification probability. As themigration operator
is only applied for candidate nonelite habitats, some of the best habitats in the previous generation are preserved as elites to improve the
exploitation ability.

Once the migration process is over, a mutation operator is probably applied to each nonelite habitat to increase the diversity of the population.
The mutation operator modifies a habitat’s species randomly based on mutation rate m, which is expressed as [28]

ms � mmax

�
1 − Ps
Pmax

�
(5)
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where mmax is a user-defined parameter, Ps is the probability that the habitat contains exact species number S, and Pmax is the maximum. Each
habitat member has an associated probability, which indicates the likelihood that it exists as a solution to a given problem. In themutation operator
of BBO, both low- and high-HSI solutions are likely to mutate. This provides a chance of improving both types of solutions. Elitism operator is
also adopted to preserve some types of elites, which can keep the global best elites and abandon the worse ones.

The computational complexity of BBO in terms of theO� � notation is also presented in this section. The detailed complexity of BBO is shown
in Table 1, where F � O�F� is the computational complexity of the objective function; and Iter, N, and D denote the maximum number of
iterations, population size, and the dimension of theC2 feature vector, respectively. Then, the computational complexity of the migration process
isO�N2 · D�, whereas the one of mutation isO�N�. Therefore, the computational complexity of complete BBO isO�Iter · �N2 · D� N��. The
BBO algorithm can get the optimized solution with less computational cost.

C. Feature Selection Scheme Using BBO

Based on the aforementioned analysis, a new approach to implement the BBO algorithm will be described to solve the feature selection
problems in the BIM (see Fig. 1). The feature selection problem is converted to a task of finding the best patch set that minimizes a given objection
function. The classification accuracyAcc and the number of selected patchesLpatch are the two criteria considered in a fitness function. To find the
smallest patch set that improves classifier performance, a fitness function similar to [25] is introduced inBBO for the optimization problem,which
is defined by

fitness � wa × �1 − Acc� �wf × Ln (6)

wherewa represents the predefined weight associated to the error rate of the classifier �1 − Acc�, andwf denotes the predefinedweight associated
to the normalized summation Ln of the selected patches. The normalized summation Ln is calculated by Lpatch∕D, where D represents the
dimension of the C2 feature vector (i.e., the number of patches extracted at the C1 layer). To precisely establish a BBO-based feature selection
optimization approach, the following steps must be conducted.

1) The first step is data preprocessing. Similar to binary code in the genetic algorithm, we define the patch set by λPatch � �λ1; λ2; : : : ; λD�T,
where λi indicates the position value in λPatch. If the ith patch is selected, λi is equal to 1; otherwise, it is 0. Then, Ln is a normalized summation
Lpatch of selected patches. Two parts of the fitness function are confirmed in the same range.

2) The second step is solution evolution. To evaluate classifier performance, the binary patch set is converted to phenotype data. To save the
computation time and reduce the training cost, a large number of patches are extracted previously alongwith correspondingC2 values. One patch
with four orientations corresponds to a feature vector (i.e., the four-dimensional row of the C2 units), which can be easily found in the right
position of the stored dataset on the basis of binary solution of patch set. Then, these C2 features are used to train the SVM classifier to get the
performance evaluationAcc of the validation set. SVM is a powerful classifier to achieve a fast convergent rate and is widely used in classification
applications. In this paper, OSU SVM‡ is chosen as a toolbox for creating models for classification. Our experiments are performed by this SVM
with a linear kernel (i.e., LinearSVC) whereas the parameter C is set to a default value (i.e., C � 1).

As stated previously, the basic BBO algorithm for feature selection can be summarized by using the pseudocode shown as follows:
For step 1, initialize theBBOparameters:Smax,E, I,mmax,wa,wf, maximumnumber of iterations Iter, elitism parameternelite, population number
N, and initial random set of solutions (habitats) Hi�i � 1; 2; : : : ; N�.
For step 2, extract corresponding patches and C2 features for each solution.
For step 3, train SVM classifier and evaluate each fitness.
For step 4, compute Si, λi and μi for each solution.
For step 5, apply elitism to preserve nelite best solutions as elites.
For step 6, select remaining solution Hi for migration based on probability proportional to λi and μi.
For step 7, select solution Hi to update with mutation based on probability.
For step 8, recompute fitness of the modified solutions.
For step 9, implement elitism to replace and preserve nelite elites and find the current best solution.
For step 10, go to step 2 for the next iteration if needed.

It is worth noting that our proposed feature selection scheme in this paper is different from the ones introduced byMutch and Lowe [23,24] and
Huang et al. [19,21]. Mutch and Lowe [23,24] used a simple feature selection technique based on binary SVMs. It selected features with highly
weighted values by the SVM,whereas it was not adaptive and required a predefined value to decide the iteration of dropping features. Huang et al.
[19,21] applied a feedback loop with a boosting-based feedback algorithm to the middle-level feature selection stage. It significantly reduced the

Table 1 Performance between our proposed model and the original BIM

in six categoriesa

Our model Original BIM

Feature number Time EER Feature number Time EER

Fighter 220 5.188 0.967 220 5.065 0.830
1000 18.197 0.847

Helicopter 210 5.086 0.917 210 4.905 0.883
1000 18.408 0.877

Ketch 174 4.446 0.900 174 4.320 0.857
1000 17.901 0.840

Motorbike 171 4.420 0.983 171 4.270 0.923
1000 17.743 0.937

Car 168 4.400 0.983 168 4.223 0.933
1000 17.677 0.950

Airplane 166 4.384 0.967 166 4.188 0.920
1000 17.685 0.913

aThe measures are a number of selected features, EERs, and extraction times.

‡Data available online at http://sourceforge.net/projects/svm/ [retrieved 2014].
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number of prototypes for matching; thus, it greatly improved the classification procedure and reduced mismatches. However, it is difficult to
obtain optimized patches using their method on the basis of chosen SVMs corresponding to the most discriminative patches. Theoretical analysis
[36] has proved that the population-based bioinspired optimization algorithm can converge to the global optimal solution set. Given infinite
computational resources, our proposed evolutionary feature selection scheme can ensure the globally optimal set of patches.

D. Framework of Object Recognition System

According to feature selection, the process of our proposed object recognition method is presented in Fig. 2.
Our feature selection scheme using BBO chooses the proper set of patches with a high recognition rate and less redundant information. The set

of patches is evaluated by the recognition rate calculated with the SVM classifier and fitness function in BBO. After the training process,C2 units
of the test set are generated with selected patches and sent to the SVM classifier chosen in the training stage to make a final decision.

III. Experimental Results and Analysis

Tomeasure the performance of our method, the following datasets from the California Institute of Technology (Caltech) databases§ were used.
In our experiments, we first chose six classes of objects (fighter, helicopter, ketch,motorbike, airplane, and car) from theCaltech 101 database. All
these objects are with potential threats in battlefield reconnaissance. Figure 3 shows the sample images of each category. The datasets are
randomly divided into three parts (i.e., training set, validation set, and test set). The training set is used to build the model to get a large number of
patches and training features, and then a validation set is used to measure the performance of feature selection using the BBO algorithm. The
chosen patches and trained SVM classifier are applied on the test set.

As a preprocessing step, we apply scaling to prevent numerical difficulties in the calculation and ensure all filters can be used effectively on too
small or too large inputs. All images are normalized in size as 120 × 90 pixels. Also, converting color images to gray values is necessary to
simplify computation. All experiments are performed using MATLAB 7.14.0(R2012a) on a PC with a Core II 2.4 GHz CPU and 3G of RAM.

The main parameters in our experiments for BBO and the BIM were set as follows:
1) For theBIM, theS1 andC1 layers parameters are taken as in [10]. The number of initial patches is detailed in each experiment, changing from

10 to 1000.
2) For BBO, Smax � N � 50, D � 1000, E � I � 1, nelite � 2, mmax � 0.5, and Iter � 1000.

Fig. 1 Architecture 9 of our feature selection 10 model.

C2 Features 

Extractor
SVM Classifier

Input Test Image

Training C2 
Features

Classification 
Result

Selected patches

Fig. 2 Diagram of the object recognition system applied to every input test image.

§Data available online at http://www.vision.caltech.edu/Image_Datasets/Caltech101/ [retrieved 2014].
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A. Comparisons of Different Feature Numbers

To investigate the contribution of patch number on performance of accuracy and speed, all samples of categories are randomly divided
into three equal parts (i.e., training set, validation set, and test set). In our experiment, each set of different categories is assigned
with the same number of samples. As some categories in the Caltech 101 database contain very few samples, we adopt the eclectic strategy.
Forty positive samples and 40 negative samples are selected at random as the training set. Thirty other positive samples and 30 other
negative samples are randomly selected as the validation set. Thirty positive and negative samples, respectively, are selected in the remaining for
testing.

To conduct this experiment, we first set the different patch numbers to be 10, 50, 100, 200, 500, and 1000. Each patch contains four orientations
and corresponds to fourC2 units. The results are averaged over five independent trials. Figure 4 shows the performance of accuracy and speed of
different feature numbers. The accuracy performance ismeasured by equal error rate (EER), whichmeans the classification rate in all experiments
of this paper. The performance of speed is the computation time of extracting C2 features of one test image.

Figure 4 shows the comparisons among the six categories. Performances are still satisfactory with a small number of features. Even though the
performance could be improved generally with more features or patches, the time is increased approximately with an exponentially expandation.
For example, the BIM takes approximate about 1.8 s to deal with an image in the case of selecting 10 patches and about 18 s in the case of selecting
1000 patches. The large computing time is the bottleneck for application, especially when there are a large amount of test images. Figure 4 shows
that the performances of speed are almost the same among different categories with an authorized number of features. However, the classification
rates have some differences between categories. This is because the six categories selected from the Caltech 101 database have different
backgrounds and angles of rotation.

B. Evaluation of Our Proposed Model

To evaluate our proposed model and investigate the effectiveness, a series of experiments are conducted on the aforementioned six categories.
For feature selection, 1000 initial patches are used in our experiments. In the fitness evaluation part, we setwa � 0.8 andwf � 0.2, wherewa is
the important adjustable parameter, and the test on the influence of differentwa for feature selection and classification rate is conducted in the next
section. As a limit of training time, the maximum number of iteration is set to 1000.

Figures 5 and 6 show the performances of our optimization method among the six categories. Figure 5 gives the evaluation of our optimization
method among three categories: fighter, helicopter, and ketch. The first row shows curves of the fitness value in theBBOalgorithm, and the second
row shows curves of accuracy (classification rate) and length (number of selected patches). The fitness value is theweighted sum of accuracy and
length. A lower fitness value usually results in better optimization results. Figure 6 shows the experimental results of the other three categories:
motorbike, airplane, and car. All the results show that the accuracy increases along with reducing the patch number using our model, and some
jumping and high gradient change of the curves exist because of the probabilistic operation inBBO. The fitness curve has the convergent tendency
with the iteration limited to 1000. In our experiment, about 20% of the patches are selected with high accuracy in 1000 iterations, which is
sufficient for the recognition system to obtain a stable performance.

Fig. 3 Sample images from Caltech 101 database.

a) b)
Fig. 4 Comparisons of classification rate and computation time among different categories.
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A performance comparison between our model and the original BIM is shown in Table 1. Three measures (i.e., number of features, time of
extracting C2 features per test image, and classification accuracy) are considered. Our model can automatically obtain a number of selected
features with a tradeoff between accuracy and speed. With the same feature number, a higher recognition rate can be obtained with our model
because of reduction of a large amount of redundant patches. A large amount of time is needed in the original model to acquire a high accuracy,
which is impracticable for fast object recognition.

C. Evaluation of Weighting Parameters

In the feature selection procedure, the number of patches is evaluated by the weighted sum of accuracy and speed. An important adjustable
parameter is wa, so we test the influence of different weights for recognition accuracy. The results are shown in Fig. 7 and Table 2. For
all six categories, fitness functions with (wa � 0.95, wf � 0.05) have the minimum fitness value. Higher weight associated with accuracy can
bring a better EER in some cases, whereas a smaller number of selected features can be obtained with a higher weight associated to the patch’s
length.

D. Comparisons of Optimization Methods

To investigate the effectiveness of BBO for feature selection, we perform a comparison between BBO and another optimization algorithm.

a) Curves of fitness value in BBO algorithm for fighters b) Curves of accuracy and length for fighters 

c) Curves of fitness value in BBO algorithm for helicopters d) Curves of accuracy and length for helicopters 

e) Curves of fitness value in BBO algorithm for ketches f) Curves of accuracy and length for ketches 

Fig. 5 Evaluation of our optimization method among three categories: fighter, helicopter, and ketch.
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In this experiment, binary particle swarm optimization (BPSO) is introduced [25,37]. BPSO is an extended version of the basic PSO algorithm
for optimization of the discrete binary combinational problem. The particles take the values of binary vectors of encoding length and the velocity
corresponds to the probability of 1 bit to take the value 1. The position of each individual particle in BPSO is given in binary form, and the changes
in particle velocity reflect a change in the probability of finding the particle in one state or another.

The basic parameters of the BIM and fitness function are set to be same in the experiments. We select the weighting parameters in both
fitness functions with (wa � 0.95, wf � 0.05) and use 1000 initial patches. Figure 8 and Table 3 show the comparisons of BPSO and BBO
for feature selection with the BIM. In Fig. 8, BPSO has a fast convergence speed and achieves steady state in about 100 iteration rounds.
The computational complexity of BPSO is on the order of O�NX�, where N is the number of initial particles and X is the number of iterations
to reach the global optimum for PSO. Let F � O�F� be the computational complexity of the objective function and D be the dimension
of function values. Then, the expected number of generations for the BPSO to optimize the function is O�ND log N�. Thus,
the computational complexity of BPSO is O�N2D log N�, which is lower than that of BBO. Even though BPSO has fast convergence
speed, BBO has a lower fitness value and shows better performance than BPSO. In Table 3, comparisons of a number of selected features
and recognition accuracy between two methods are given. In the same case, BBO obtains a smaller number of selected features with little
better accuracy.

a) Curves of fitness value in BBO algorithm for motorbikes b) Curves of accuracy and length for motorbikes 

c) Curves of fitness value in BBO algorithm for cars d) Curves of accuracy and length for cars 

e) Curves of fitness value in BBO algorithm for airplanes f) Curves of accuracy and length for airplanes

Fig. 6 Evaluation of our method among three other categories: motorbike, airplane, and car.

440 DUAN AND DENG

D
ow

nl
oa

de
d 

by
 B

E
IH

A
N

G
 U

N
IV

E
R

SI
T

Y
 (

C
N

PI
E

C
 X

i'a
n 

B
ra

nc
h)

 o
n 

A
ug

us
t 2

0,
 2

01
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.I
01

01
22

 



E. Comparisons with Scale-Invariant Feature Transform Features

We also compare our model with several state-of-the-art approaches based on scale-invariant feature transform (SIFT) features [38] on the
Caltech 101 data. The SIFT features, on the basis of appearance at particular interest points, are local image features, of which the description has
been used successfully in object recognition. Bosch et al. proposed Pyramid of Histograms of Orientation Gradients (PHOG) [39] by computing

a) b)

c) d)

e) f)

Fig. 7 Comparisons of different weight parameters among six categories.

Table 2 Experimental comparisons of different weight parameters on six

categories

wa � 0.80, wf � 0.20 wa � 0.95, wf � 0.05 wa � 0.50, wf � 0.50

Feature number EER Feature number EER Feature number EER

Fighter 220 0.967 245 0.900 186 0.900
Helicopter 210 0.917 217 0.917 173 0.917
Ketch 174 0.900 185 0.917 131 0.883
Motorbike 171 0.983 163 0.983 145 0.983
Car 168 0.983 151 0.983 155 0.967
Airplane 166 0.967 259 0.967 152 0.983
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dense multiscale SIFT features together with a spatial pyramid kernel. Their best experimental performance was 77.8% for classification of
Caltech 101. Lazebnik et al. established a spatial pyramid framework [40] for recognizing scene categories and achieved a high recognition rate on
the Caltech 101 database with 30 training images and 50 test images per class. In this paper, the PHOG is trained on 15 training images per class

a) b)

c) d)

e) f)

Fig. 8 Comparisons of BPSO and BBO for feature selection among six categories.

Table 3 Experimental comparisons of BBO and BPSO for feature selection on six categories

BBO BPSO

Feature number EER Feature number EER

Fighter 245 0.900 319 0.900
Helicopter 217 0.917 319 0.917
Ketch 185 0.917 314 0.917

Motorbike 163 0.983 307 0.983
Car 151 0.983 279 0.967

Airplane 259 0.967 275 0.950
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and tested with the rest images on Caltech 101. Lazebnik et al.’s spatial pyramidmodel is trained and tested on the same sets as what we have used
in our model (i.e., 40 images for training and 30 images for testing per class).

Table 4 summarizes the performance of our model compared with other state-of-the-art approaches. The performance measure is the
classification accuracy. Results obtained by our model are comparable and superior to other approaches on the chosen Caltech 101 datasets. Our
model can achieve an average recognition rate of 95.3%, which is higher than PHOG (78.3%) and spatial pyramid (87.8%) on these datasets.

To investigate the performance of our model on different databases, we also provide the comparison results on another popular database. The
Caltech 256 database¶ contains 256 object classes plus a background class and 30,608 images. For the need of aerial reconnaissance in UAVs, we
also chose the objects with potential significance for reconnaissance, such as the radio telescope in Fig. 9.

For theCaltech 256 database,we adopt the same strategy used forCaltech 101.Ourmodel outperforms other approaches in all classes, as shown
in Table 5. Our model can achieve above 85% average recognition rate on these classes from Caltech 256: much higher than PHOG and spatial
pyramid. Compared to the original BIM, our model obtains better results with a higher recognition rate and smaller feature numbers (i.e., about
10%of the patches are selected). The comparison results in Table 5 verify the effectiveness of feature selection based onBBO in both accuracy and
speed on computer vision tasks.

Finally, we report comparison results on the aircraft dataset in the view of aerial surveillance. Figure 10 shows sample images that contain
aircraft at the airport and background. The experimental results are shown in Table 6 with comparison with the state-of-the-art approaches. The
recognition rate of ourmodel is 93.3% and higher than the others. By using the feature selection based onBBO, the number of selected features for
training is about 50. The small number of features can help can help reduce much more computational time than the original BIM.

Table 4 Performance results and comparison with

several approaches on Caltech-101

Our model PHOG [39] Spatial pyramid [40]

Fighter 0.967 0.765 0.767
Helicopter 0.917 0.788 0.833
Ketch 0.900 0.841 0.883
Motorbike 0.983 0.771 0.967
Car 0.983 0.818 0.867
Airplane 0.967 0.747 0.950

Table 5 Comparison of several approaches on Caltech 256

Our model Original BIM PHOG Spatial pyramid

Radio telescope 0.833 0.816 0.788 0.783
Speedboat 0.850 0.767 0.750 0.700
Touring bike 0.983 0.883 0.850 0.900

Table 6

Comparison results on

the aircraft dataset

Model Aircraft

Our model 0.933
Original BIM 0.817
PHOG 0.800
Spatial pyramid 0.883

Fig. 9 Sample images of radio telescope and speedboat from Caltech 256 database.

¶Data available online at http://www.vision.caltech.edu/Image_Datasets/Caltech256/ [retrieved 2014].
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F. Future Work

The proposed biologically inspired model with feature selection based on BBO is a positive strategy for the purpose of reducing features for
training and lowering computational costs in testing. We have also tried to apply the other improved BBOmodels to template matching [36,41].
However, our proposed model requires more time to complete the training part. Time consumption is also the bottleneck for many biologically
inspired models [42]. The processing speed of our model is the main limitation in real-world applications, such as the analysis of video. Another
aspect in which we would like to further improve our model is to investigate the satisfactory explanation of the superiority of human-level
recognition system.

IV. Conclusions

In this paper, a novel object recognition approach based on the BIM andBBOhas been proposed. To solve the limitation of randommechanism
in the BIM, a feature selection scheme based on BBO is proposed. By choosing a proper set of patches, the scheme can give high accuracy of the
classification rate. Experiments on six categories from the Caltech 101 database have demonstrated that the model performs well in both
recognition accuracy and extraction time. The feature selection scheme imposes BBO as an efficient optimization procedure and works on the
patch layer. It takes about 1 h to complete the whole training process and obtain the optimized patches. However, this bioinspired computing
method optimizes themodel bemore adaptive. It can also greatly reduce the redundant patches, and hence speed up the test processes significantly.
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