

Permanent link to this version

http://hdl.handle.net/11311/973316

RE.PUBLIC@POLIMI
Research Publications at Politecnico di Milano

Post-Print

This is the accepted version of:

M. Massari, A. Wittig
Optimization of Multiple-Rendezvous Low-Thrust Missions on General-Purpose Graphics
Processing Units
Journal of Aerospace Information Systems, Vol. 13, N. 2, 2016, p. 1-13
doi:10.2514/1.I010390

The final publication is available at http://dx.doi.org/10.2514/1.I010390

Access to the published version may require subscription.

When citing this work, cite the original published paper.

Optimization of Multiple-Rendezvous Low-Thrust

Missions on General Purpose Graphics Processing

Units

Mauro Massari a and Alexander Wittig b

Politecnico di Milano, Milan, Italy

A massively parallel method for the identification of optimal sequences of targets in

multiple-rendezvous low-thrust missions is presented. Given a list of possible targets, a

global search of sequences compatible with the mission requirements is performed. To

estimate feasibility of each transfer, a heuristic model based on Lambert’s transfers is

evaluated in parallel for each target making use of commonly available General Purpose

Graphics Processing Units (GPGPUs) such as the NVIDIA Tesla cards. The resulting

sequences are ranked by user-specified criteria such as length or fuel consumption. The

resulting preliminary sequences are then optimized to a full low-thrust trajectory using

classical methods for each leg. The performance of the method is discussed as a function

of various parameters of the algorithm. The efficiency of the GPGPU implementation

is demonstrated by comparing it with a traditional Central Processing Unit (CPU)

based branch and bound method. Finally, the algorithm is used to compute asteroid

sequences used in a solution submitted to the seventh edition of the Global Trajectory

Optimization Competition.

a Assistant Professor, Department of Aerospace Science and Technology, Via La Masa 34, 20156, Milan , Italy
b AstroNet II Experienced Researcher and Postdoctoral Fellow, Department of Aerospace Science and Technology,

Via La Masa 34, 20156, Milan, Italy

I. Introduction

The goal of Multiple-Rendezvous Low-Thrust (MRLT) missions is to use a spacecraft equipped

with low-thrust propulsion to visit as many targets as possible, out of a given list of possible

targets, within a fixed duration for the mission. An example for such a mission are visits to as many

asteroids in the main asteroid belts as possible with a given amount of fuel and time. The choice

of the sequence of target objects in MRLT missions is crucial in order to achieve the primary and

secondary objectives of such a mission. Besides the number of targets visited, a typical objective to

be minimized is the fuel consumption.

The problem of selecting the ideal sequence and times of asteroid visits is extremely complex,

and involves both discrete variables (the IDs of the targets) as well as continuous variables (starting

epoch, transfer time). The search space is already large even for relatively small sets of possible

targets; but once realistic sets of targets are considered, the number of possible sequences quickly

becomes enormous. The underlying optimization problem is hence a very difficult one and conse-

quently very popular as a test bed for various types of optimizers. In particular, MRLT missions

are popular problems in the Global Trajectory Optimization Competition (GTOC) series[1].

In the past, this kind of problems have been approached using different variants of stochastic

optimization algorithms, such as evolutionary branching algorithms [2], particle swarm optimization

[3], or ant colony optimization [4]. Systematic search approaches to this type of problem typically

employ branch-and-bound type algorithms [5]. In the past, those have relied heavily on extensive

pruning of the targets [6]. This reduces the target sets to a relatively small number of targets by

filtering based on various criteria such as orbital parameters or phasing, making a systematic search

feasible.

In this work, we develop a systematic search algorithm capable of treating large sets of over

16.000 possible targets without previous pruning. Apart from a very fast execution time, the new

algorithm is capable of returning not just one but many (often in the hundreds or thousands) high-

scoring sequences of targets without significant performance impact. In practice this allows the

integration of this search algorithm in larger optimization loops, selecting among the high-ranking

sequences based on other criteria (e.g. common final targets). The key component in this algorithm

2

is the efficient implementation of the massively parallel global tree-search algorithm on modern

General-Purpose Graphics Processing Units (GPGPUs).

Traditional algorithms have been developed considering the typical computing architecture of

multicore Central Processing Unit (CPU) machines. Those systems are equipped with a small

number of very powerful cores with several layers of memory caches. With the advent of modern

GPGPUs, such as the NVIDIA Tesla GPGPU accelerator cards [7], a huge number of Arithmetic

Logic Units (ALU) per card (typically in the thousands) are made available at costs comparable to

those of a high-end multicore CPU [8]. However, the large increase in raw arithmetic computing

power comes at the cost of limited performance of each core compared to traditional CPU cores

mostly due to the lack of the sophisticated hardware caches present in CPUs.

The GPGPU architecture is not suitable to run different, complex subprograms on each core.

Instead, the hardware is optimized for what NVIDIA refers to as the Single Instruction Multiple

Threads (SIMT) parallel processing paradigm [9], which applies the same operation to different

input data in parallel. This requires a different approach in algorithm design to maximize the

impact of those new hardware capabilities in various fields of scientific computing [10].

Apart from typical GPGPU applications such as linear algebra [11] and computational fluid

dynamics [12], as well as and fast n-body dynamics simulations [13], GPGPU programming recently

has also found its way into more specifically aerospace related research topics. GPGPUs have

been used for the parallel computation of trajectories to enable fast Monte-Carlo simulations [14],

uncertainty propagation [15], as well as non-linear filtering [16].

We chose the standardized OpenCL package [17] for the GPGPU programming. The OpenCL

heterogeneous computing platform provides a platform agnostic C like programming language along

with compilers for most current accelerator cards such as those by NVIDIA, Intel and ATI. Fur-

thermore, it provides libraries for both the host side (CPU) as well as the client side (GPGPU) to

facilitate common tasks in heterogeneous programming in a hardware independent manner.

The remainder of this paper is structured as follows. In Section II the basic concept of sequence

generation for MRLT mission and some of their possible applications are exposed. In Section III, the

basic concepts of GPGPU programming will be briefly recalled and compared with the traditional

3

CPU programming approach. These considerations lead naturally to the proposed new sequencing

algorithm which is described in Section IV. Several subsections will discuss in detail the different

aspects of the algorithm such as the host based driver program as well as the GPGPU based mas-

sively parallel computation kernels. The final optimization of the resulting preliminary sequences

to obtain complete low-thrust trajectories with a full thrust history is described in Section V. The

performance of the algorithm and the effect of various parameters is analyzed on a realistic set of

about 16.000 possible target asteroids in Section VI. The performance of the GPGPU implemen-

tation is also compared to a traditional CPU implementation of a sequence generation algorithm

based on branch and bound technique [5]. Finally, the implementation of the proposed algorithm

is applied to the computation of asteroid sequences for the optimization problem posed in GTOC7

in Section VII.

II. Sequence Generation in MRLT Missions

The problem of sequence generation in multi-rendezvous low-thrust missions has been featured

prominently in several previous editions of the GTOC series. However, with the recent interest in

Asteroid and Comet exploration, the problem of maximizing subsequent rendezvous with multiple

small bodies is becoming interesting also for real mission design. This problem is different from

the typical interplanetary exploration problems faced in the past as the rendezvous with small

bodies, characterized by a very low mass when compared with planets and moons, can be performed

efficiently with low-thrust propulsion in a reasonable amount of time. In this paper, the focus will

be put mainly on MRLT mission in the heliocentric frame and considering Asteroids as possible

targets, but the proposed approach can be applied directly to other multiple-rendezvous problems

such as the ones faced in a debris removal mission in Earth orbit.

Following the above considerations, it is possible to make some assumptions on the problem

dynamics that allows the efficient implementation of a massively parallel searching algorithm suitable

for GPGPU architectures. The searching algorithm is not required to immediately provide an

optimized low-thrust transfer trajectory; it should only return a sequence of targets with a high

likelihood of yielding a feasible low-thrust trajectory after subsequent optimization. This fact allows

the simplification of the search algorithm as only the feasibility of a transfer between two successive

4

rendezvous should be addressed, not the actual design of the optimal low-thrust transfer itself.

Following this idea, it has been decided that dynamics used to model the motion should be as

simple as possible, because it should just represent with sufficient accuracy the feasibility of the

transfer, not the actual transfer trajectory. For this purpose simple two-body dynamics have been

chosen to represent the motion between rendezvous, and the rendezvous condition itself is imposed

by just equating position and velocity of the spacecraft to those of the target, completely neglecting

the gravity of the target and their relative dynamics. This assumption is made because the targets

have very small mass and a very irregular gravity field. The actual rendezvous problem in such

conditions must be designed ad-hoc for each target, and will mainly affect the actual transfer orbit

but not the feasibility of the complete transfer sequence. The same is valid for the gravity attraction

of other bodies of the Solar System, they perturb the motion of the spacecraft and thus affect the

actual transfer orbit, but in most cases will only slightly affect the feasibility of the transfer.

A second consideration is related to the actual low-thrust transfer. Following the idea that

during sequence generation only the feasibility of the transfer should be addressed, and not the

actual design of the low-thrust transfer orbit, it has been decided to estimate the feasibility of the

transfer using the classical impulsive dynamics for the computation of the cost of the transfer. The

resulting cost estimate is then successively modified using the low-thrust propulsion features to

obtain a modified cost and consequently the evaluation of the overall feasibility of the transfer. This

should be possible because the low gravity of the small bodies allows the escape and capture using

low-thrust in limited time, and because in typical settings the transfer arcs between targets are short

and thus the difference between impulsive and low-thrust trajectories is not that pronounced. Thus,

the approximation of the transfer using a weighted solution of the Lambert’s problem is acceptable.

Lambert’s Problem [18] consist of finding the orbit, i.e. the solution of the Two-Body problem,

connecting two points in space r1 and r2 within a specified time ∆t. The solution of Lambert’s

Problem forms the basic building block of the rendezvous problem as it allows to find the orbital

transfer from one point and time to another target point at a later time. The solution of this

problem consists of identifying the orbital elements of the orbit connecting the two points in space

and by itself is not related to the required maneuvers to perform the actual transfer. However, the

5

problem is usually extended by considering not only the initial and final position vectors r1 and r2,

but also the initial velocity and the desired velocity at the target point v1 and v2. The size of the

two impulsive maneuvers needed to perform the complete orbital transfer of the Lambert’s Problem

is then easily computed from the velocity difference at the initial and target point:

∆Vi = v1 − vL1 (1)

∆Vf = vL2 − v2 (2)

These assumptions are validated by numerical experiments showing the typical optimal thrust

profile of such kinds of transfers to be a bang-bang profile thrusting at the beginning and the end

of the arc while coasting between. This behavior mimics the Lambert’s problem solution, with an

initial ∆Vi for escape and a final ∆Vf for the capture. Moreover, the condition of maximizing the

number of targets in the searching algorithm, typically implemented by limiting the time of each

transfer, automatically discards all the long transfers requiring multiple revolutions around the Sun

in favor of short transfer arcs between targets. The total cost of a single transfer between two

successive rendezvous targets is simply computed using the total ∆Vl = ∆Vi +∆Vf of the solution

of the Lambert’s problem.

To pass from the total cost of the transfer to its feasibility F , also the limitation on the ac-

celeration due to the maximum thrust available must be considered. To this end, the mass of the

spacecraft msc is assumed constant and equal to the value at departure during each transfer. Thrust

is assumed to be continuous at a fraction αt of the maximum thrust Tmax for the entire duration

of the transfer (tf − t0). This yields a constant force F = αtTmax acting on the spacecraft. From

Newton’s second law we obtain F/m = a = dv
dt . Integrating over the time interval [t0, tf] we obtain

the maximum achievable ∆Vmax with low-thrust as

∆Vmax =
αtTmax(tf − t0)

msc
. (3)

Depending on the restrictions on available fuel, this value ∆Vmax is adjusted downward if needed.

If the solution of Lambert’s problem yields a ∆Vl smaller than the maximum achievable ∆Vmax,

6

the transfer is considered feasible:

F =


1 if ∆Vl ≤ ∆Vmax

0 if ∆Vl > ∆Vmax.

(4)

The heuristic factor αt ∈ (0, 1] represents the fact that the low-thrust bang-bang transfer efficiency

is significantly less than that of impulsive maneuvers assumed in the Lambert’s problem solution.

With these definitions of cost and feasibility of the transfer between two successive rendezvous,

the sequence of target can be generated evaluating each single transfer, and combining the results

to obtain a feasible sequence of target that can be reached given constraints on available propellant

mp, mission time T and maximum thrust Tmax. The evaluation of each single leg is done in the

same way, the only difference is the mass of the spacecraft at departure msc, used to estimate the

∆Vmax, which is affected by the previous transfers’ mass consumption.

The propellant mass consumption is estimated considering the same assumption of impulsive

maneuvers done for the Lambert’s Problem. Therefore, the total cost of the previous transfers is

computed summing the ∆V i
l opportunely weighted:

∆Vtot = αf

∑
i

∆V i
l (5)

where ∆V i
l is the cost of the i-th Lambert’s transfer and αf ∈ [1,∞) represents another heuristic

scaling factor to mitigate the fact that the fuel consumption of low-thrust propulsion is typically

higher than that of the corresponding Lambert’s transfer. The Tsiolkovsky Rocket Equation [19] is

used to compute the propellant mass used to provide the ∆Vtot:

mp = m0 ·
(
1− exp

(
∆Vtot
Ispg0

))
(6)

where Isp is the Specific Impulse of the Low-Thrust Propulsion engine, g0 is the standard gravita-

tional constant on Earth and m0 is the initial mass of the spacecraft.

In figure 1 the comparison between the optimized low-thrust transfer and the approximate

7

Fig. 1 Comparison of Lambert’s arc and optimized low-thust transfer

transfer with the solution of the Lambert’s problem is shown for one of the transfer arcs used in our

GTOC7 solution.

As can be seen, the trajectories are almost superimposed, demonstrating that at least from the

trajectory point of view the approximation is reasonable. Considering the propellant consumption,

using alphaf = 1.5 and m0 = 2000 kg the computed propellant mass is respectively 145 kg for the

Lambert’s transfer and 150 kg for the optimized low-thrust transfer, demonstrating that also for

propellant estimation the approximation is reasonable.

The accuracy of these estimations of the feasibility, and hence the quality of the resulting

sequences, is highly affected by the choice of the parameters αf and αt. Increasing the value for αt

closer to 1 tends to make the estimation of feasibility less robust, but at the same time reduces the

overestimation of the required flight time for a particular transfer. At the same time, reducing αf

reduces the overestimation of the fuel usage, but can lead to unfeasible sequences if fuel usage is

underestimated. Thus, choosing both values closer to 1 allows the identification of longer sequences,

at the risk of losing their real low-thrust feasibility. This in turn makes it more difficult to optimize

actual low-thrust transfers matching the identified sequence. On the other hand, moving the values

of those parameters away from 1 will increase the robustness of the feasibility estimation, yielding

easily optimizable low-thrust trajectories at the cost of producing shorter sequences. We will analyze

8

the effect of the two parameters in more detail in Section VI.

III. GPGPU Programming

As stated in Section I this work is about exploiting the massively parallel architecture of GPG-

PUs for the problem of MRLTs. In recent years, GPGPUs have become very powerful following

the increasing demand of both the gaming market and professional graphical applications. Usually

not all available computational power is used when dealing with far from peak performance scene

rendering. For this reason GPGPU producers started to investigate the possibility of using the

unused computational power for general purpose computations. Today, high-end graphics cards are

all capable of providing vast computational power for general purpose computation in all areas of

scientific computing. Applications range from fluid dynamics to data mining [10].

However, GPGPU computational capabilities are conceptually very different from the ones of

typical CPUs. This is due to the different architecture of GPGPUs, which originally were designed

to perform the same operations in parallel on all the pixels of an image (Single Instruction Multiple

Threads, SIMT) [9, 10, 20].

Thus GPGPUs are typically characterized by a very high number of Arithmetic Logic Units

(ALUs), usually more than one thousand per GPGPU. They are equipped with dedicated fast

memory without large intermediate caches in order to devote as many transistors as possible to

ALUs. Figure 2 shows the typical architecture of CPUs and GPGPUs. Obviously each individual

ALU is much more limited with respect to ALUs found on a general purpose CPU which is much

more complex. However, by removing some features commonly found on CPUs such as elaborate

branch prediction control and various levels of memory caching, GPGPUs can instead use the

transistors freed up by removing these features to add more ALUs.

Consequently, single computations that run on a GPGPU typically run at a slower speed than

the same computation on a modern CPU. But if the algorithm design allows it, those computations

can run massively in parallel at the same time on a GPGPU, thus making up the shortfall in terms

of a single computation by parallel computation.

GPGPU computation is affected also by a series of other limitations, mainly due to the fact that

GPGPUs are separated from the main CPU and memory controller, thus reducing the bandwidth

9

Fig. 2 CPU and GPGPU Architecture (after [9])

of memory transfers between the CPU main memory and the GPGPU memory to that of the PCI

Express Bus. The theoretical peak data transfer rate of 16 GB/s for the x16 PCI express generation

2 connector of the NVIDIA Tesla K20 card, for example, is an order of magnitude slower than the

208 GB/s of the DDR5 memory on the card [21].

Moreover, until recently most GPGPUs were very fast when performing integer or single pre-

cision floating point computation, but are traditionally significantly slower for double precision

computations [8]. Another limitation stemming from the SIMT structure of GPGPUs is the lack of

true branching capabilities. Instead of performing real branching, until recently GPGPUs followed

both possible branches and discarded the unneeded branch. While last-generation GPGPUs now

support branching natively, the lack of pipelining and branch prediction control circuitry makes

branching a very expensive operation [10].

These are just some of the reasons why traditional parallelization techniques commonly used,

such as multithreading on multicore CPU systems with shared memory [22] or distributed computing

with message passing on computing clusters [23] cannot be applied directly to GPGPU programming.

Instead, code and algorithms developed for GPGPUs must be designed in a different way than those

for CPUs.

Best performances on GPGPUs can be obtained when running the same piece of code (called a

kernel) in parallel on different data sets while avoiding branching. In this way each thread performs

the same operations on a different portion of the dataset which is common to all the threads [9].

This is often referred to as data parallelization. To illustrate the concept, consider the following

analogy. A GPGPU is much like a subway: it moves many people at once, but all passengers will

10

go to the same place. On the other hand, a CPU is like a car: it moves only few passengers but it

can go anywhere they want faster than the subway. However, too many cars trying to move a few

passengers each result in a traffic jam that will slow down all cars, making the metro more efficient

overall at moving large numbers of people.

Note that not all available GPGPUs can be used for general purpose computations. Only GPG-

PUs dedicated to high-end gaming or built explicitly for computing have reasonable performance.

There are mainly two alternative available on the market, NVIDIA with CUDA cores and AMD

(ATI) with the GCN architecture. NVIDIA GPGPUs are more commonly used for GPGPU com-

puting than AMD ones, a fact influenced in large part by the existence of specialized CUDA libraries

for scientific computing. Unfortunately the CUDA libraries are proprietary and can only be used

to develop code for NVIDIA GPGPUs. However, both NVIDIA and AMD GPGPUs support the

OpenCL toolkit [17] for parallel computing.

OpenCL is designed to take advantage of all the possible devices that allow parallel computation,

similar to the OpenGL specification for 3D graphics rendering. It consists of a C-like language to

write GPGPU code which is compiled at runtime for the selected platform. Thus OpenCL code can

be executed on all major GPGPU cards such as those by NVIDIA, Intel and ATI. Furthermore,

it provides libraries for both the host side (CPU) as well as the client side (GPGPU) to facilitate

common tasks in heterogeneous programming in a hardware independent manner. For detailed

description of OpenCL features, we refer the reader to the OpenCL 2.0 Specification [24].

This choice of framework for the implementation of the GPGPU part of the Sequence Searching

algorithm allows for easy testing and comparison of the proposed algorithm on different GPGPU

platforms. An implementation using the dedicated NVIDIA CUDA framework[9] to only target

NVIDIA cards may under some circumstances yield a performance gain due to platform-specific

optimizations. A detailed analysis of different GPGPU computing platforms and hardware, however,

is beyond the scope of this work. We refer to the literature for comprehensive analyses of this topic

[25, 26].

To summarize this brief introduction to GPGPU programming, the following considerations are

crucial for the development of our GPGPU based Sequence Search code.

11

• The amount of data transferred from CPU to GPGPU (and vice-versa) should be reduced to

avoid the bottleneck of the PCI Express Bus.

• The use of loops with variable numbers of iterations should be avoided in favor of fixed length

loops so as to avoid branching. This facilitates the SIMT structure of the code.

• Dynamic memory allocation in GPGPU kernels is very inefficient due to the required locking.

If necessary all memory should be preallocated on the GPGPU using the appropriate OpenCL

calls before executing the kernels.

IV. Sequence Search Algorithm

The goal of the Sequence Search Algorithm is to find a preliminary feasible sequence of targets

to be visited, together with their arrival and departure epochs. It is not required to obtain an

optimized transfer for each leg, just a sufficiently accurate definition of the target IDs and of the

visiting dates serving as an initial guess for a low-thrust optimizer. The actual optimization of

the legs is performed later using a classical low-thrust optimization based on an indirect method

described in more detail in Section V.

Starting from a given list of possible targets and their ephemerides, an initial time, and an

initial object to start from, the algorithm returns a list of feasible optimal sequences ranked by

user-specified criteria such as number of targets visited, fuel consumption, as well as total mission

duration. The quality of the resulting sequences must be sufficiently high so that the actual low-

thrust transfer can be quickly computed by e.g. an indirect method.

As described in Section II, the core of the sequence construction algorithm is a massively

parallel implementation of a modified Lambert’s problem solver, optimized for parallel execution on

GPGPUs. The relatively simple Lambert’s problem, unlike more complex and accurate methods,

can achieve better performance in massively parallel GPGPU processing, as it allows a good load

balancing which maximize the usage of all the available cores as described in Section III. From the

cost of each single transfer, the heuristic averaging of the required ∆Vl over the time of flight is

performed to estimate the low-thrust feasibility based on the thruster constraints as well as the total

cost of each transfer as detailed in Section II. Exploiting the ability to run thousands of threads

12

in parallel, the feasibility of a transfer from a given target to all other possible targets is computed

in parallel. Due to the independence of each computation, this process is highly efficient and can

easily be parallelized on SIMT devices.

As this method has been designed to tackle very high dimension problems, it is not based

on stochastic optimization. Stochastic optimization is very powerful when searching for a global

optimum, but is highly sensitive to the number of parameters and does not handle problems which

contain both discrete and continuous variables very well. The problem faced in this work is even

more complex, as the discrete variables represent the IDs of the targets and can assume values within

a very large set. In order to be effective in these conditions, a stochastic algorithm requires a very

large population size, thus affecting considerably the performances of the search. For this reason,

it has been decided to base the Sequence Search Algorithm on a constructive approach. Starting

from a given ID and time, the sequence is generated exploring the search space extensively with a

branch and bound approach. Obviously this approach is feasible only because the massively parallel

architecture of the GPGPU allows to run a huge number of evaluation in parallel, thus reducing the

computational time needed for the extensive search.

In order to construct the sequences, a stack-based construction method is employed. Starting

from the initial target and time, the feasible targets within reach are identified. Out of those, a

subset of promising targets is selected based on some user-defined selection criteria. Then in an

iterative process the search is continued along all promising targets. In this way, the sequences

are constructed with an extensive search of the solution space, which is not easily realizable on

Multi-CPU machines. In Figure 3 this iterative process is illustrated. As shown, the sequences are

constructed starting from the initial target, and considering only the promising (grey) targets out

of all feasible targets (white) for the next steps, thus highly reducing the number of combinations

that needs to be examined compared to a full combinatorial search.

It is important to note that this is not a brute-force approach, as only a subset of the feasible

transfers are considered. This reduces very quickly the number of possible solutions to analyze. The

algorithm can be further tuned using a parameter Nmin which allows to select how many promising

sequences to consider for further analysis in each step. A detailed description of this parameter is

13

ID 1

ID 1

ID 2

ID 3

ID 4

ID 5

ID 1

ID 3

ID 4

ID 2

ID 5

ID 2

ID 3

ID 4

ID 5

ID 1

Fig. 3 Sequence Search iterative approach. Black are unfeasible targets, grey represents
feasible targets, and white represents promising targets selected for further sequencing.

presented in Subsection IVA.

The overall architecture of the algorithm is presented in Figure 4 where one can see that it is

mainly composed of two distinct parts, one on the CPU which coordinate all the computation and

search, and one on the GPGPU which is mainly responsible for the evaluations. In the GPGPU part

the modules implemented are dedicated to two distinct tasks, the actual evaluation of the feasibility

and cost of the legs and the ephemerides retrieval and evaluation.

CPU Driver Program

GPU Cost Estimation Ast 1

GPU Cost Estimation Ast 2

GPU Cost Estimation Ast n

GPU Ephemerides

CPU memory GPU memory

CPU memory GPU memory

Fig. 4 Sequence Search Algorithm architecture

As the time consuming part of the Sequence Search Algorithm is concentrated in the evaluation

of the single leg costs, it is possible to see that this algorithm is perfectly suited for exploiting the

14

massively parallel architecture of GPGPUs. It is worth noting that, in the presented architecture,

the main memory transfer of the dataset and ephemerides information is performed only once at the

beginning, thus avoiding any possible memory bandwidth bottleneck. In the following a description

of the three main modules of the algorithm is presented.

A. CPU Driver Program

The CPU Driver module is the part of the code which supervises the operations and implements

the actual searching framework. The operations performed in this modules are the following:

1. Initialize OpenCL library

2. Setup memory on the CPU and GPGPU(s)

3. Start sequence search main loop from starting ID

(a) Start internal loop on time of flight (tof)

i. Evaluate Lambert’s transfer to all targets in parallel on GPGPU

ii. Append feasible target(s) to current sequence and place on stack

iii. Increase tof until at least Nmin feasible targets found or mission time exceeded

(b) If no feasible targets found, store the resulting final sequence

(c) Continue main loop with next sequence on stack

After an initial part needed to initialize the GPGPU devices and to once transfer the ephemeris

data from CPU to GPGPU memory, the main Sequence Searching iterative process is started. The

sequences are constructed iteratively, using a stack to store all the intermediate sequences for further

analysis. The stack initially contains only the 1 asteroid sequence made of the initial target and

time. Within the main loop, the next sequence is taken from the top of the stack, and starting from

the end of the sequence, all targets within reach for a given time of flight tof = tof0 are computed

on the GPGPU. While there are less than Nmin feasible targets identified in total, the time of flight

is increased by some ∆tof , and the search is repeated for this new time of flight. This process

continues until either some maximum tofmax is reached, or N > Nmin feasible targets have been

identified. If feasible targets have been identified, new sequences are constructed by appending each

15

identified feasible target to the current sequence, and the new sequences are placed on the top of

the stack. If, on the other hand, the maximum time of flight tofmax has been exceeded without

identifying any further feasible targets (e.g. because the total time of the mission has been exceeded

or the fuel reserves have been exhausted), the sequence is considered finished and ranked based on

the specific objectives of the problem and stored in the list of results. The process in then repeated

with the next sequence on top of the stack until the stack is empty.

As the goal is finding the maximum number of visited targets compatible with the given con-

straints on available propellant and mission time, it has been assumed that the optimal solutions

to select for the single transfer are those that minimizes the transfer time. This is the reason for

iterating on the time of flight, starting from a minimum and increasing until at least Nmin feasible

solutions are found. This way, out of all feasible transfers, only the most promising Nmin ones are

considered without inspecting further feasible transfers with longer time of flight.

The algorithm can be tweaked to increase the depth of search with this Nmin parameter. It has

the same goal as elitism in genetic algorithms. It forces not only the single best identified feasible

target to be retained but the best Nmin. Obviously this parameter highly affects the computational

time, as it increases exponentially the number of branches and hence sequences to be analyzed.

A sensitivity analysis has been performed and a suitable value that allows sufficient flexibility but

maintaining a reasonable computational time has been identified. The value identified was Nmin = 2

for quick searches and Nmin = 3 for more in depth searches. Higher values resulted in very large

computational times without yielding any improvement in the quality of sequences found.

This module has been coded in C++ and interfaced directly with MATLAB using the calllib

interface, so that it can be easily plugged into other modules developed in MATLAB.

B. GPGPU Ephemeris Evaluator

This module is responsible of providing ephemerides for the targets that are needed by the

Lambert’s problem solver. The implementation of this module is not new, and relies on the well

established techniques for ephemerides evaluation provided by JPL[27]. However, the fact that

the GPGPU memory is not directly connected to the main CPU memory with a high bandwidth

channel, necessitates moving all data regarding the ephemerides evaluation to the GPGPU mem-

16

ory. Moreover, code that runs on the GPGPU cannot take advantage of already existing libraries

developed for the CPU, so in particular the use of the SPICE library[28] is excluded.

The module is implemented starting from the available JPL ephemerides routines, which are

used to load data from the binary ephemerides file and provide the position and velocity of the

main bodies of the solar system. Those routine are adapted to run as an OpenCL kernel, ready to

be executed on a GPGPU, and the portion of the data contained in the binary file necessary for

the mission is loaded directly in the GPGPU memory. The only small adjustment for the GPGPU

is to remove the variable length loop in the solution of Kepler’s equation by a fixed loop of length

3. For what concerns the ephemerides evaluation of the small bodies, they are computed using

the analytical solution of the two-body problem, given the osculating orbital elements at a specific

date. All the osculating elements for the targets present in the dataset are loaded on the GPGPU

memory, so that they can be accessed directly by the GPGPU ephemerides evaluation module.

C. GPGPU Lambert’s Problem Solver

The Lambert’s problem solver module implements a modified version of the algorithm proposed

by R. Battin[18]. Also this module is implemented in OpenCL C, and takes as input the two IDs of

the initial and final targets, the starting date and the time of flight, and returns ∆Vl which is the

sum of both the initial and final maneuvers.

The algorithm of R. Battin for the solution of the Lambert’s problem foresees a series of internal

checks to identify possible singularities in the solution; moreover, the solution of several nonlinear

equations is required, which is implemented using Newton’s method. Those aspects of the original

algorithm don’t pose any particular problem to the implementation itself, and allows to increase

the efficiency of the computation, completely avoiding part of the computations if not needed (via

the checks) and providing accurate solutions of the nonlinear equations (via Newton’s methods).

However, the programming of a GPGPU is different, as reported in Section III, and it is usually

better to execute all code in all cases if this allows two separate instance of a kernel to perform the

same operations, as this will increase the efficiency of the code execution on the GPGPU.

Following this approach, all the checks have been removed and substituted with the setting of

singularity flags, which allows the returning of a high cost ∆Vl to signal an error condition, which

17

automatically leads to the solution being discarded in the CPU Driver program. While it may seem

like a particularly strong restriction, in practice this does not affect the quality of the resulting

sequences as in following iterations the time of flight is increased, and a solution for a target which

is not near the singularity anymore can be found.

Moreover, all Newton solvers where implemented with a fixed number of iterations. This allows

to fix the number of operations in the code, optimal for the SIMD architecture, while possibly not

obtaining maximum accuracy for all solutions of the nonlinear equations. However, by choosing the

number of iterations high enough, in most cases a sufficiently accurate solution is found. In our

code, we chose 5 iterations for all Newton loops in the code.

V. Low Thrust Optimization

The preliminary sequences generated by the GPGPU algorithm described above are not yet

complete low-thrust trajectories. Instead, they serve as an initial guess for a full fuel-optimal low-

thrust trajectory optimization. We use a code developed by Chen Zhang and Francesco Topputo

at Politecnico di Milano [29] that solves the optimal control problem by transforming it into a two-

point boundary value problem (TPVBP). The resulting TPBVP is first solved in the easier energy

optimal setting where the control is smooth, and then slowly transformed into the fuel optimal

setting characterized by a discontinuous bang-bang control by a homotopy between the two cost

functions. In the present MATLAB implementation applied to a typical single leg transfer this

process typically takes a few seconds to converge to the solution.

This algorithm allows us to obtain the thrust profile u(t) for a single leg, given by an initial

asteroid id A1 and departure time T1 as well as final asteroid A2 and arrival time T2. As the

preliminary sequences are based on estimates of the real cost, it is commonly found that a single

leg of a sequence does not converge to a solution (i.e. it is not feasible). On the other hand, it is

also often the case that a leg overestimates the fuel and time required to perform the low thrust

transfer, resulting in a transfer with long coast arcs.

These problems can often be solved by simply making small adjustments to the departure and

arrival times of the asteroid sequences. In this process, transfers with long coast arcs are shortened

to gain time, while infeasible transfers are given more time to complete. As the asteroid positions

18

change rather slowly, changing the timing by shifting often does not affect the feasibility of the

entire sequence.

In order to perform this full sequence optimization in an automated fashion, we have imple-

mented an algorithm to "wiggle" the sequences into place using a binary search like method. Let the

preliminary sequence of asteroids Ai with corresponding departure times T a
i and T d

i , i = 0, 1, . . . , N

be given. Furthermore, let ρ be the ratio of the time spent thrusting and the total transfer time for

any given low-thrust transfer.

Then with parameters w > 0, ε > 0, and 0 < ρm < 1 our algorithm for the nth leg works as

follows:

1. Compute the transfer time ∆T = T a
n+1 − T d

n between asteroid An and An+1.

2. Let T = T a
n+1−w∆T and T = T a

n+1 +w∆T which form the search interval [T, T] for the new

optimized arrival time T̃ a
n+1 of the transfer.

3. For the midpoint t = (T+ T)/2, compute the low-thrust transfer from (An, T
d
n) to (An+1, t).

4. If the low-thrust transfer is feasible, let T = t. If ρ > ρm, terminate the algorithm.

5. If the low-thrust transfer is not feasible, let T = t

6. Continue the algorithm at step 3 unless T − T < ε.

This procedure yields a new optimized value T̃ a
n+1 = T for the arrival time at An+1. The thrust

ratio ρ of that transfer will be larger than ρm if possible. The time shift δt = T̃ a
n+1−T a

n+1 is applied

to all following times T a
i , T d

i , i > n, in the sequence. Then the same algorithm is applied to the

next leg n+ 1.

In this way, the arrival time of each leg (and all the following legs) is shifted to enforce for each

leg an optimal transfer with at least thrust ratio ρm where possible. In our application, we typically

set the size of the initial search interval w = 0.5, which corresponds to a mission duration between

50% and 150% of the nominal value. The cutoff value ε is set to 1 day, so that the algorithm stops

when the interval of possible final times becomes smaller than that. The value for ρm is somewhat

flexible, depending on the needs of the sequence. In general, we found that a lower value for ρm,

19

Table 1 Preliminary sequence of 13 asteroids in the setting of GTOC7

Asteroid ID T a [MJD] T d [MJD]
566 − 63625
2328 63805 63835
656 64065 64095
1148 64265 64295
5690 64475 64505
3418 64655 64685
7384 64795 64825
2337 64965 64995
7398 65175 65205
12538 65295 65325
14196 65455 65485
1402 65595 65625
14188 65735 65765

that is a less optimal thrust ratio, leads to longer flight times but lower fuel consumption, while a

higher value for ρm reduces the flight time but typically increases the fuel consumption. Values for

the target thrust ratio used in our work lie in the range 0.5 < ρm < 1. The typical runtime for this

sequence optimization on an average desktop machine (iMac with a 2.9 GHz Intel i5 CPU and 8

GB DDR3 RAM) is about 30 seconds.

We remark that a thrust ratio of ρm = 0 means that the very first convergent solution identified

will be used. In particular, if a sequence as given is already feasible, the algorithm will simply redo

the verification without any changes to the times.

ρm [-]
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Fu
el

 M
as

s
[k

g]

1100

1200

1300

1400

1500
Fuel Mass
Mission Length

M
is

si
on

 L
en

gt
h

[y
ea

r]

5.6

5.7

5.8

5.9

6

Fig. 5 Low-thrust sequence optimization with various values for the minimum thrust ratio ρm
versus the resulting consumed fuel mass mf and total mission length T .

To illustrate the effect of the parameter ρm, we use a generic preliminary sequence of 13 asteroids,

20

given in Table 1, generated by the sequence GPGPU search algorithm. In the settings of the Seventh

Global Trajectory Optimization Competition (GTOC 7) problem definition (see Section VI), this

sequence is not feasible. That is the transfers given in Table 1 are not possible with the available

low-thrust propulsion system. In order to arrive at feasible low-thrust trajectories, the sequence is

optimized using various values for ρm and the resulting consumed fuel mass mf and total mission

time T is reported in Figure 5. At all levels optimization was possible and a feasible trajectory was

identified. A clear trend can be established, showing the growing fuel consumption (rising from 1171

kg to 1454 kg) as the thrust ratio increases, while the mission time is reduced (from 5.9274 years

to 5.6838 years). Thus, depending on whether a mission is time constrained or fuel constrained,

different values for ρm can be chosen to obtain an optimal result.

VI. Analysis

In the following sections we provide analyses for various aspects of the algorithm. In all of this

section, we use the following values (derived from the GTOC7 problem statement) for sequence

generation:

• Initial probe mass mi = 2000 kg, of which mp = 1200 kg are available fuel.

• Maximum thrust Tmax = 0.3 N and specific impulse Isp = 3000 s.

• Maximum mission length T = 6 years.

We furthermore use a dataset of asteroid ephemerides provided by Politecnico di Torino for GTOC7.

This dataset is very big, it comprises 16256 asteroids of the main asteroid belt of the solar system

and thusly provides ample opportunity for our algorithm to show its power.

A. Algorithm Parameter Dependence

As described in Section II, the algorithm depends strongly on two parameters αf and αt that

allow tuning of the sequence generation. In the following we investigate the dependence of the

sequence generation on these parameters.

For each low-thrust transfer the low-thrust propulsion system must be able to provide the

necessary amount of ∆V in order to achieve the required change in orbit. This requires two criteria

21

to be met: firstly, as the change in momentum is not instantaneous there must be enough time

during the transfer for the low-thrust propulsion to exert the required thrust. Secondly, there must

be enough fuel available to perform this maneuver and the fuel consumption must be estimated.

While related, the estimation of the transfer time and the fuel consumption have been found to

behave somewhat differently from each other relative to the impulsive Lambert’s transfer. For this

reason, we have introduced the two correction factors which independently adjust each measure.

We recall that αt ∈ (0, 1] is the correction factor for the maximum ∆V obtainable from the low-

thrust propulsion over the time of flight, and it is applied before comparing to the ∆Vl required by

the Lambert’s transfer. As such, a lower value for αt generally means longer flight time and higher

estimated fuel consumption to achieve the same Lambert’s transfer. The parameter αf ∈ [1,∞),

on the other hand, represents a correction factor for the estimated fuel consumption of a transfer.

The higher this value, the more fuel is consumed relative to the Lambert’s transfer.

In our experiments we found values of αt ∈ [0.6, 0.8] and αf ∈ [1.0, 1.3] to yield reasonably accu-

rate preliminary sequences. To illustrate the effect of the parameters in this range, we consider the

fixed initial asteroid ID 381 and initial departure time 62233 MJD and analyze the best preliminary

sequence found (ranked first by length and then by estimated fuel consumption). For each case,

we apply the low-thrust optimization described in Section V with ρm ∈ {0.5, 0.6, 0.7, 0.8, 0.9}. Out

of the resulting low-thrust trajectories that satisfy the mission constraints, the one with the lowest

fuel consumption is selected. If none of the low-thrust trajectories satisfy the mission constraints,

the one with the smallest fuel consumption is selected. In Table 2 we report the resulting sequence

length and, if a low-thrust trajectory was found, the relative error of the estimated vs. the real

value for both mission time and consumed fuel mass. For low-thrust trajectories that violates the

mission constraints, and thus are not considered feasible, the values that violate the constraint are

put in parenthesis. Preliminary sequences for which no low-thrust trajectory could be found at all,

are marked with − ∗ −.

As can be clearly seen, the effect of αt is rather straightforward: a higher value leads to longer

sequences, which then however tend to fail in the low-thrust optimization. First, the optimization

process is able to identify low-thrust trajectories for the preliminary sequences that fail to meet

22

Table 2 Dependence on the parameters αt and αr in the setting of GTOC7. Trajectories
violating mission constraints are in parentheses, unfeasible sequences are marked − ∗ −

αf αt: 0.6 0.65 0.7 0.75 0.8
Length: 11 12 12 13 14

1.0 Time: 4.37% (−4.5%) 1, 42% − ∗ − − ∗ −
Fuel: −22.5% (−22.1%) (−30.8%) − ∗ − − ∗ −

Length: 11 12 12 13 13
1.1 Time: 4.38% (−4.3%) 1.42% − ∗ − − ∗ −

Fuel: −16.9% (−16, 7%) (−26.2%) − ∗ − − ∗ −

Length: 11 12 12 12 13
1.2 Time: 4.39% (−4.48%) 1.42% (−8.07%) − ∗ −

Fuel: −11.6% (−11.7%) (−21.8%) −4.87% − ∗ −

Length: 11 12 12 12 12
1.3 Time: 4.4% 0.00% 1.42% (−8.07%) − ∗ −

Fuel: −6.52% −12.0% (−17.7%) 0.00% − ∗ −

the problem restrictions, but for values of αt > 0.7 the algorithm is not even able to obtain any

low-thrust trajectories any more as the preliminary sequences are too far from feasible. Thus αt

can serve as a measure of how aggressive the search is.

The interpretation of αf is a bit more difficult. Its main effect on sequence generation is that

the estimate of the actual fuel usage becomes more accurate. For the (rather unrealistic) αf = 1.0,

the only feasible sequence underestimates the actual fuel consumption by −22.5%. As αf increases,

the underestimation drops to only about −6.52% at αf = 1.3. Furthermore, at high values of αt

it becomes evident that αf restricts the length of the sequences found. This is because the probe

runs out of fuel faster at higher values for αf , even if a high αt would allow the probe to reach more

asteroids.

We remark that as sequences become increasingly unfeasible in the low-thrust optimization,

the low-thrust optimization procedure applied aggressively changes the times of the sequences in

order to make the optimal control problem converge. As shown in Section V, this basically leads

to a trade-off between the flight time and the fuel consumption. As a result, large variations in

sequence quality are possible, as can be seen e.g. for αt = 0.75 and αf = 1.2 and 1.3. After

the optimization, both sequences (which were quite similar to start with) became very accurate in

the fuel consumption, while violating the time constraints. However, this effect is not due to the

23

Fig. 6 Trajectory of a sequence of 14 asteroids in the setting of GTOC7.

GPGPU sequencing algorithm and in general of course does not hold for these particular parameter

values. It is merely a side effect of the low-thrust optimization process.

In conclusion, while more aggressive values of αt and αf yield more impressive looking initial

sequences, the best results in the particular test case shown here are obtained with rather conserva-

tive values of αt = 0.65 and αf = 1.3. In our experience those values very consistently yield good,

easily optimizable preliminary sequences.

B. Long Sequence Search

As one of the main goals of sequence generation is the identification of particularly long feasible

sequences, we can tune the algorithm in particular to find such sequences. From the above sensitivity

analysis, we conclude that a setting of αf = 1.3 is necessary in order to obtain reasonable estimates

of the fuel consumption and hence make the sequences feasible. A higher setting could be selected to

be on the safe side and estimate fuel consumption more accurately. However, as fuel consumption is

a cutoff criterion for sequence generation, we would rather underestimate the consumption slightly

in order to obtain more aggressive preliminary sequences. For αt we chose a value of αt = 0.68

instead, again operating at the upper limit of where sequences appear to be feasible.

24

A random search in the asteroid set indicates that for the given mission constraints, it is rela-

tively easy to identify feasible sequences of length 12 and also 13 sequences appear quite frequently.

Often long sequences that violate the mission constraints just barely can be made feasible by careful

manual adjustment after the automatic optimization algorithm described in Section V is run.

Consider as an example the case of a 14-asteroid sequence that was identified in the random

search. After the automatic optimization process, it violated the mission constraints by less than

0.1% in fuel consumption. After a manual adjustment of the last few legs of the sequence, it was

possible to obtain a feasible 14-asteroid sequence given in Table 3. The fuel mass consumed by this

sequence is 1199.89 kg and it takes 5.947 years to complete the mission.

Figure 6 illustrates the corresponding orbit of the probe around the Sun. Thrusting arcs are

reported as thick lines, while the coasting arcs are reported as thin lines. As can be seen, the

sequence is nearly time optimal, with only short coast arcs in the middle. This sequence is very

typical for the trajectory of a "good" sequence. Motion starts at an asteroid closer to the Sun, and

then spirals outward counter-clockwise in a more or less circular motion, hopping from asteroid to

asteroid. Physically, this is of course expected as moving outward requires less energy than moving

inward and the rendezvous condition with the asteroids imposes that the probe move along with the

asteroids in counter-clockwise motion. However, we remark that none of these considerations were

programmed into the algorithm, and as such it is remarkable that the solution identified exhibits

these physical properties so clearly.

Unfortunately, despite our best efforts, we were unable to locate any 15-asteroid sequences

satisfying the mission constraints.

C. Comparison with CPU Implementation

The Sequence Search Algorithm performances has been compared with a branch & bound

algorithm based on the same consideration laid out in Section II but implemented to run on a CPU

within MATLAB. The tests have been performed on the following two different systems running the

same Linux distribution, with the same kernel version and the current version of the proprietary

graphical drivers at the time:

25

Table 3 Fully optimized sequence of 14 asteroids in the setting of GTOC7

Asteroid ID T a [MJD] T d [MJD]
14196 − 65085.1
2337 65280.0 65310.0
7384 65398.4 65428.4
10990 65499.3 65529.3
3838 65738.6 65768.6
3919 65972.3 66002.3
566 66196.1 66226.1
5727 66353.2 66383.2
9645 66510.3 66540.3
963 66629.3 66659.3
5039 66778.0 66808.0
1403 66943.8 66973.8
2993 67087.4 67117.4
8472 67227.4 67257.4

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3
0

5

10

15

20

25

30

35

40

45

50

semimajor axis [AU]

in
cl

in
at

io
n

[d
eg

]

Kirkwood gaps

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3
0

5

10

15

20

25

30

35

40

45

50

semimajor axis [AU]

in
cl

in
at

io
n

[d
eg

]

Group 1 Group 2 Group 3

Fig. 7 Visualization of the asteroid distribution in the GTOC7 dataset.

• System 1: Intel Core i7-4820K @3.7GHz 32GB, (2) NVIDIA Tesla K20c 5GB

• System 2: AMD Phenom II X6 1075T @3.0GHz 8GB, AMD Radeon HD7950 3GB

For the test we search sequences starting from Asteroid with ID 381 starting at 62233 MJD. For

the CPU algorithm, however, it was necessary to limit the search to a subset of asteroids in order

to keep the runtime of the algorithm sustainable.

In Figure 7 the semi-major axis and inclination of the entire dataset of available asteroids is

shown. It is evident that the asteroids are separated in three main groups by the Kirkwood gaps.

A natural idea is therefore to apply a pre-filtering to the data set, trying to reduce the number of

asteroid in each filtered data set.

The search on the CPU has been limited to group 3 (the farthest from the sun) pre-filtered

26

Table 4 Performance comparison of the massively parallel GPGPU implementation with CPU
branch & bound

Platform Asteroids Seq. Length Time System 1 [s] Time System 2 [s]
CPU GPGPU Sum CPU GPGPU Sum

CPU 1013 11 57 − 57 61 − 61
GPGPU 16256 12 9 3.5 12.5 9 7 16

with a relative inclination of the orbital plane with respect to asteroid 381 of ±5 deg. The resulting

set comprises only 1013 of the initial 16256 asteroids. No pre-filtering is needed with the GPGPU

Sequence Searching Algorithm as the performance difference between the full data set and the

reduced data set is minimal.

The results of the comparison are shown in Table 4. Looking at the results of the test, it

is apparent that the CPU version of the searching algorithm is performing roughly equally on

comparable CPUs, while the GPGPU Algorithm is more strongly affected by the GPGPU model.

On both the systems analyzed the time spent on the CPU is the same. However, the time spent on

the GPGPU is highly different. The NVIDIA GPGPU is clearly faster and more efficient. Obviously

the cards are not of the same class, the NVIDIA Tesla card used here was the best available general

purpose computing card at the time of the test, while the AMD is merely an high-end graphics

card. We note, however, that taking into account only the cost of the two cards, the AMD card

is the winner, as it costs only about 10% of the NVIDIA one, while providing about half of the

performance.

Another conclusion that can be drawn from the results is that limiting the search to a pre-

filtered group is clearly affecting the quality of the search, as evidenced by the shorter sequences

found by the CPU algorithm.

In this comparison, we do not consider in detail other differences in the quality of the results

such as the total number of high-quality sequences returned or the distribution of the results in the

overall search space. However, we have observed that the GPGPU sequencing algorithm yields very

good results that can typically be optimized into true low-thrust trajectories, and the identified

sequences are typically quite different, indicating a good global distribution in the search space.

The same was not found for the CPU algorithm, which generated very similar sequences.

27

VII. Application to GTOC 7

The Global Trajectory Optimisation Competition was inaugurated in 2005 by the Advanced

Concepts Team at the European Space Agency. After the first edition, following competitions were

organized by the winning team of the preceding GTOC edition. The work presented in this paper

has initially been developed to find a solution of the 7th edition of the GTOC.

The problem posed by GTOC7 was the following: A mothership equipped with nuclear thermal

propulsion (impulsive) is sent from Earth to the main asteroid belt and carries three low-thrust

probes that need to be released at appropriate times and gather science on as many asteroid as

possible (via a rendezvous) before returning to the mothership to deliver their findings.

The initial mass of each probe is 2000 kg, of which 1200 kg are available fuel mass. The

characteristics of the low-thrust propulsion system on each probe are a maximum continuous thrust

of 0.3 N and a specific impulse Isp of 3000 s. Each probe has a lifetime of 6 years after departing

from the mothership, before the end of which it must be picked up again by the mothership via a

rendezvous. The complete mission duration from Earth departure until rendezvous with the last

probe is 12 years. The dynamics of the problem are assumed to be those of a pure two-body problem

between the mothership or probe and the Sun. Lastly, the GTOC7 problem description provides a

dataset of 16256 asteroids from which to chose the targets for the rendezvous.

The GPGPU Sequence Search Algorithm has been integrated in the complete mothership opti-

mization to find suitable sequences for the three probes of GTOC7.The mothership strategy imposes

that all the three probes depart form the same asteroid and arrive at the same asteroid (different

from the initial one), thus allowing an easier optimization of the mothership maneuvers. This is not

a limitation of the Sequence Search Algorithm, but of the strategy employed for the optimization

of the Mothership trajectory.

As this paper focuses on the sequence generation, we will not present the Mothership trajectory

optimization in detail. Instead, we show how the features of the Sequence Search Algorithm allow

an easy identification of Mothership solutions compatible with the low-thrust sequences of the three

probes. As reported in Section IV the algorithm constructs the sequence starting from a given initial

asteroid, but is a priori not capable of constraining also the final one.

28

Table 5 Final sequences for GTOC7 probes with identical initial and final asteroids highlighted

Probe 1 Probe 2 Probe 3
Asteroid ID T d [MJD] Asteroid ID T d [MJD] Asteroid ID T d [MJD]

3326 62637 3326 63350 3326 63653
4828 62912 11037 63630 16080 63863
3749 63162 3418 63875 4998 64128
8149 63357 3899 64080 12543 64323
10943 63607 9645 64300 1891 64483
5711 63817 6575 64495 10772 64683
9646 64037 1402 64725 656 64818
8442 64237 16193 64840 3016 65018
12527 64397 8472 65040 1906 65163
5727 64577 531 65220 5046 65343
3412 64757 4393 65360 12614 65523

3412 65480 3412 65703

However, the GPGPU algorithm is capable of returning all possible sequences ranked by their

quality. Thus, it is possible to search within the returned sequences of the three probes for those

that have a common final asteroid, or at least a common asteroid among the last few asteroids

visited in each sequence. This approach is possible only in the GPGPU version of the algorithm

that considers the entire dataset, thus allowing the identification of a large number of high-quality

sequences for each given starting asteroid and time (on the order of 500− 1000 in our the test case)

which are distributed broadly over the entire search space.

Implementing such a search, inside an evolutionary optimizer that also takes into account the

mothership trajectory, the sequences in Table 5 have been identified. These sequences were optimized

using the low-thrust optimization method in Section V which yielded the the trajectories for the

probes shown in Figure 8. In the figure the thrusting arcs are reported as thick lines, while the

coasting arcs are shown as thin lines. It is clear that the GPGPU Sequence Search algorithm

found indeed feasible solutions, which are very near to the optimal one, as the optimized low-thrust

trajectory is thrusting almost all time at maximum thrust as shown exemplary by the thrust profile

of probe 1, indicating that the solutions are very close to time-optimal.

With the sequences identified here, along with the Mothership trajectory, we were able to

achieve 7th place in the GTOC competition. After studying the results of other the teams, we

believe that the main weakness of our approach is the Mothership strategy. The quality of the

low-thrust sequences we can generate using out algorithm seems to us to be the same as that of the

29

Fig. 8 Optimized trajectories of the three probes for our GTOC7 solution and thrust profile
of the first probe.

top ranking teams.

VIII. Conclusions

The presented massively parallel implementation of a GPGPU Sequence Searching Algorithm

for MRLT missions has been shown to be very powerful in identifying optimal sequences. The effect

of the various parameters of the algorithm on the resulting sequence generation have been analyzed.

The GPGPU implementation has been compared with a branch-and-bound implementation on the

CPU. It has been found that the GPGPU implementation yields significantly better results both in

terms of sequence quality as well as computational time. Finally, the results of the application to

the GTOC7 problem demonstrate the efficiency of the proposed method on very complex problems,

allowing a more extensive search in less time than the CPU implementation.

The approach presented here is not limited to missions to asteroids, its potential could also be

exploited very well in the planning of multiple debris removal missions or in any other application

30

characterized by a search space that combines both continuous and discrete variables.

IX. Acknowledgments

The authors would like to thank C. Zhang and F. Topputo for their low-thrust trajectory

optimizer, as well as C. Colombo and F. Letizia for their CPU implementation of a branch-and-

bound algorithm and A. Morselli for his work on the Mothership trajectory optimization code.

The authors are grateful for the generous support of this work by NVIDIA Corporation through

the donation of two NVIDIA Tesla K20c GPGPU accelerator cards within the NVIDIA academic

partnership program. A. Wittig gratefully acknowledges the support received from the EU Marie

Curie network AstroNet-II (PITN-GA 2011-289240).

References

[1] “Global Trajectory Optimization Portal http://sophia.estec.esa.int/gtoc_portal/,”

[2] M. Vasile and P. De Pascale, “Preliminary Design of Multiple Gravity-Assist Trajectories,” J. Spacecraft

and Rockets, Vol. 43, No. 4, 2006.

[3] B. Conway, Spacecraft Trajectory Optimization. Cambridge Aerospace Series, Cambridge University

Press, 2010.

[4] J. Stuart, K. Howell, and R. Wilson, “Design of End-to-End Trojan Asteroid Rendezvous Tours In-

corporating Potential Scientific Value,” Advances in the Astronautical Sciences Spaceflight Mechanics,

Vol. 152, 2014, pp. 1–20. AAS 14-267.

[5] J. Clausen, “Branch and bound algorithms-principles and examples,” Department of Computer Science,

University of Copenhagen, 1999, pp. 1–30.

[6] K. Alemany and R. Braun, “Design Space Pruning Techniques for Low-Thrust, Multiple Asteroid

Rendezvous Trajectory Design,” Advances in the Astronautical Sciences, Vol. 129, 2007, pp. 1–12. AAS

07-348.

[7] NVIDIA Inc., “NVIDIA Tesla Accelerated Computing http://www.nvidia.com/object/tesla-

supercomputing-solutions.html,”

[8] J. Nickolls and W. Dally, “The GPU Computing Era,” IEEE Micro, Vol. 30, March 2010, pp. 56–69,

10.1109/MM.2010.41.

[9] CUDA C Programming Guide. NVIDIA Inc., 2015.

31

[10] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E. Lefohn, and T. Purcell, “A survey

of general-purpose computation on graphics hardware,” 2007.

[11] J. Bolz, I. Farmer, E. Grinspun, and P. Schröoder, “Sparse matrix solvers on the GPU: conjugate

gradients and multigrid,” ACM Transactions on Graphics (TOG), Vol. 22, ACM, 2003, pp. 917–924.

[12] A. Corrigan, F. Camelli, R. Löhner, and F. Mut, “Semi-automatic porting of a large-scale Fortran

CFD code to GPUs,” International Journal for Numerical Methods in Fluids, Vol. 69, No. 2, 2012,

pp. 314–331, 10.1002/fld.2560.

[13] L. Nyland, M. Harris, and J. Prins, Fast N-Body Simulation with CUDA, Vol. Part 3: Geometry of

GPU Gems, ch. 31, p. 677–695. NVIDIA Corp., 2008.

[14] N. Arora, V. Vittaldev, and R. P. Russell, “Parallel Computation of Trajectories Using Graphics Pro-

cessing Units and Interpolated Gravity Models,” Journal of Guidance, Control, and Dynamics, June

2015, pp. 1–11, 10.2514/1.G000571.

[15] N. Nakhjiri and B. F. Villac, “An Algorithm for Trajectory Propagation and Uncertainty Mapping

on GPU,” 23rd AAS/AIAA Space Flight Mechanics Meeting, American Astronomical Society, 2013.

2013-376.

[16] H. Shen, V. Vittaldev, C. D. Karlgaard, R. P. Russell, and E. Pellegrini, “Parallelized Sigma Point

and Particle Filters for Navigation Problems,” 36th Annual AAS Guidance and Control Conference,

American Astronomical Society, 2013. 2013-034.

[17] Khronos Group, “OpenCL The open standard for parallel programming of heterogeneous systems

https://www.khronos.org/opencl/,”

[18] R. H. Battin, An introduction to the mathematics and methods of astrodynamics. Aiaa, 1999.

[19] C. Brown, Spacecraft Propulsion. AIAA education series, American Institute of Aeronautics & Astro-

nautics, 1996.

[20] J. Owens, “GPU architecture overview,” ACM SIGGRAPH, Vol. 1, 2007, pp. 5–9.

[21] NVIDIA Inc., “Tesla K20 GPU Accelerator,” July 2013.

[22] L. Dagum and R. Menon, “OpenMP: an industry standard API for shared-memory programming,”

Computational Science Engineering, IEEE, Vol. 5, Jan 1998, pp. 46–55, 10.1109/99.660313.

[23] H. Attiya and J. Welch, Distributed computing: fundamentals, simulations, and advanced topics, Vol. 19.

John Wiley & Sons, 2004.

[24] Khronos OpenCL Working Group, The OpenCL Specification, Version 2.0. Khronos Group, revision

22 ed., 2014.

32

[25] J. Fang, A. Varbanescu, and H. Sips, “A Comprehensive Performance Comparison of CUDA and

OpenCL,” International Conference on Parallel Processing (ICPP), September 2011, pp. 216–225,

10.1109/ICPP.2011.45.

[26] K. Komatsu, K. Sato, Y. Arai, K. Koyama, H. Takizawa, and H. Kobayashi, “Evaluating Performance

and Portability of OpenCL Programs,” Fifth International Workshop on Automatic Performance Tun-

ing, June 2010.

[27] X. Newhall, E. M. Standish, and J. G. Williams, “DE 102-A numerically integrated ephemeris of the

moon and planets spanning forty-four centuries,” Astronomy and Astrophysics, Vol. 125, 1983, pp. 150–

167.

[28] C. Acton, “Ancillary data services of NASA’s Navigation and Ancillary Information Facility,”

Planetary and Space Science, Vol. 44, No. 1, 1996, pp. 65 – 70. Planetary data system,

http://dx.doi.org/10.1016/0032-0633(95)00107-7.

[29] C. Zhang, F. Topputo, F. Bernelli-Zazzera, and Y. Zhao, “Low-Thrust Minimum Fuel Optimization in

the Circular Restricted Three-Body Model,” 2nd IAA Conference on Dynamics and Control of Space

Systems (DyCoSS 2014), Rome, March 2014, pp. 1–21. IAA-AAS-DyCoSS2-14-09.

33

