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Abstract: The SWIPE project (Space Wireless Sensor Networks for Planetary Exploration) aims to 

design a wireless sensor network (WSN) , which consists of small wireless sensor nodes dropped onto 

the Moon surface to collect scientific measurements. Data gathered from the sensors will be processed 

and aggregated for uploading to a lunar orbiter and subsequent transmission to Earth. In this paper 

efficient data processing/fusion algorithms are proposed, the purpose of which is to integrate the 

scientific sensor data collected by the WSN, reducing the data volume without sacrificing the data 

quality to satisfy energy constraints of WSN nodes operating in the extreme Moon environment. The 

results of an extensive simulation experiment targeted at the SWIPE lunar exploration mission is 

reported, which quantifies the performance efficiency of the data processing scheme. It is shown that 

the proposed data processing algorithms can reduce the WSN node energy consumption significantly, 

decreasing the data transmission energy up to 91%. In addition, it is shown that up to 99% of the 

accuracy of the original data can be preserved in the final reconstructed data.  
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1. Introduction 

Over the past few decades Wireless Sensor Networks (WSNs) have been widely utilised as a low cost 

solution to explore difficult-to-access areas in commercial applications on Earth. For instance, WSNs 

have been used to observe physical or environmental conditions in uninhabited areas for the purposes 

of environmental monitoring, tracking objects, forest fire or natural event detections [1-3]. The Space 

Wireless Sensor Networks for Planetary Exploration (SWIPE) project is funded under the space 

programme of the European Research Framework FP7 [4]. The SWIPE concept is based on using 

hundreds or thousands of small wireless sensors deployed onto the surface of a planet of interest, 
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ensuring uniform and sufficient area coverage. Since WSNs are composed of a large number of sensor 

nodes, placed in different locations, they can monitor large geographical areas remotely, overcoming 

limitations of landers and rovers in carrying out in-situ measurements on planetary surfaces [4]. An ad 

hoc network will be established among the sensor nodes to gather data about the planetary 

environment for the purpose of monitoring and understanding physical phenomena. Data fusion and 

processing techniques will be used to combine readings from different sensors. The processed data 

should provide an efficient representation of the original sensor readings, despite the reduction of the 

data volume compared to the raw data [5]. Main goal of the data processing work presented in this 

paper is to save energy via reducing the amount of data transmitted across the network, while 

preserving the accuracy of the original data [5]. In this paper, the design of the data fusion/processing 

algorithms is carried out at three different WSN levels: node, cluster head (CH) and data sink (DS) 

level, whereby specifically designed techniques are employed to handle the data generated at each 

level. In addition, the designed algorithms are optimised for the particular type of data measurement.  

The paper starts by reviewing related work in section 2, followed by a description of the data 

processing and WSN network topology in section 3. The proposed data fusion architectures and 

algorithms at node and network level are introduced in sections 4 and 5, respectively. Complexity 

analysis of the algorithms is presented in section 6. An outline of the validation experiment is given in 

section 7. Simulation results demonstrating the proposed algorithms are presented in sections 8 and 9. 

Finally, conclusions are drawn in section 10. 

2. Related work 

Researchers have recently extended the concept of WSNs to space applications [6, 7], although a 

WSN has not yet been deployed on another planet. Bringing WSNs to space enables advanced 

exploration missions, such as characterisation of planetary environments [4], lunar water detection [8]. 

However, collection of data generated from sensor nodes, which are distributed over large areas, 

involves considerable data traffic across the network. For example, the data exchanged every 2.6 

hours in a SWIPE WSN of a medium size will amount to around 9 MB, coming to 2.4 GB of data in 
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one Moon synodic cycle, which will give rise to high energy consumption. Recent research work [9-

11] has shown that the use of data fusion technology can greatly reduce the energy consumption of 

WSNs. 

Sensor data fusion can be carried out at data, feature and decision level. Appling statistical methods at 

data level [12], for example, arithmetic mean [13], standard deviation (SD) and maximum or 

minimum values is the most commonly used data fusion technique. The main idea is to use a statistic 

value to represent a large data set, employing less data. Feature and symbol fusion techniques are 

widely used in object recognition applications [14] to classify objects in fused raw data obtained from 

sensors or databases. However, these approaches may not be suitable for applications that require high 

data accuracy since the classification process can compromise the quality of the original data. 

Inference techniques are used in decision level fusion with Bayesian and Dempster-Shafer being the 

most popular inference methods [15, 16]. In addition, fuzzy logic and neural networks based data 

fusion approaches have successfully been used [17] for accurately monitoring and tracking objects in 

WSNs. However, decision level fusion techniques cannot be employed when a reconstruction of the 

raw data is required, as the original information is lost during the processing.  

3.  WSN data processing: overview and objectives 

The SWIPE WSN node sensors, which are housed and controlled by the payload module, collect 

housekeeping and scientific data. The housekeeping sensors are used to monitor the internal health 

status of the node through two parameters: temperature and residual battery charge. The scientific data 

for the SWIPE Moon exploration mission are collected by radiation, thermal, dust and irradiance 

sensors [18] as follows: 

 Three surface thermal sensors will be situated outside the node structure. Once the node is 

activated, they will provide thermal measurements of the lunar surface. 

 Three multispectral irradiance sensors, sensitive to the visible (VIS), infra-red (IR) and 

ultraviolet (UV) spectral bands (i.e. 580 nm, 950 nm, and 300 nm) will measure the lunar 

illumination environment. They will provide a total field of view of 360º. 
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 Radiation sensors, capable of measuring the Total Ionizing Dose (TID) and counting the 

Single Event Upsets (SEUs) at four energy threshold levels (i.e. 0.9 Mev•cm
2
/mg, 9.75 

MeV•cm
2
/mg, 30 MeV•cm

2
/mg and 60 MeV•cm

2
/mg)  will be situated on the top of the node. 

 A dust sensor measures the dust deposited over a horizontal surface during a certain exposure 

time to estimate the dust deposition rate as a function of the solar incidence.  

The data processing/fusion architecture of the SWIPE WSN node is shown in Figure 1. 
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Figure 1 – Overall data processing/fusion architecture of the SWIPE node [18]. 

 

The data fusion module in Figure 1 consists of local and network data fusion blocks as well as a data 

aggregation block. The purpose of the local data fusion block is to process the generated locally 

housekeeping and scientific data, while the network data fusion block prepares the processed local 

data and network relay data packets for transmitting to other nodes. The data aggregation block 

packages the different types of sensor data and the network relay data in a single data packet to be 

sent to the network, as detailed in [19]. Housekeeping data fusion is performed on a decision level. A 

Fuzzy Inference System (FIS) is developed [18], which fuses the temperature and the remaining 

battery level to evaluate the node status, which is reported and stored inside the node for management 

purposes. Any redundant information is removed from the scientific data in the data fusion module 

before transmission to the network. This paper discusses mainly the processing of the scientific data. 
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Figure 2 shows an instance of the SWIPE network [20], which contains regular nodes (RNs), cluster 

heads (CHs), data sinks (DSs) and exit points. 
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Figure 2 – Example of the SWIPE network topology. 

 

The regular nodes, referred to as WSN sensor nodes, perform the following functions: (i) acquire 

relevant sensor data from the environment, (ii) process, fuse and aggregate the sensed data and (iii) 

act as relays for other nodes. The data sink nodes are responsible for collecting, processing and 

reporting data generated by the WSN nodes. The exit points have satellite communication capability 

and transmit the data collected by the DSs to the orbiting satellite. 

The WSN nodes are connected with each other forming a multi-hop physical topology. Over this 

constrained topology a dynamic virtual backbone (VB) is instantiated (see Figure 2) establishing 

network connectivity and providing redundancy of paths to DSs for robustness and fault tolerance 

purposes [21]. The network consists of a number of clusters, which are connected and formed via the 

dynamic virtual backbone by way of setting up a Connected Dominating Set (CDS). Clustered 

topologies are useful from a data aggregation and fusion perspective, helping to reduce the flooding of 

data and control packets in the network [22]. In addition, the distribution of the routing load among 

the WSN nodes (i.e., the role of relaying the data of neighbouring nodes) could also reduce the 

processing burden and the power consumption of the individual node.  

This paper presents a feasibility study on the data processing in the SWIPE WSN, which was carried 

out prior to the actual manufacturing of the nodes and was aimed to inform the implementation 
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process.  Therefore, no physical parameters such as targeted power budgets were available. The final 

outcome of the SWIPE project is an Earth bound demonstration based on a downsized WSN 

prototype to test the node design and draw conclusions. No flight qualified hardware is aimed at. The 

objectives of the data processing work are mostly derived from the open literature, as follows. 

Energy efficiency is an important goal that should be considered when designing the node architecture 

and data processing algorithms of WSNs [23] for planetary exploration.  This is because such WSNs 

operate in unfriendly and unattended environments, where it is impossible to access or replace dead 

nodes. The power consumption used for data transmission dominates the power consumption of a 

WSN sensor node and it is proportional to the size of the data [24]. Therefore, the overall energy 

consumption could be reduced significantly by reducing the data transmission volume in WSNs [5]. 

Data fusion has a positive impact on the overall energy performance of a WSN since it reduces the 

transmitted data volume [24]. This strengthens the rationale for aggregating the data as much as 

possible in the data source-sink(s) path. A key to the WSN energy saving is also the scheduling 

algorithm [25], which selects an optimal subset of sensors that are allowed to measure/transmit data at 

a certain time based on the current health status of the nodes to be scheduled. In addition, the WSN 

energy performance is dependent on both the selected hardware platform and the data processing 

algorithms.  

The proposed data processing techniques are also aimed at minimising the transmitted data size as 

well as at maintaining a reasonable level of accuracy of the collected data. The sensor data accuracy is 

important for the understanding of the physical environment, as errors may affect research findings 

[26]. The available processing power and memory size limitations of the on-board computer (OBC) 

impose restrictions on the use of computationally intensive data processing algorithms, which have to 

be taken into account.  

To reduce the negative effects of losing measurement accuracy, each processing algorithm is 

specifically tailored to the particular type of scientific data. For instance, some sensor data, e.g. 

Thermal, Irradiance, TID are processed using the Kalman filter, as shown in section 4.1, section 4.2 
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and section 4.3.1 respectively, where in addition to the statistical analysis, an evaluation of the 

accuracy of the individual sample data of the processed signal is carried out. However, some of the 

sensor data, e.g. SEUs, are statistically analysed, as shown in section 4.3.2. This is due to the nature of 

SEUs, which are caused by high energy particles such as electrons and protons, resulting from solar 

activities and other effects.  

In order to meet the above objectives, the proposed data processing/fusion algorithms are performed 

at three levels:  

(i) Local data processing /fusion (node level). 

(ii) Network data processing/fusion (network level).  

(iii) Global data processing/fusion (sink level). 

The scientific sensors are scheduled to take readings with different measurement frequencies and 

work independently. Thus, the local data processing algorithms are adapted to each scientific sensor 

data, balancing accuracy, transmitted data volume and computational complexity. No processing and 

reduction of the dust sensor data will be carried out by the SWIPE node due to the low amount of data 

generated by the dust sensor as well as the inability to simulate test data as a result of the lack of 

Lunar dust information and statistics (in terms of both order of magnitude and variation profile).  

The nodes in the SWIPE WSN are organised and connected with each other forming a multi-hop 

physical topology, as shown in Figure 2. Within a cluster, the data is statistically analysed in the CH 

(e.g. mean, maximum or minimum values, etc.), aiming to remove non-relevant information and to 

report the statistics to the network. This process can significantly reduce the size of the transmitted 

data, but it can also refine the information content of the collected data. The Kalman filter is also 

applied on the statistically analysed data generated at CH level in order to further reduce the data 

transmitted to the network. Data generated from each CH are then aggregated during each relay to the 

sink node, where a complementary data fusion based approach is used to fuse the data from different 

CHs together with the local representative information to complement the data fusion process. 
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 The DS node has the same functions as the CH nodes, however, in addition, it stores all the data 

transmitted from the CHs in the WSN, performs statistical analysis on the data and reports the 

processed results to the exit point. The DS nodes should have the same hardware capabilities as the 

CHs and RNs, as they hold a global view of all the CHs in the WSN. The data sink election algorithm 

proposed in [22] ensures that a new DS is elected if the current DS runs out of battery charge. In 

addition, reports of the measurements could be produced by a report unit upon users’ requests. 

Although the measurements are performed continuously, the reporting unit only reports the relevant 

data, which means that the sink node only sends reports to the exit point node if it differs from the last 

transmitted data information. In this way, the exit point node would gather exactly the same 

information as with the classical approach described in [27], but will receive less reports saving 

energy.  

4. Scientific data processing algorithms at node level 

 The data fusion architecture for the scientific data at node level is illustrated in Figure 3. 
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Figure 3 – Overall scientific data processing architecture for a SWIPE node. 

 

As shown in Figure 3, the scientific data is processed separately in a dedicated local data processing 

module, specifically designed to handle a particular data category, thus optimising the performance of 

the data processing accordingly. Once the data is processed in all the processing modules, it is sent to 

the data aggregation module to be packed together with a set of unique identifying labels (e.g. time, 
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location, etc.). In the data aggregation module, the different types of sensor data and the network relay 

data are packed in a single data packet to be sent to the network.  

4.1 Thermal data 

The lunar surface temperature is the most well-known parameter of the Moon environment. The 

thermal conditions on the Moon are extremely challenging. Because of its slow rotation, it can 

essentially come to its blackbody equilibrium temperature. The temperature reaches its peak (near the 

centre of the near-side disc) around full Moon, and plunges to its coldest just before lunar sunrise 22 

Earth days later [28]. The temperature variation mainly depends on the latitude of the site and the 

position of the Sun. In general, the lower is the latitude the higher is the temperature during day time. 

Typical maximum surface temperature (local noon) is 100-120 ºC [28]. Just before sunrise, the 

temperature can be -150 ºC or even lower [28]. During the Moon night period, the temperature 

variation is much lower until just before sunrise, i.e. the temperature does not change significantly 

after sunset [28].  

In this paper, the thermal data are processed using a Kalman filter [29], which is an algorithm that 

uses a series of measurements obtained over time that may contain noise or other random variations 

(e.g. inaccuracy factors). The algorithm produces estimates of unknown variables that tend to be more 

precise than those based on a single measurement alone [29]. The reason for that is that the Kalman 

filter operates recursively on streams of noisy input data to generate a statistically optimal estimate of 

the underlying system state.  In addition, Kalman filtering only requires the previous time step and the 

current measurement to compute the estimate of the current state, which allows the use of smaller 

memory buffers to store the data. In contrast to other batch estimation techniques, no history of 

observations and/or estimates is required, which makes the Kalman filter particularly suitable for real-

time applications.  

Typically, the Kalman filter has two distinct phases: predict and update. In the prediction phase, it 

uses the state estimate from the previous time step to produce an estimate of the state at the current 

time step. However, only the estimate of the state at the current time step is employed, rather than the 

measurement data obtained from the current time step. Therefore, in the update phase, the 
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current a priori prediction is combined with the current observation information to obtain a 

posteriori state estimate.  

Predict phase:  

1) Calculate a priori state estimate:  
1|11|

ˆˆ
  kkkkk xFx       (1) 

2) Calculate a priori estimate covariance: k
T

kkkkkk QFPFP   1|11|     (2) 

Update phase: 

3) Calculate measurement residual:  
1|

ˆ~
 kkkkk xHzy       (3) 

4) Calculate residual covariance: k
T
kkkkk RHPHS  1|       (4) 

5) Calculate optimal Kalman gain: k
T
kkkk SHPK /1|        (5) 

6) Update the posteriori state estimate:  
kkkkkk yKxx ~ˆˆ

1||  
     (6) 

7) Update the posterior estimate covariance:  
1|| )(  kkkkkk PHKIP     (7) 

 

where Fk is the state transition model, which is applied to the previous state 
1|1

ˆ
 kkx ; Hk is the 

measurement model which, maps the true state space into the observed space and Rk is the covariance. 

1|
ˆ

kkx  and 1|1
ˆ

 kkx  are the a posteriori state estimate at time k-1 given measurements up to and 

including at time k and k-1 respectively; 
kkP |
 and 

1| kkP  are the a posteriori error covariance matrix for 

time k and k - 1; Qk  and Rk  are the noise covariance matrices. 

The following initial parameter values for the thermal data Kalman filtering are used in this work:    

Fk = 1;  Hk = 1; Rk = 0.25; P0 = 1; X0 = Z0; Qk = 4×10
-4

. They are chosen empirically based on 

experimental tests, in which these values have achieved the best results. The equations (1)-(7) can 

then be simplified as follows: 

1|11|
ˆˆ

  kkkk xx       (8) 

4
1|11| 104 
  kkkk PP       (9) 

1|
ˆ~

 kkkk xzy       (10) 

)25.0/( 1|1|   kkkkk PPK     (11) 

kkkkkk yKxx ~ˆˆ
1||  

     (12) 

1|| )(  kkkkk PKIP       (13) 



11 

 

As it can be seen from equation (12), the value of the updated estimate is mainly determined by the 

term kk yK ~ , and the result of this is usually a small number (i.e. a small data size resulting in a lesser 

amount of storage space), as the difference between the current measurement value and the estimate is 

minor in continuous time. In accordance with this, the data size could be reduced if the RN only 

transmits its current value of kk yK ~  to its CH,  which can then update the current estimate 
kkx |

ˆ  by 

accumulating the RN’s initial estimate 0x̂  using equation (12). Figure 4 shows an example of the 

thermal data transmission from time step t0 to tk. 

CHRN
…...

t0t1t2t3tk

 

Figure 4 – An example of thermal data transmission between a RN and a CH from time step t0 to tk. 

 

In order to investigate the actual performance of the proposed method, the Kalman filter is tested with 

data samples based on the thermal data reported in [28]. The thermal data profile at latitude 0º is 

chosen in this test, assuming that the values are converted to decimal numbers using a 12-bit 

analogue-to-digital converter (ADC). In order to simulate a real scenario, 8% of Gaussian noise is 

added to the original thermal signal, as shown in Figure 5(a) and Figure 5(b).  

In Figure 5, the sampling time is every 10 mins, and there are a total of 4321 samples during one 

Moon synodic cycle. Figure 5(c) shows the processed thermal data when using the proposed Kalman 

filtering approach. By comparing the two graphs in Figure 5(b) and Figure 5(c), it can be concluded 

that the graph, which resulted from the Kalman filter, is significantly smoother than the original 

noised thermal signal, i.e. the noise added to the original signal has been removed in the processed 

signal. On the other hand, the shape of the processed signal is similar to the raw measurements graph 

in Figure 5(a), which suggests that the accuracy of the Kalman filter results is satisfactory. 

Quantitative analysis of this comparison is reported in section 8.1. 
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Figure 5 – Thermal data: (a) original raw data, (b) noised data and (c) processed data. 

 

Another important factor when evaluating the algorithm performance is the required size of the 

transmitted data. The variation of the update of the Kalman estimate kk yK ~  , which is the main data 

that is required to be transmitted to the CH, is plotted in Figure 6 over one Moon synodic cycle . 
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Figure 6 – (a) Updates of the Kalman estimate (floating point). (b) Histogram of the updates of the 

Kalman estimate 

 



13 

 

It can be seen from Figure 6(a) that the values of kk yK ~ are changing significantly during sunrise and 

sunset time, however, during the rest of the time, they are changing slowly, which implies that the 

estimates of the Kalman filter are close to the actual measurements, resulting into a low data traffic 

between the RN and the CH . This is confirmed by the histogram in Figure 6(b), which shows that the 

most frequent updates of the Kalman estimate have values of ‘0’, i.e. there is no need to transmit any 

data to the CH. The largest update value is ‘6’, but the total number of these values is much smaller 

than the number of the ‘0s’. This proves that the total transmitting data size would be much smaller 

than directly transmitting the original measurements. In order to further reduce the transmitted data 

size and the complexity of calculation, the updates of the Kalman estimates could be converted into 

their nearest integers, which will require less processing power and data storage. This is exemplified 

by Figure 7, which presents the same graph as in Figure 6 (a), but using integer representation. 
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Figure 7 – Updates of the Kalman estimate (integer). 

 

Figure 8(a) depicts the output of the Kalman filter, when the updates are represented as integers. 

Figure 8(b) shows that the difference between Figure 5(c) and Figure 8(a) is less than 0.04%. In 

general, the floating point based result is smoother than the integer based result, but it would require 

more memory space and transmission power. 
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Figure 8 – (a) Processed thermal data using the Kalman filter (integer).  

(b) Difference between the data samples in Figure 5(c) and Figure 8(a). 

 

4.2 Irradiance data 

The illumination sensor is designed to measure the incident irradiance at three different spectral 

intervals: one in the IR side of the spectrum, a second one in the UV range and a third one in the VIS 

range. Direct solar irradiance is the major source of irradiance on the Moon and other sources such as 

reflectivity are ignored. The illumination sensor is also designed to measure the irradiance in all 

directions, in order to achieve full 360º planar coverage. Each group of sensors (IR, VIS and UV) are 

mounted on each face of the SWIPE node, as illustrated in Figure 9. 

 

Figure 9 – Geometrical position of the three irradiance sensors on the WSN node [30]. 

 

The irradiance on the Moon surface consists of direct irradiance Edir and reflected irradiance Eref, 

however the latter is ignored due to the SWIPE irradiance sensor being designed to target the former. 

Hence, the total irradiance measurement is the total sum of the irradiance sensed on each face of the 

node (i.e. Face 1, 2 and 3), i.e.  Etotal = Edir1 + Edir2 + Edir3.  
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Similar to the thermal data, the irradiance data can also be processed using the Kalman filter. Except 

of the value of Rk = 0.15, the rest of parameters of the Kalman filter are the same as the ones stated in 

equations (8)-(13). In the same way, only the rounded integer values of the updates of the Karman 

estimate kk yK ~ , are sent to the CH. The main difference is that there are three different spectral 

measurements generated from each irradiance sensor, hence, the spectral measurements are added 

together based on their wavelengths. These form the inputs to the Kalman filter as below: 





n

i

iEE
1

300300 )(      (14) 





n

i

iEE
1

580580 )(      (15) 





n

i

iEE
1

950950 )(      (16) 

where E300, E580, and E950 are the total irradiance values for the wavelength 300 nm, 580 nm, and 950 

nm, respectively; i is the face number, n is the total number of faces on the node (i.e. n=3). 

Data samples from [31] are also used to evaluate the Kalman filter, which are converted to decimal 

numbers assuming a 12-bit ADC. 8% of Gaussian noise is added to the original irradiance signal as 

well. Comparison of the original signals and the processed irradiance signals are shown in Figure 10. 
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Figure 10 – Comparison of the original and processed irradiance signals. 
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By visually comparing the original and processed signal for each wavelength category, it can be seen 

that the shapes of the processed signals are smoother than the shapes of the noised original signals and 

follow the shapes of the original signals exactly.  

4.3 Radiation data 

In the SWIPE node, the radiation sensor consists of two packages: Total Ionising Dose (TID) and 

Single Event Upsets (SEUs). Contrary to the thermal and irradiance sensor data, the behaviour of the 

radiation data on the lunar surface is not well investigated. This is especially true for the SEU data, 

which is based on random events driven by solar activity and Galactic Cosmic Rays (GCR), therefore 

SEU rates depend on real measurements. No radiation statistics for the lunar surface was found in the 

open literature at the time of carrying out this research and, in particular, no information was available 

on how the radiation data vary during a Moon synodic cycle. Therefore, background knowledge on 

the nature of TID and SEUs was used to simulate a possible radiation scenario for the Moon. The TID 

testing data was generated based on TID measurements obtained from the Next Generation Space 

Telescope (NGST) mission over several years [32], applying an accumulative model to organise the 

data into the designed measurement range of the TID sensor. Similarly, the most relevant SEU model 

proposed in [33] was employed to generate the testing data for the SWIPE scenario. 

Usually, TID can be measured in terms of the absorbed ionising dose, this is due to electrons and 

protons that can be trapped or absorbed by electronic devices, which can be treated as a measure of 

the energy absorbed by the matter. Based on that, an example of the possible variation of TID during 

one Moon synodic cycle is presented in Figure 11. Different from the thermal and irradiance data, the 

value of TID shall continually increase along with the increase of the mission time. Figure 11 shows 

the total samples covered in one Moon synodic cycle with a sampling period of 5 mins, where the TID 

measurement range is designed to cover TID from 25 to 50000 Rad. 



17 

 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

1000

2000

3000

4000

5000

6000

7000

Samples of TID

T
ID

 (
R

ad
)

 

Figure 11 – Possible variation of TID data during one Moon synodic cycle. 

 

It must be noted that the TID rate used in this paper (Figure 11) changes much faster than the actual 

measured one, obtained from the Lunar Reconnaissance Orbiter [34]. However, the TID processing 

results are still valid, as the rate in Figure 11 is qualitatively the same as the one reported in [34] and, 

in addition, it is better suited to the measurement range of the SWIPE TID sensor. In fact, should the 

actual slower changing TID rate in [34] have been used, the performance of the proposed TID data 

processing would have been much higher, which strengthens the findings of this study.  

In general, an SEU is a change of the state of a 1-bit memory cell, or a bit-flip, which is caused by 

ions or electro-magnetic radiation striking a sensitive part of an electronic device. In other words, the 

number of the SEUs depends on the sensitivity of the tested material and the probability of the 

striking event [33]. The measured cross section is defined as the ratio of the number of upsets to the 

particle fluence, which is a function of the particle energy in terms of the Linear Energy Transfer 

(LET). The sensitive volume is the sensitivity of a device in an event of an ion striking, which 

requires assumptions about the device construction. To determine the device error rate, the cross 

section and sensitive device volume are integrated together with the particle LET spectrum.  The 

particle LET spectrum for GCR ions hydrogen through uranium is used in this study for generating 

the SEU rate [35]. 
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In the SWIPE node, the SEU sensor is based on digital shift registers, where four identical digital shift 

registers (128b) with different susceptibility to SEUs are designed to count the number of SEUs, 

happening every 5 minutes. The four levels of susceptibility are specifically designed to measure 

SEUs for four different LET levels. Examples of cross sections for each threshold level are shown in 

Figure 12. 
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Figure 12 – Examples of cross sections for each LET threshold level. (a) 0.9 MeV•cm2/mg; (b) 9.75 

MeV•cm2/mg; (c) 30 MeV•cm2/mg; (d) 60 MeV•cm2/mg. 

 

A series of random LET values are generated from ‘0’ to 100 MeV•cm2/mg, which are then used to 

generate the number of SEUs by applying the following equation [33]: 

iii tsLETfLETCS  )()(     (17) 

where Si denotes the number of SEU events for the ith
 LET threshold; Ci denotes the cross section 

function of the ith
 LET threshold; f denotes the LET fluence function; s, t and θ are the area of the 

sensor chip, measurement period and chip sensitive volume, respectively. 



19 

 

Since the TID and SEU data have completely different characteristics, they are processed separately. 

The processing of the TID data is similar to the processing of the thermal and irradiance data and the 

same Kalman filtering technique could be used. However, since an SEU could be caused by many 

factors, which not only include environmental factors (solar activity, GCR), but also have a close link 

with the used hardware as well the possibility of particles hitting the sensor. In this work, a set of 

random LET data have been used to simulate the SEU events, since an appropriate function of the 

particle energy (LET) that contains specific periods and locations related to a real SWIPE mission was 

not available. For this reason, it is not possible to use the Kalman filter to estimate the output results. 

Hence, algorithms based on statistical approaches will be employed with the aim to achieve high 

accuracy results from measurements performed in a certain period. 

4.3.1 TID data 

Apart of Rk = 0.01, the rest of the parameters of the Kalman filter are the same as the ones defined by 

equations (10)-(15), and similarly the rounded values of kk yK ~  are sent to the CH. 

The Kalman filter is applied to the data samples from Figure 11, converting them first to decimal 

numbers using a 12-bit ADC format. 8% of Gaussian noise is also added to the original TID values. 

Comparison of the original signal and the processed TID signal is shown in Figure 13. 

Samples of TID

T
ID

 (
D

ec
im

a
l)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

100

200

300

400

500

600

700

 

 

Original TID signal

Processed TID signal

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

1

2

3

4

5

6

7

8

9

10

Samples of TID

D
if

fe
re

n
ce

 (
%

)

(a) (b)  

Figure 13 – (a) Comparison of the original data and the processed TID data  

(b) Difference between the original and the processed TID data 
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It can be seen from Figure 13 that the difference between the original signal and the processed signal 

is decreasing during the mission period, which implies that the Kalman filter predicts the original 

signal quite accurately.  

4.3.2 SEU data 

The SEU data are processed using a statistical approach, whereby the original SEU data sequence is 

divided into fusion units. A fusion unit contains a group of SEU data samples and is represented using 

the arithmetic mean and standard deviation of its samples.  

Let Si denote the ith
 fusion unit in the original data sequence and each fusion unit has the same number 

of data samples n. The arithmetic mean µi and the SD σi of the data samples in each fusion unit are 

calculated by using the equations 



n
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2))((
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 , respectively. Hence, 

the range of the processed data sequence of the ith
 fusion unit, S’i , is S’i ∈{µi ± σi }. Figure 14 shows 

the results of the statistical analysis for the number of SEUs at each LET threshold.  
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Figure 14 – Statistical analysis of the number of SEUs at each LET threshold. (a) 0.9 MeV•cm2/mg; (b) 

9.75 MeV•cm2/mg; (c) 30 MeV•cm2/mg; (d) 60 MeV•cm2/mg. 
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It can be seen from Figure 14 that the processed SEU data is approximately normally distributed, 

which implies that the processed and the original SEU data have a similar distribution. Comparing 

with the Kalman filter based approach, this approach requires to send both the mean value and the SD 

value of each fusion unit to the CH, reducing the data transmission volume to 2/n of the original data. 

5. Data processing at network level 

As discussed in the section 3, the sensor nodes transmit the collected measurements to its cluster head 

node. This type of network architecture is comprised of a set of clusters, whereby clusters are directly 

connected together or in a multi-hop way as shown in Figure 15. Hence, data is aggregated into a 

single packet in each relay. 
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Figure 15 – Data aggregation flow in the SWIPE WSN. 

  

Data processing and fusion techniques are used to remove the redundant information from the relay 

data packets, generating representative information and minimizing the data transfer volume in each 

CH and DS(s). In addition, a data aggregation algorithm [19]  is used to aggregate the sensor data 

from the current CH together with other data from neighbour CHs into a single data packet, and the 

packet is sent to the next CH, which is on the path to the DS node, until the data packet reaches the 

DS node.  For instance, in Figure 15, the CH2 is the parent node of CH0 and CH1, however, the CH2 is 
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also the child node of CH3. The role of each node is reconfigurable, which is taken care of by the 

routing algorithm proposed in [20]. 

5.1 Data processing/fusion at cluster head level 

In general, a cluster is comprised of a set of regular nodes and each RN communicates with its CH 

under a predefined schedule. Once all the scheduled data is collected from the RNs by the CH, the CH 

performs data fusion on the collected measurements. Figure 16 shows an example of a data collection 

scheme in a cluster, where Pn(t) denotes a data packet between the RNn and the CH at a time step t. In 

each Pn(t), it includes all the measurements collected at time t by the sensors of RNn (e.g. thermal, 

irradiance, radiation, dust). 
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Figure 16 – Data collection scheme in a cluster, connected to 6 RNs.  

 

Once the CH receives the Pn(t) from the sensors of RNn, the data packet is then divided into five 

pieces of data, which correspond to the five different scientific measurement data, respectively. The 

five sensors’ data are stored in five specialised buffer tables sequentially, where each buffer is only 

used for one type of measurements. Following the same principle, the next received Pn+1(t) are 

unfolded and stored in the same buffers, but in a different location. Once all the scheduled data is 

received, the predesigned data fusion algorithms are used to fuse each type of measurement 

respectively. Finally, the processed data is stored in the sending buffer, to be sent to its parent node 

(i.e. the next CH on the path to the DS node) or wait for the packet(s) from its child node(s) (i.e. the 

CHs that need to use the current CH as an intermediate node to the DS node), if it is the parent node 

of any other nodes. 
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The same type of measurement data, generated from different RNs, is processed together, since they 

represent the same environmental event happening at the same time and are, therefore, bound to 

contain some redundant information. A lightweight sensor scheduling algorithm is used [25], which 

introduces dynamically variable schedules with the aim of fairly distributing the sensing tasks among 

the nodes based on a feedback on the current health status of the nodes to be scheduled. In addition, 

data fusion algorithms could be applied to the sensor data to further reduce the data size. One of the 

most commonly used statistical data fusion approaches is to calculate the arithmetic mean of the data, 

reducing significantly the data size to 1/N of the original data size, where N is the number of RNs in a 

cluster. From a data quality point of view, the statistical value represents the best measurement results 

within a small region. Since the RNs within the cluster are relatively close, the scientific sensor data 

should usually not vary significantly and the arithmetic means of each type of measurement data 

should be enough to represent the environment conditions in this cluster region (i.e. within the 

designed cluster radius communication of about 500 m maximum). However, it is worth noting that 

the raw measurements of the individual RN are still available in their CH, and this data can be 

retrieved upon users’ requests, if there is a specific interest in the particular cluster.  

In the following, we use thermal data as an example to introduce the proposed data processing/fusion 

approach. Table 1 shows an example of the buffer table for the thermal sensor data. 

Table 1 – An example of the buffer table for the thermal sensor data. 

 

Nodes t0 t1 t2 t3 … tk 

RN1 X0(1) 11
~yK (1) 22

~yK (1) 33
~yK (1) ... kk yK ~ (1) 

RN2 X0(2) 11
~yK (2) 22

~yK (2) 33
~yK (2) ... kk yK ~ (2) 

RN3 X0(3) 11
~yK (3) 22

~yK (3) 33
~yK (3) ... kk yK ~ (3) 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

RNn X0(n) 11
~yK (n) 22

~yK (n) 33
~yK (n) ... kk yK ~ (n) 

Fused data 

CHm )(0 mX  )(~
11 myK  )(~

22 myK  )(~
33 myK  ... )(~ myK kk  
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In Table 1, X0(n) represents the first measured thermal data from RNn and kk yK ~ (n) represents the 

update of the Kalman filter from regular node n at time step k. Therefore, the estimate of the 

measurement data from node n can then be calculated by 

 )(~)()(ˆ
1

0 nyKnXnx t

k

t

tt 


  (18) 

 

The processed thermal data Tt(m) for the CHm can then be calculated by 
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The Kalman filter is applied sequentially on Tt(m), using equations (8) – (13), obtaining the new 

updated estimate )(~ myK kk
for the CH, as shown in Table 1. Figure 17 shows an example of the 

received and processed thermal data in a CH. Figure 17 presents the processed data at a CH as well as 

the received data form the RNs, where the processed data overlaps quite precisely the graphs of the 

received data. 
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Figure 17 – An example of the received and processed thermal data in a CH.  

 

The irradiance and the TID sensor data is processed according to the same principle. The arithmetic 

mean calculations are applied on the received dust and SEU data at CH level. All the processed data at 

time step t are stored in the same data packet, being ready to be sent to the neighbour nodes. 
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The last step of the data processing procedure at CH level is data aggregation, where the local 

generated data packet is aggregated with its network relaying packets.  Before sending the processed 

data to the DS node, a relay link is established based on the shortest path finding algorithm, which 

identifies the shortest path from the current CH node to the closest DS node [20]. In this localised path, 

each intermediate node is treated as a parent node, and it should record its child nodes. The 

transmission is initialised from the farthest child node, and the data are propagated from that node to 

the DS. At each intermediate node, it should wait for data from all its child nodes to be received, and 

then it aggregates the same type of sensor data together into a single data packet, until the data packet 

reaches the DS node [22].  

5.2 Data processing/fusion at sink level 

The data processed at the cluster heads is sent to the data sink via a multi-hop relay communication 

link. The data, which comes from the same CH, are integrated together, forming a set of measurement 

data tables, where each type of sensor data is organized in the same data table in the order of their 

time steps. Figure 18 shows an example of the data tables in a DS. 

 

Figure 18 – Data tables in a DS.  

 

In Figure 18, the data tables are organized in a 3 dimensional space, where the x, y and z axes 

represent the time steps, the CHs, and the sensors respectively. For example, the first data table 

denotes all the thermal measurements from the CHs in the WSN during one Moon synodic cycle, 
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where each row of the table represents the complete thermal measurements from a CH during one 

Moon synodic cycle. Based on this table, the DS can report any particular scientific measurement at 

any time step from any CH node up to the exit point node on request, or perform statistical analysis on 

the data. Figure 19 represent graphically the data table for all the thermal measurements in a DS, 

where each curve denotes the thermal data measurements taken from the RNs connected to a 

particular CH during one Moon synodic cycle that are averaged in that cluster 
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Figure 19 – Graphical representation of all thermal data measurements in a DS.  

 

Because the CHs are located in different physical locations, the measurements vary significantly as 

shown in Figure 19. 

Reporting is the other main function of the data sink. A set of predefined statistical analyses are 

performed and the results are reported to the exit point node. Four report types were specified in the 

SWIPE project as follows: 

 A detailed report includes all the available data tables in the DS. The data tables are sent to 

the exit point node one by one. 

 A partial report includes a specified set of selected data tables in the DS. For example, if the 

base station only requires thermal and irradiance data, then the report unit will only send the 

data table that contains thermal and irradiance data to the exit point node. In addition, this 

report type also supports the request for data tables from the selected CHs and/or particular 

time steps. 
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 A maximal and minimal measurements report includes statistical calculations of maximal and 

minimal measurements from the selected CHs at a selected time step. 

 An average measurement report returns statistical calculations of the average measurements 

from all the selected CHs at a selected time step. 

 

The above reports are an example of the type of information that could be collected using WSNs for 

planetary exploration. In fact, the data processing algorithms in the data sink will depend on the needs 

of the particular scientific mission and the functions of the report unit will be determined by the actual 

mission objectives.  

6. Complexity analysis 

This section discusses the computational complexity of the data processing/fusion algorithms 

proposed in sections 4 and 5. The analysis is based on identification of computationally intensive 

processes in the algorithms, such as floating-point arithmetic operations, which include addition, 

subtraction, multiplication or division performed on two floating-point numbers. The operations are 

divided into three categories: 1) multiplication/division; 2) addition/subtraction; 3) others (e.g. 

composites of 1) and 2), such as square root, etc.).  Table 2  presents the results of the complexity 

analysis of the local data processing/fusion algorithms in terms of the total number of operations for 

each data type.  

Table 2 – Complexity analysis of the local data processing/fusion algorithms per data sample. 

 

Data Type Multiplication/division Addition/subtraction Other 

Thermal 3 5 0 

Irradiance at 300 nm 3 5 0 

Irradiance at 580 nm 3 5 0 

Irradiance at 950 nm 3 5 0 

TID 6 10 0 

SEUs 4n+8 16n 4 
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The number of the operations for the processing of one data sample of thermal data is counted first. 

Because the Thermal and Irradiance data are processed using the same Kalman filter, and the 

sampling frequency is also the same, the total numbers of the operations are similar. However, as the 

sampling frequency of the TID data is twice that of the Thermal data (i.e. two instances of TID data 

would be generated in a period of Thermal data generation), the total number of the operations for the 

TID data is doubled. With regards to the SEU data, the total number of the operations depends on the 

size of the fusion unit (i.e. n), and the calculation is performed every n SEU samples (i.e. the sample 

frequency of the SEU data is twice greater than the Thermal data). As shown in Table 2, a small 

number of operations are needed to process the sensor data by the local data processing algorithm, 

which suggests that a low cost microcontroller would be a suitable option for the implementation of 

the proposed algorithm. 

Similarly,  Table 3 presents the complexity analysis of the data processing/fusion algorithms at CH 

level in terms of the total number of operations for the processing of one data sample, where k is the 

numbers of RNs in the cluster. 

Table 3 – Complexity analysis of the data processing/fusion algorithms at CH level per data sample. 

 

In Table 3, the numbers of the operations are higher than in the local processing (Table 2). The reason 

for that is that additional operations are used for performing the arithmetic mean calculation, the 

complexity of which depends on the number of the RNs in the cluster. However, the operations for 

processing the SEU data are a smaller amount, because only an arithmetic mean calculation is 

performed at CH level. Overall, the complexity of the data processing algorithms at CH and node 

Data Type Multiplication/division Addition/subtraction Other 

Thermal 4 2k+5 0 

Irradiance at 300 nm 4 2k+5 0 

Irradiance at 580 nm 4 2k+5 0 

Irradiance at 950 nm 4 2k+5 0 

TID 8 4k+10 0 

SEUs 8 8k 0 
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level is similar, which allows the same hardware to be used for implementation of all the algorithms 

required for the different roles of the SWIPE WSN node. The main benefit of this is not only 

simplifying the manufacture of the SWIPE node, but also enabling dynamic switching or 

reconfiguring the role of the node in order to optimise the routing in the WSN. 

7. Outline of numerical experiment 

An extensive numerical experiment was designed and successfully implemented using MATLAB as a 

proof of concept prior to the hardware implementation of the SWIPE nodes. Realistic input data was 

simulated first to represent the behaviour of the Moon’s environmental parameters, monitored by the 

SWIPE WSN. For that purpose, parameter variation profiles were developed for each sensed 

parameter, based on information from relevant literature sources as discussed in section 4, to which 

the sensors transfer functions were applied to obtain local test data. These test data was then further 

modified to take into account the locality of the nodes within the network for the purpose of the 

simulations in this section. This is achieved through the development of an environmental data 

generator, where each individual node is associated with its unique measurement data set. Essentially, 

the measurement data is varied based on the nodes locations: the farthest is the node to the centre of 

the network area, the higher is the data variance applied.  

The SWIPE primary mission will study the magnetic anomalies of the Moon and the associated 

enigmatic lunar swirls, which have a high albedo. There are many swirls on both the near side and the 

far side of the Moon. Out of the four swirls associated with strong magnetic anomalies, which exceed 

20 nT, the Mare Ingenii on the far side has been selected as the targeted area. The SWIPE WSN is 

designed to support the following three scenarios [36]: 

 Minimal coverage: 20-40 nodes placed in pre-calculated positions covering an area of 2.5 km
2 

(5 km x 0.5 km). The number of the nodes can be extended up to 80 with erratic positioning. 

 Preferable coverage: 100-200 nodes placed in pre-calculated positions covering an area 25 

km
2 

(5 km x 5 km). The number of the nodes can be extended up to 400 with erratic 

positioning. 
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 Extended coverage: 280-560 nodes placed in pre-calculated positions covering an area 70 km
2 

(10 km x 7 km). The number of the nodes can be extended up to 1200 with erratic positioning. 

The minimal network size is used to cover the darkest and brightest part of the investigated area. 

Normal coverage is achieved with a square of side 5 km in order to encompass several albedo 

variations, whereas the extended coverage will be about 7 km wide and 10 km long, in order to 

encompass the curling shape of the swirl. 

Figure 20 shows the three network topologies, which were used for the testing of the above three 

scenarios. There are 80, 400, and 1200 nodes in each network topology, represented in Figures 44 (a), 

44(b) and 44(c), respectively, where the maximum data transmission radius is set to 0.8 km. In each 

graph, the symbols ‘*’ and ‘o’ denote the RNs and CHs respectively. The virtual backbone, discussed 

in section 3, which is the main link between each CH, is highlighted in red colour in Figure 20. It 

allows rapid reconfiguration of the network in case of node failures applying energy-aware routing 

algorithms [20]. The simulated WSN configurations are summarised in Table 4. The positions of all 

nodes are randomly selected and their coordinates are recorded. The DS node is also randomly 

selected from any of the generated nodes.  

Table 4 – Network configurations. 

 

The environmental data generator consists of two components: (i) a data origin point processor and (ii) 

a variance calculator. The data origin point processor generates sensor data samples based on the 

scientific data models introduced in section 4 for the five different scientific parameters: temperature, 

irradiance, TID, SEUs and dust.  

Networks 

Total 

Number of 

nodes 

Number 

of CHs 

Number of 

RNs 

Number 

of DSs 

Network 

Coverage 

( km
2
) 

Maximum 

Transmission 

Radius (km) 

Network 1 80 9 71 1 2.5 0.8 

Network 2 400 51 349 1 25 0.8 

Network 3 1200 135 1065 1 70 0.8 
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In the simulation, the data origin point is set to the centre of the network area. Let (x, y) denote the 

coordinates of a node in a network rectangular area with a width w and length l. Thus, the coordinates 

of the data origin point are then represented as x0 = w/2 and y0 = l/2. Figure 21 shows the geometrical 

relationship of the data origin point at (x0, y0) and a sensor node at (x, y). 
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Figure 20 – Used network topologies. (a) Minimal coverage; (b) Preferable coverage; (c) Extended coverage. 
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Figure 21 – Geometrical relationship between the data origin point and a sensor node. 

 

In Figure 21, the data origin point and the sensor node form a vector OA , where θ and r are the angle 

and the length of OA  respectively. Let T(x0, y0) denotes the sensors’ measurements at the data origin 

point. The sensors’ measurements T(x, y) at node (x, y) can then be calculated by the variance 

calculator using the following relationship: 

 0 0 0 0( , ) ( , ) ( , ) sinT x y T x y T x y r       (20) 

 

where α is the impact factor of the sensor’s location, which is between [0, 1]. In this simulation, α is 

set to the value of 0.15, which gives a suitable data variance and ensures that the generated data fit the 

sensors’ ranges.  

All the processed sensor data in a RN are packed together when sending the data to its CH node, 

whereby each data packet contains one sample of thermal data, three samples of irradiance data (i.e. 

one sample per wavelength measurement), and two samples of TID data. In addition to these data, 

dust and SEU sensor data are also included in the packet, when the predefined data acquisition 

schedule is triggered. The measurement periods for thermal, irradiance and TID are 600 s, and for 

dust data and SEU data is 637861 s and 3600 s, respectively. The data packet contains also overhead 

bits (e.g. headers, error check bytes, etc.), which are dependent on the communication protocol, 

however in the simulation work the metadata are not taken into account. This is because the purpose 

of the simulation is to evaluate how much measurement data could be reduced as a result of the data 

processing. For that reason the data packets in section 8 and section 9 consist only of the processed 

data measurements and vary in size.  
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The main benefit of data fusion is the reduction of the energy consumption for data transmission and 

reception. The power that will be consumed  by the data processing itself will be relatively small, as 

the data processing tasks will be carried out in the OBC of the SWIPE node, which is a low power 

microcontroller. The power consumption of the OBC stays more or less the same, if the clock 

frequency is not altered. However, the amount of the energy consumption for transmitting the data 

depends on the number of the transmitted bits and the distance of the transmission. Therefore, in this 

paper, we mainly consider the energy cost of the communication.  

For simplicity, a first order radio model is adopted [37], in which a radio dissipates Eelec = 50 nJ/bit to 

run the transmitter or receiver circuitry and εamp = 100 pJ/bit/m2
 for the transmitter amplifier. The 

equations used to calculate the transmission costs, TxE , and the reception costs, RxE , for a k-bit 

message and a distance d are shown below: 

 
2),( dkkEdkE ampelecTx    (21) 

 kEkE elecRx )(  (22) 

 

Transmitting and receiving data are high cost operations and, therefore, the number of transmissions 

and receptions should be minimal. In addition, in case of a symmetric radio channel, the cost to 

transmit a data packet over a longer transmission distance d, is significantly larger than receiving a 

packet of the same size. However, since the nodes are placed randomly in this simulation, the 

transmission distance is not optimised. Hence, the only way to reduce the communication cost is to 

reduce the number of the bits representing the generated data, which is also one of the main goals of 

the data processing/fusion processes. 

8. Simulation of node level processing algorithms 

8.1 Thermal, Irradiance and TID data 

The original bit length of the thermal data sample is 12 bits, and the total number of thermal data 

samples during one Moon synodic cycle is 4,321. Hence, the total number of bits to represent the 

thermal data generated during one Moon synodic cycle is 51,852 bits. 
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The proposed Kalman filtering technique, when applied to the thermal data, generates a variable 

length output ranging from 1 to 12 bits. For example, if the estimate is close to the actual 

measurement, the difference can be ‘0’, which requires just one bit. However, at the beginning of the 

data transmission, a measurement is sent to initialise the data in the CH, which will need the full 12-

bit data sample size. In general, the data size is adaptively changed in accordance with the local 

environment around the RN. For example, when the temperature is suddenly changed (e.g. during 

sunrise and sunset periods), the data size is increased accordingly, as more information is needed in 

order to describe the event.  

Simulation results have shown that the overall average data volume of the processed thermal data 

samples, generated in the RNs during one Moon synodic cycle, is around 6,037 bits. Thus, the number 

of the saved bits compared with the original data volume is 45,866, leading to a substantial reduction 

in the data size of 88.4%. 

To assess the data accuracy, the thermal measurement data are first reconstructed based on the data 

sent from the RN using equation (18), representing the full measurements rather that the updates. Next 

a similarity comparison of the reconstructed and the original measurements is performed. In order to 

calculate the similarity of the data, the correlation coefficient r between the two sets of data is 

evaluated using the equation: 
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 (23) 

 

where {x1,..., xn} is the reconstructed sample dataset,  containing n values and { y1,...,yn }is the original 

dataset; x and y are the mean values of the reconstructed and the original sample datasets, 

respectively. 

In addition to the correlation coefficient based similarity analysis, a comparison of the differences 

between the values of the reconstructed and the original datasets is also performed by using the 

equation: 
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   (24) 

 

where n is the length of the reconstructed and the original datasets. 

The equations (23) and (24) are performed on the thermal data generated from all the RNs 

correspondingly. It is found that the average value of all the obtained correlation coefficients is 

extremely close to 1 and the average value of the differences between the values of the reconstructed 

and the original data is 0.016% of the original data. These results confirm that the reconstructed data 

is almost the same as the original measurements. 

Similar to the thermal data, the same analyses are performed on the Irradiance and the TID data. The 

original bit length of the Irradiance and TID data per sample is 12 bits  and the total number of bits for 

in one Moon synodic cycle is 51,852 bits and 103,704 bits respectively. Table 5 shows the 

performance of the proposed algorithm on processing the Irradiance and TID data.  

Table 5 – Performance of the proposed algorithm on processing the Irradiance and TID data. 

 

As it can be seen from Table 5, the Kalman filter has achieved a good performance on both the 

Irradiance and the TID data. The minimum and maximum data volume reduction is 79% and 91.7% 

of the original data volume. The reconstructed data has a high degree of similarity to the original data 

on both data sets, according to the correlation and difference results, obtained with equations (23) and 

(24), respectively. The minimum and maximum average differences between the reconstructed and 

the original data is 0.335% and 0.598% of the original values. This is confirmed by the average value 

of the correlation coefficients being almost 1. 

Data Type 

Sampling 

rate 

(sample/mins) 

Original 

Data 

Size 

(bits) 

Average 

Processed 

Data Size 

(bits) 

Data Size 

Reduction 

(%) 

Average 

Correlation 

Coefficients 

Average 

Differences 

(%) 

Irradiance 

at 300 nm 
10 51,852 7505 85.5 0.999 0.598 

Irradiance 

at 580 nm 
10 51,852 10656 79.4 0.999 0.406 

Irradiance 

at 950 nm 
10 51,852 10104 80.5 0.999 0.335 

TID 5 103,704 8644 91.7 0.999 0.527 
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8.2 SEU data 

The SEU data is processed using statistical methods, where the original SEU data sequence is divided 

into different fusion units. In the simulation, the size of the fusion unit n is set to 12. The total of 8642 

SEU samples are generated during one Moon synodic cycle with sampling period of 5 minutes and a 

bit length of up to 7 bits per sample.  Table 6 summarises the performance of the statistical methods 

on processing the SEU data. The four different SEU sensors (SEUs 1, SEUs 2, SEUs 3 and SEUs 4) 

operating at different thresholds will generate a total of 28 bits of data per measurement.  However, 

the average processed data volumes in Table 4 are dissimilar, as they depend on values represented by 

variable bit lengths. Furthermore, since the thresholds of the SEU sensors are not the same, the 

numbers of the SEUs are different too. 

Table 6 – Performance of the statistical methods on processing the SEU data. 

 

It is evident from Table 6 that the statistical approaches have shown a good performance on all the 

SEU data in terms of reducing the data size. Overall, the saved data volume ranges between 89.7% 

and 96.9%. 

8.3 Evaluation of energy consumption for different network scenarios 

In the simulation, there are a total of 4,321 data measurements transmitted from a RN to its CH, and 

the average size of one measurement carrying processed sensor data during one moon synodic cycle is 

around 14 bits. However, if using the original measurements, the average measurement size is 129 

bits, which is almost 10-fold higher than in the proposed scheme.  

According to equation (21), the difference of the transmission energy consumption between the 

original measurements and the proposed scheme per communication packet is (5,750 + 11.5d
2
) nJ, 

where d is the communication distance. Based on that the saving in the transmission energy 

Data Type Original Data Size (bits) Average Processed Data Size (bits) 
Data Size 

Reduction (%) 

SEUs 1 60,494 6234 89.7 

SEUs 2 60,494 5641 90.7 

SEUs 3 60,494 3263 94.6 

SEUs 4 60,494 1854 96.9 
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consumption for sending a packet using the proposed scheme compared to the original measurements 

transmission scheme ranges between 5,750 nJ and 7,365,750 nJ, with the maximum communication 

distance between the nodes being 0.8 km. This shows that the application of the proposed data 

processing scheme can significantly reduce the transmission energy consumption when the 

communication distance is increased. 

The local data processing algorithms are tested using the Network 1, 2 and 3 scenarios, evaluating the 

total Data Transmission Energy Consumption (DTEC) of the RNs during one Moon synodic cycle in 

each network. Figure 22(a), Figure 22(b) and Figure 22(c) present graphically the total DTEC of the 

RNs in Network 1, 2 and 3, respectively. 
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Figure 22 – Data transmission energy consumption of RNs during one Moon synodic cycle.  

(a) Network 1; (b) Network 2; (c) Network 3. 

 

As shown in Figure 22, the proposed method significantly outperforms the original method in terms 

of data transmission energy consumption in all three network scenarios. Overall, the DTEC of RNs 

does not increase significantly with the increase of the network area, and most of the RNs have a low 

energy consumption. Only a few of the RNs consume a slightly higher energy than the others, which 

is due to the locations of these nodes being too far away from the CH nodes. 

Table 7 presents results of a statistical analysis of the transmission energy data shown in Figure 22 for 

the three network scenarios. Although the coverage of Network 3 is 28 times larger than the coverage 
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of Network 1, the average total DTEC during one Moon synodic cycle of Network 1 and 3 do not 

differ substantially, which indicates that the proposed local data processing algorithm can be applied 

to a different network scale and still maintain a reasonable performance. 

Table 7 – Statistical analysis results of the total DTEC of RNs on Network 1, 2 and 3 for transmitting all 

sensor data over one Moon synodic cycle. 

9. Simulation of network level processing 

9.1 Data processing at cluster head level 

In this section, simulation results of the proposed data processing algorithms at CH level are reported. 

The results are obtained from a CH connected to 18 RNs, which is the largest cluster in Network 3 in 

Figure 20(c). In order to evaluate the accuracy of the processed data, equation (24) is used to calculate 

the difference between the processed data and the original data, and the results for all scientific data 

types are shown in Table 8. 

Table 8 – Performance of the statistical methods on processing scientific data at CH level. 

 

As it can be seen from Table 8, there are significant savings on the data size since the data output 

includes only representative data. On the other hand, the average correlation coefficients and the 

Networks 
Network 

Coverage ( km
2
) 

Number of 

RNs 

Minimum  
DTEC (J) 

Maximum  

DTEC (J) 

Average  DTEC 

(J) 

Network 1 2.5 71 0.0031 2.5905 0.42 

Network 2 25 349 0.0048 2.9464 0.78 

Network 3 70 1065 0.0035 3.5215 0.80 

Data Type 
Number 

of RNs 

Original 

Data Size 

(bits) 

Processed Data 

Size (bits) 

Data Size 

Reduction 

(%) 

Average 

Correlation 

Coefficients 

Average 

Differences 

(%) 

Thermal 18 99820 5493 94.5 0.9999 0.43 

Irradiance at 

300 nm 
18 118862 5641 95.3 0.9999 4.3 

Irradiance at 

580 nm 
18 168212 7391 95.6 1 4.7 

Irradiance at 

950 nm 
18 159198 6650 95.8 0.9999 4.4 

TID 18 155571 4323 97.2 1 3.38 
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differences between the values of the processed data and the original data confirm that the quality of 

the processed data is similar to the original input data. 

Figure 23 shows a comparison of the statistical results based on the original SEU data and the 

processed SEU data, where the blue bars and red curves are the histograms and the fitted curves for 

the data, respectively. It can be seen from Figure 23 that the original and the processed SEU data have 

a similar normal distribution. For example, the mean of the SEUs on the probability density curve of 

the processed SEU 1 data in Figure 23(b) is the same as the mean of the SEUs on the probability 

density curve of the original SEU 1 data in Figure 23(a). At the same time the processed data contains 

only 1/18 of the data size of the original data. 
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(a) Original SEU 1 data (b)Processed SEU 1 data

(c)  Original SEU 2 data (d) Processed SEU 2 data
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Figure 23 – Histograms of the SEU data processing results in a CH for the original data (on the 
left hand side) and the processed data (on the right hand side).  
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9.2 Processing at data sink level 

In this section, simulation results of the data processing algorithms at DS level are reported. The 

results are obtained from a DS receiving data from 135 CHs in Network scenario 3 (Table 2). Figure 

24 shows the reconstructed values of all scientific data at the DS.   
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Figure 24 – Results of data processing on all the scientific data at the DS. (a) Thermal data; (b) 
Irradiance at 300 nm; (c) TID data; (d) SEU data. 

 

In Figure 24 (a)-(d), the curves represent the measurements for the thermal, irradiance (at 300 nm) 

and TID sensor data generated in all CHs during the period of one Moon synodic cycle. The curves 

for the other irradiance data at 580 nm and 950 nm wavelengths are similar to Figure 24 (b), but with 

different ranges on the vertical axes. Figure 24 (d) shows the probability density curves of all the 

measurements obtained by the four SEU sensors, where it can be seen that an SEU sensor with a 

higher LET threshold has a smaller chance of SEU occurrence. The results in Figure 24 demonstrate 

that the processed data is reconstructable. 
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10. Conclusions 

In this paper, a novel approach to efficient scientific data processing and fusion is proposed, which is 

aimed at WSN based planetary exploration applications. A set of data processing/fusion algorithms 

are selected to handle the data generated by the SWIPE WSN and each algorithm is specifically 

tailored to the processing of a particular type of scientific sensor data. An extensive simulation 

experiment targeted at the SWIPE lunar exploration mission is carried out, which quantifies the 

performance efficiency of the data processing scheme. Both objectives, to reduce the WSN energy 

consumption and deliver a high accuracy data, have been fully met. It is shown that the proposed data 

processing algorithms can reduce the WSN node energy consumption significantly, decreasing the 

data transmission energy up to 91%. In addition, it is shown that up to 99% of the accuracy of the 

original data can be preserved in the final reconstructed data.  

To the best of the authors’ knowledge this is the first feasibility study addressing the needs of WSN 

for interplanetary exploration using data processing/fusion algorithms. 
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