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We present a new approach to testing multi-UAV conflict resolution algorithms. We have 

formulated the problem as a multi-objective search problem, with two objectives: finding air 

traffic encounters that (1) are able to reveal faults in conflict resolution algorithms, and (2) 

are likely to happen in the real world. Our method uses agent-based simulation and multi-

objective search to automatically find encounters satisfying these objectives. It describes 

pairwise encounters in 3D space using a parameterized geometry representation, which 

allows encounters involving multiple UAVs to be generated by combining several pairwise 

encounters. The consequences of the encounters, given the conflict resolution algorithm, are 

explored using a fast-time agent-based simulator. To find encounters meeting the two 

objectives, we use a genetic algorithm approach. We have applied our method to test ORCA-

3D, a widely-cited open source multi-UAV conflict resolution algorithm, and compared our 

method’s performance against a plausible random testing approach. Our results show that 

our method can find the required encounters more efficiently than the random search. The 

identified safety incidents are then the starting points for understanding limitations of the 

conflict resolution algorithm. 
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I. Introduction 

NMANNED Aerial Vehicles (UAVs) are attracting the attention of innovators and companies due to their huge 

potential for civilian and commercial use. Several large technology companies are testing UAVs for delivering 

goods, providing Internet access, etc., and they are seeking to get permits to operate UAVs beyond visual line of 

sight. Once such operation is allowed, manufacturers and operators will race to exploit UAVs for many applications, 

and future airspace is likely to be very crowded with all kinds of UAVs. Air Traffic Management (ATM) for these 

UAVs will be a major concern, particularly because of the increased opportunity for unsafe encounters. 

To make safe operation possible, UAVs must provide a Sense and Avoid (SAA) capability. According to [1], to 

achieve SAA UAVs must maintain good situation awareness and be capable of self-separation and collision 

avoidance. These two sub-capabilities form a safety barrier of two layers. In the first layer (self-separation), UAVs 

autonomously plan their flight paths to resolve conflicts4 with each other (and potentially with conventional aircraft) 

and maintain a defined safe separation distance. If this safe separation is predicted to be violated or the collision risk 

is predicted to be higher than a defined threshold, the second layer (collision avoidance) will provide evasive 

maneuvers for the UAVs to avoid an imminent collision. Both layers function in a similar way — each UAV uses its 

situation awareness to calculate and execute a change to its flight path to avoid violation of safe separations or 

collisions. Usually collision avoidance algorithms deal with pair-wise encounters and take no account of restoring 

the UAVs to their original flightpaths, while self-separation algorithms deal with two or more UAVs encounters and 

need to take the recovery of the intended flight path into account.  

For the purpose of self-separation, a wide variety of aircraft (or robots, agents) conflict resolution approaches 

that have been proposed in the fields of air traffic management, automatic control, and mobile robotics [2-8] have 

the potential to be adapted for UAVs. However, given the strict safety requirements of the aviation sector, a conflict 

resolution algorithm cannot be accepted and deployed for UAV self-separation use without rigorous testing and 

evaluation. 

The testing and evaluation of conflict resolution algorithms, in most of existing published research is in the form 

of coverage-based test case generation or large-volume simulations. Flight test is also indispensable for ensuring 

conflict resolution algorithms have the desired properties. However, due to its high cost, combined with the risk 

involved, it can only be conducted for a very limited set of encounter cases and thus it gives quite limited assurance. 

                                                           
4 A conflict is a situation where two or more UAVs encounter each other and a violation of safe separation (and 

thus, potentially, a collision) would happen if no actions were taken. 
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It do, of course, tests real aircraft behavior. In contrast, simulation is more cost-effective and thus can cover a far 

larger part of the possible operational situations, but it is subject to limitations in the fidelity of the simulation. In 

this paper, we only survey related studies in the form of software testing and simulation. 

For coverage-based test case generation, some studies by researchers from NASA Ames used model checking to 

generate test cases for testing the built-in conflict resolution algorithms of TSAFE [9] and the AutoResolver [10]. 

For example, in [11], Bushnell et al used Symbolic PathFinder (an extension to Java PathFinder [12] that combines 

symbolic execution and constraint solving) to automatically generate test cases that achieve a variety of coverage 

criteria including Modified Condition/Decision Coverage (MCDC) [13]. In [14], Giannakopoulou et al. developed a 

testing environment for generating test cases that cover the behavioral space of AutoResolver to a satisfactory 

degree.  

Large-volume simulations, especially Monte-Carlo simulations, are typically used to evaluate the performance of 

conflict resolution algorithms rather than specifically to find individual faults. In [15], Paielli described a trajectory 

scripting language to help automatically generate large-volume simulated air traffic encounters, and ran simulations 

of the generated encounters to evaluate the conflict resolution algorithms of the TSAFE software. A Monte Carlo 

simulation approach [16] and an accelerated Monte Carlo approach [17] were used for probabilistic risk analysis of a 

next-generation air traffic control operational concept. Both studies derived quantitative results of the mean time 

between mid-air collisions, and identified important failure modes. Blom and Bakker in [18] also investigated the 

collision risk of an airborne self-separation concept using techniques in agent-based modeling and rare-event Monte 

Carlo simulation. Their results show that the specific self-separation concept they consider can safely accommodate 

very high en route traffic demands.   

The studies listed in the previous two paragraphs may all discover faults and limitations in algorithms. This is 

often a side-effect of their analysis however — in assuring bug-freeness of an algorithm or collecting statistics about 

algorithm performance under diverse conditions, they often reveal faults. They do not, however, actively pursue 

specific faults, or conduct systematic stress testing to find the precise limits of algorithms. 

In [19], we proposed a testing approach which combines agent-based simulation and evolutionary search that can  

find specific encounter situations an SAA algorithm cannot handle. That testing approach is most suitable for 

collision avoidance algorithms, where only two UAVs are involved in an encounter. With the introduction of 

civilian UAVs, the airspace will become more congested and many body encounters will become more likely to 



arise in the future. In this paper we extend our previous approach to test conflict resolution algorithms which are 

distributed across multiple UAVs and which are supposed to resolve conflicts between them collectively. 

Specifically, we extend it to assess the limitations of the algorithms — we determine the simplest conflict (i.e. the 

most likely to happen in real world conditions) that the algorithm fails to resolve. 

We are targeting the conflict resolution algorithms suitable for unmanned rotary wing aircraft (helicopters, multi-

copters) which are very popular in civilian use due to the ease of controlling them. They are different from fixed 

wing aircraft and the most significant feature of these aircraft is that they can hover in the air, which makes them 

capable of dexterous maneuvers. Specifically, the conflict resolution algorithm we have used for our case study here 

is ORCA-3D, a widely-cited open source multi-UAV conflict resolution algorithm. 

The rest of the paper is organized as follows. In Section II we formulate the problem to be solved and present our 

method as a testing framework. The testing framework includes two parts: simulation and search. In Section III we 

describe the simulation part of the testing framework, which we use to simulate behaviors of UAVs with conflict 

resolution algorithms on-board. In Section IV, we explain how to automatically generate multi-UAV encounters. In 

Section V, we describe the search part of our testing framework and detail the design of the multi-objective search 

method. Section VI is a case study, where we describe the experimental comparison of our method with a random 

search based approach to the problem in testing ORCA-3D. Section VII summarizes and concludes the paper. 

II. Problem Formulation and the Testing Framework 

In the UAV conflict resolution situation, we define an incident as the violation of safe separation. In this paper 

we focus on civilian UAVs, and our typical operational scenario is using UAVs to deliver parcels from a distribution 

center to customers’ house. We therefore only concern ourselves with conflicts between UAVs, not with conflicts 

between UAV and manned commercial aircraft. It is noted that there is no well-accepted definition for safe 

separation and several metrics exist, which include distance-based metric, time-based metric and risk-based metric. 

The former two metrics concern the distance between two UAVs or the time left for two UAVs to collide. Risk-

based metric, e.g. the one proposed in [20], defines a safe separation as a relative state between UAVs where the risk 

of collision is lower than an unacceptable level. In this paper, we adopt a simple distance-based metric — if the 

horizontal distance and the vertical distance between two UAVs are smaller than some threshold values at the same 

time, safe-separation is violated and an incident occurs. These two threshold values are both set to be 20m, which is 



reasonable given the properties of the UAVs studied including the operational scenario, slow speed, small size and 

high maneuverability. However, we do not claim that this creates an acceptable level of collision risk for a 

comparable real application. The approach described does not, of course, depend on the exact value chosen. 

To test the capability of multi-UAV conflict resolution algorithms, we want to find counterexamples. That is, we 

want to find encounters where, despite the help of the conflict resolution algorithms, UAVs still experience violation 

of safe separation. The encounters should also be simple, so that they are very likely to happen in the real world 

environment. In this paper, we define the cardinality of an encounter to be the number of UAVs involved in this 

encounter. We assume that encounters with lower cardinality are more likely to happen in the real world (we 

recognize that other factors could be considered, but for the sake of this paper simply meeting the low-cardinality 

requirement is an adequate challenge). 

Obviously, the problem can be solved by first randomly generating lots (millions, perhaps) of encounters with 

different cardinalities and then running simulations to evaluate these encounters. If an encounter leads to a violation 

of safe separation, this encounter will be recorded. After gathering enough (thousands, perhaps) of these encounters, 

we can select those encounters with the lowest cardinality (the simplest). These constitute simple counterexamples 

to any claim that the conflict resolution algorithms is perfect, and they can be used as the starting point for further 

analysis (maybe manually) of the limitations of the algorithm. In this paper, we call this a random search approach. 

A primary drawback of this random search approach is that, to gather enough encounters that will lead to 

violations of safe separation, millions of random encounters may need to be generated and evaluated (if the conflict 

resolution algorithm is moderately good). The cost of running simulations to evaluate such a huge number of 

encounters is considerable. 

In the hope of reducing the number of simulations we need to run, we have formulated this problem as a multi-

objective search problem, where we actively search for encounters satisfying the following two objectives:  

1) Be able to lead to a violation of safe separation;  

2) Have low cardinality. 

The two objectives are equally important to our problem. An encounter that is able to lead to an incident but is so 

complex that it will rarely, if ever, happen may not be insightful for analyzing the conflict resolution algorithm. 

Similarly, a simple encounter that causes no problem for the algorithm is useless for our purposes. These two 

objectives are in opposition, because the fewer UAVs involved in an encounter, the less likely it is to lead to an 



incident. The two objectives are also incomparable — we cannot merge them into a single objective by allocating 

different weights to each. This problem therefore cannot be solved using a single objective search approach.  

An encounter that satisfies the two objectives is a candidate solution to the multi-objective search problem. To 

make it easier to automatically generate encounters, in a simulated encounter we define an “own-ship”, whose initial 

position and velocity are fixed at the normal values for them, at the beginning of a simulation. All the “intruders” 

(UAVs flying in the same space as the own-ship) are defined and generated relative to the own-ship. All intruders 

are generated in conflict with the own-ship5; they are not necessarily in conflict with each other. 

In our simulations, we ignore incidents between pure intruders; we are only interested in incidents involving the 

own-ship. This is a simplification, but we think it is reasonable, because: (1) our main purpose is to find faults of a 

conflict resolution algorithm, rather than to prove an algorithm is fault-free; it is thus not fatal for us to miss some 

incidents, provided that we discover some other ones; (2) since the intruders are generated to all have conflicts with 

the own-ship, incidents involving the own-ship will much more likely to happen than those only involving pure 

intruders. 

We need to run simulations of encounters and monitor the results of the simulations to decide whether they will 

lead to incidents or not. As a result, the multi-objective search problem cannot be fully represented in mathematical 

formulations, thus cannot be solved by classical mathematical programming techniques, such as Newton’s method 

and its many relatives and variants. Consequently, we treat the simulation as a black-box and use a population-based 

evolutionary search method. Specifically, we combine agent-based simulation and a multi-objective search 

(specifically, Non-Dominated Sorting Genetic Algorithm II (NSGA-II) [28]) to automatically evolve encounters and 

find encounters that satisfy the two objectives. The method is a testing framework as is schematically shown in Fig. 

1. 

                                                           
5 We note that some dangerous situations may well exist that don’t start with intruders in conflict with own-ship (but 

where conflict resolution action then places it in conflict with them later). Similarly, we acknowledge that some 

intruder-intruder accidents might be interesting because they are caused by own-ship's actions. However, for our 

purposes in this paper it is reasonable to exclude these cases, but anyone practically applying this technique, and 

seeking to get maximum results from it, would be well-advised to explore them. 



 

Fig. 1 Overview of the testing method that combines agent-based simulation and multi-objective search. 

In this testing framework, encounters (candidate solutions) are treated as individuals that evolve by the law of 

“survival of the fittest”, where fitness is determined based on how well they meet the two objectives. As noted 

above, simulation is treated as a black-box: its inputs are various encounters and its outputs are quantitative 

measurements of the simulated result of the encounters (fitness). P is the population holding the individuals of a 

generation, and it is initialized randomly. A is an archive to hold the “best” individuals (“elites”) found through the 

history of the evolution, and is initialized to be empty. We have designed a representation for encounters in terms of 

the genome of individuals — each individual thus describes a (multi-intruder) encounter. Individuals in P and A are 

evaluated with respect to the two objectives using agent-based simulation. According to the evaluation result, 

individuals are ranked (using Non-dominated Sort and Sparsity Sort) and good individuals (those that have high 

rankings) are used to update the old elites in A. These good individuals also compete to be selected to breed the new 

population through genetic operators (genome cross-over, gene removal and gene mutation, see Section V). The 



search process repeats until the termination condition (see Section V) becomes true. F1 is the Pareto Front, which is 

a collection of the best individuals (more will be explained in Section V). The output of the process is the 

individuals (i.e. encounters that satisfy the two objectives) in F1. 

We note that Alam et al. in [22, 23] and Clegg et al. in [24] used similar approaches for safety analysis of ATM 

systems. Their main concern is to identify the combination of airspace configurations and Air Traffic Controller 

actions that can result in a high aircraft collision risk. In contrast, in our work we are seeking specific counter-

examples to challenge conflict resolution algorithms. While their work could be adapted for our purposes, no 

follow-up work in this direction can be found and the adaptation work may be considerable. And since their specific 

code is not publicly available, it is not possible to build directly on their work; for our work, the code will be open-

source (for code, see links provided in Section VI) and further research can thus be easily built on it. Srikanthakumar 

et al. in [25] developed an automatic approach to finding worst cases for moving obstacle avoidance algorithms 

based on simulations and optimization techniques (one of which is a GA). However, their optimization problem has 

only one objective — to find a worst case situation that causes a collision. As a result, the worst case situations 

found may happen so rarely in real world conditions that they are not actually very helpful in improving the obstacle 

avoidance algorithms. 

In the following three sections, we describe the design of our agent-based simulation, the auto-generation of 

encounters, and the detailed multi-objective search process. 

III. Agent-Based Simulations 

We use agent-based simulations to evaluate different kinds of encounters with respect to the two objectives 

identified above. Agent-based simulation [26] is selected for two main reasons: (1) it naturally models the multi-

body interaction problem; and (2) it is already widely used in air traffic simulations.  

We use MASON6 as our simulation framework. We chose MASON mainly because it is open source and the 

user can easily control the fidelity of the simulation so that it can be run faster than real-time. In a typical agent-

based simulation, there are three basic elements: agents, the environment, and their interactions. These elements are 

described in the following three subsections. The core of the simulation engine is a component known as the 

“Scheduler”. All the agents are registered with this Scheduler, but with different scheduling frequencies and 

                                                           
6 http://cs.gmu.edu/~eclab/projects/mason/ 

http://cs.gmu.edu/~eclab/projects/mason/


priorities. The simulation proceeds by scheduling the corresponding registered agents to conduct their defined 

behaviors at each simulation step. 

A. Agents 

There are two kinds of agent in our simulation: UAVs and global monitoring agents. UAVs have attributes, such 

as position, velocity, size and performance attributes etc. Some of the important performance limitations for the 

UAVs are listed in Table 1, which are based on those of the Parrot AR.Drone and the DJI Phantom UAVs. UAVs 

also have behaviors, such as flying to their targets, sensing other UAVs and avoiding conflicts with them. The 

conflict resolution algorithms are incorporated into the UAVs. 

Global monitoring agents include a “Proximity Measurer” and an “Incident Detector”. The Proximity Measurer 

measures the proximities (in horizontal distance and vertical distance) between the own-ship and the intruders at 

each simulation step, and records the minimum proximity experienced by the own-ship so far in a simulation. The 

Incident Detector monitors the simulations and detects any incidents involving the own-ship. However, the incidents 

between intruders are not monitored due to reasons mentioned in Section II. 

Table 1  The UAV performance limits 

B. Environment 

The environment in our simulation is a 3-D cuboid flight area (limited to 1000m × 1000m × 300m in length, 

width and height respectively). The horizontal area is arbitrary, but adequate for the analysis we are carrying out 

given the limited speeds of the UAVs. The vertical limit is based on some proposed regulations for commercial 

UAVs, e.g. those in [27] — we assume they are only permitted to fly below 300 meters in the airspace. 

Apart from the agents described above, some other entities in the environment are the starting point and target 

(end point) for each UAV. In a simulation, UAVs fly from their starting points to the corresponding targets. If, due 

to conflict resolution, a UAV flies out of this cuboid flight area, it will not be monitored by the global monitoring 

agents any more. We have not modeled the effect of wind and other (static) objects, such as buildings, but this may 

be one of directions for future study. 

Min Ground Speed 0m/s Max Ground Speed 10m/s 

Min Vertical Speed -10m/s Max Vertical Speed 2m/s 



C. Interactions 

The interactions between the UAVs are only via the conflict resolution algorithms. We assume in each 

simulation step that the UAVs broadcast their state information (position, velocity and size) via ADS-B7 or its 

equivalent. We explicitly model the sensor noise by adding some kinds of noise (e.g. white noise) to the received 

information by each UAV. We have not modeled any other communication between UAVs. The interactions 

between UAVs and the environment include UAVs following way points and generating new way points according 

to the conflict resolution algorithm. 

IV. Automated Encounter Generation 

We have devised a parameterized representation of pairwise encounters, which can be used to generate an 

intruder with respect to the own-ship by passing in the corresponding arguments. Multi-UAV encounters are 

generated by combining different intruders with the own-ship, which has a fixed initial state. 

A. Parameterized Pairwise Encounters 

A pairwise encounter involves two UAVs, one of which is the own-ship and the other is an intruder to be 

generated to conflict with the own-ship. To describe the state of a UAV for the conflict resolution problem, we use 

three parameters — position, velocity, and size. We model the UAVs as spheres with radii set according to the 

distances for safe separation — 10m in our case. The velocity can be represented either by three velocity 

components in each dimension as [𝑉𝑥, 𝑉𝑦, 𝑉𝑧]𝑇 , or by ground speed, bearing and vertical speed 

as [𝐺𝑠, 𝐵𝑒𝑎𝑟𝑖𝑛𝑔, 𝑉𝑠]𝑇. This is illustrated in Fig. 2(a) and the relationship between these two representations is as 

equation (1): 

 [
𝑉𝑥
𝑉𝑦
𝑉𝑧

] = [
𝐺𝑠 ∗ cos(𝐵𝑒𝑎𝑟𝑖𝑛𝑔)

𝑉𝑠
𝐺𝑠 ∗ sin(𝐵𝑒𝑎𝑟𝑖𝑛𝑔)

] (1) 

                                                           
7 ADS-B (Automatic Dependent Surveillance-Broadcast) is a cooperative surveillance technology with which a 

UAV will send its real time information, such as position and velocity, to its peers via a radio frequency. 



 

Fig. 2 (a) Two representations of the UAV's velocity. (b) Illustration of the relative position of the intruder (i) 

with respect to the own-ship (o) at the CPA. The own-ship is at the origin. 

Assuming that the initial state of the own-ship has been fixed (in other words, we fix the initial position and 

velocity of the own-ship in a simulation), an intruder can be described by specifying the time for the own-ship and 

the intruder to arrive at the Closest Point of Approach (CPA), the intruder's relative position at the CPA with respect 

to the own-ship, as is shown in Fig. 2(b), and the intruder's velocity at the CPA. Seven parameters are used to 

specify the state of the intruder, which are: 

 The time (T) left for the intruder to arrive at the CPA. 

 The horizontal distance (R) between the two UAVs at the CPA,  the angle (θ) of this approach, and the 

vertical distance (Y) at the CPA; 

 The velocity [𝐺𝑠𝑖 , 𝐵𝑒𝑎𝑟𝑖𝑛𝑔𝑖 ,  𝑉𝑠𝑖]𝑇 of the intruder at the CPA;  

So, if the own-ship's initial position is [𝑋𝑜, 𝑌𝑜, 𝑍𝑜 ]𝑇 and its initial velocity is [𝐺𝑠𝑜 , 𝐵𝑒𝑎𝑟𝑖𝑛𝑔𝑜 , 𝑉𝑠𝑜]𝑇 , the 

initial velocity and the initial position of the intruder can be defined by the vector equation (2) and (3): 

 

 

[

𝑉𝑥𝑖

𝑉𝑦𝑖

𝑉𝑧𝑖

] = [

𝐺𝑠𝑖 ∗ cos(𝐵𝑒𝑎𝑟𝑖𝑛𝑔𝑖)
𝑉𝑠𝑖

𝐺𝑠𝑖 ∗ sin(𝐵𝑒𝑎𝑟𝑖𝑛𝑔𝑖)
] (2) 

 [

𝑋𝑖

𝑌𝑖

𝑍𝑖

] = [

𝑋𝑜

𝑌𝑜

𝑍𝑜

] + [

𝐺𝑠𝑜 ∗ cos(𝐵𝑒𝑎𝑟𝑖𝑛𝑔𝑜)
𝑉𝑠𝑜

𝐺𝑠𝑜 ∗ sin(𝐵𝑒𝑎𝑟𝑖𝑛𝑔𝑜)
] ∗ 𝑇 + [

𝑅 ∗ cos(𝜃)
𝑌

𝑅 ∗ sin(𝜃)
] − [

𝑉𝑥𝑖

𝑉𝑦𝑖

𝑉𝑧𝑖

] ∗ 𝑇 (3) 



Varying the values of the seven parameters can generate different intruders, all posing a threat to the own-ship. 

In our simulation, we developed a pairwise encounter generator. If properly limiting the ranges of these parameters 

according to the performances of the simulated UAVs (see Section VI.B for specific values), a random pairwise 

encounter can be generated by uniformly selecting the values for the parameters from their ranges. 

B. Multi-UAV Encounters 

Multi-UAV encounters are generated by first fixing the initial state of the own-ship, and then generating various 

intruders using the parameterized pairwise encounter representation. In our case, the initial position of the own-ship 

is fixed at the central left of the simulated flight space for better visualization. Its initial velocity vector is specified 

by a normal ground speed (5m/s), a bearing directly to the right (0o) and a zero vertical speed. Its size is specified by 

a sphere with radius of 10m. It is noted that many conflict resolution algorithms are based on relative geometry 

positions and velocities, so that fixing the initial state of the own-ship usually will not make much harm to the 

simulation. After the initial state of the own-ship is fixed, various intruders can be generated by passing the specific 

arguments to the pairwise encounter generator. The generated intruders are combined with the own-ship to form a 

multi-UAV encounter. For example, if we pass the two groups of parameters shown in Table 2 to the encounter 

generator, a multi-UAV encounter will be generated and the simulation of it (with conflict resolution algorithms 

functioning) is shown in Fig. 3. 

Table 2  The parameters for the generation of an example multi-UAV encounter 

 

T R θ Y Gsi Bearingi Vsi 

20 5 90 17 7 131 -2 

18 0 90 8 10 0 1 



 

Fig. 3 The simulation of a multi-UAV encounter generated by the parameters in Table 2. 

The first row of arguments specifies a left-crossing intruder (intruder 1) (with a crossing angle of 131o), and the 

second row of arguments specifies an overtaking intruder (intruder 2) since its bearing is 0o and its ground speed is 

faster than the own-ship's (10m/s > 5m/s). 

V. Genetic Algorithm Based Multi-Objective Search 

GAs are population-based evolutionary search methods. By “population-based”, we mean that the algorithm 

holds a set of candidate solutions to a specific problem. By “evolutionary”, we mean that these candidate solutions 

evolve by a mechanism mimicking natural evolution (“survival of the fittest”). In each generation of the evolution, 

the population retains the solutions most likely to solve the problem and the others are eliminated.  

For the multi-objective search problem formulated in Section II, we solve it based on the Non-Dominated 

Sorting Genetic Algorithm II (NSGA-II) [28], which is a specific form of GA. Referring to Fig. 1, the NSGA-II 

procedure is as follows.  

1. Set up a population (P) to hold encounters as individuals in a generation. The size of P is n and the initial 

individuals are randomly generated; 

2. Set up an Archive (A) to hold the best individuals (elites) found through the history of the evolution. The 

size of  A is also n and A is initialized to be empty; 



3. Run simulations to evaluate individuals in P and A with respect to the two objectives; 

4. Rank the individuals in P and A according to the evaluation result. Store the best individuals in a collection 

F1 (F1 for “rank 1 Pareto Front” — see Section V.C, below, for an explanation); 

5. Select from the individuals the best n individuals to update the old elites in A; 

6. Run tournament selection with replacement to select n individuals from the new elites in A; 

7. Breed a new population from the selected individuals through genetic operators (genome cross-over, gene 

removal and gene mutation) and update the old population P; 

8. When (1) an ideal individual is found 8 , or (2) the allotted time is over; or (3) a certain number of 

generations have been evaluated, terminate the process and output the individuals in F1. Otherwise, repeat 

steps 3-8.  

We implemented this evolutionary multi-objective search by using ECJ9, which is a Java-based evolutionary 

computation system.  In the following subsections, we detail the design of the search technique. 

A. Encoding Encounters with Genomes 

A multi-UAV encounter is a candidate solution to our multi-objective search problem, and it is represented in the 

search as an individual. Each individual has one and only one genome, which is a variable-length collection of 

genes. Each gene has seven slots to store the seven arguments for generating an intruder. The genome of an 

individual thus encodes a multi-UAV encounter. The evolution of the individuals is thus the improvement of the 

multi-UAV encounters so that they (are more likely to) satisfy the two objectives. This relationship is shown is Fig. 

4. 

 

Fig. 4 Encoding multi-UAV encounters in genomes for the use of the GA based multi-objective search. 

                                                           
8 An ideal individual is unlikely to be found in our case due to the opposing nature of the two objectives. 
9 http://cs.gmu.edu/~eclab/projects/ecj/. 

http://cs.gmu.edu/~eclab/projects/ecj/


B. Objectives 

To quantify the values of the two objectives in our problem (see Section II), we define them formally as: 

 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 1 =
1.0

1 + 𝑝𝑚𝑖𝑛

 (4) 

 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 2 = 1.0 −
|E| − 2

𝐶𝑚𝑎𝑥 − 2
 (5) 

In equation (4), 𝑝𝑚𝑖𝑛  is the scalar value of the minimum proximity experienced by the own-ship with any 

intruders in a simulation run, which is defined as equation (6): 

 𝑝𝑚𝑖𝑛 = 𝑚𝑖𝑛𝑠𝜖[0,𝑆]{𝑚𝑖𝑛𝑘𝜖[1,|𝐸|−1]{𝑝𝑘𝑠
}} (6) 

where S is the number of the total simulation steps, |E| is the cardinality of an encounter E, 𝑝𝑘𝑠
 is the scalar value 

of the proximity between the own-ship and the 𝑘𝑡ℎ intruder in the simulation step 𝑠; the value of proximity between 

two UAVs is defined by equation (7): 

 𝑝 = 𝑚𝑎𝑥{0, 𝑑𝑖𝑠𝑡𝐻 − 𝐻} + 𝑚𝑎𝑥{0, 𝑑𝑖𝑠𝑡𝑉 − 𝑉} (7) 

Where 𝑑𝑖𝑠𝑡𝐻 and 𝑑𝑖𝑠𝑡𝑉 are respectively the horizontal and vertical distance between the center points of the two 

UAVs, 𝐻 and 𝑉 are the required horizontal and vertical distance of safe separation (both are 20m in our case). 

In equation (5), 𝐶𝑚𝑎𝑥 is the maximum cardinality allowed in the search problem, in our case it is 11 (i.e. at most 

10 intruders are allowed in an encounter10. The -2 is because there should always be at least two UAVs — the own-

ship and at least one intruder. 

The definition of the objectives is such that larger values are better. For objective 1, if there is an incident, 𝑝𝑚𝑖𝑛  

will be 0, and it will get its largest value, 1.0. For objective 2, if there is only one intruder (the cardinality is 2), its 

value is 1.0, which is the largest possible value. 

C. Selection of the Fittest Individuals 

In multi-objective search, it is often the case that there is no optimal solution that achieves all objectives 

simultaneously. Instead, there is a set of “best options” which are equally good. To find these best options, we need 

to define what it means for one solution to be “better” than another. Suppose there are only two candidate solutions, 

S1 and S2. S1 is said to be better than S2 if and only is S1 is at least as good as S2 in all objectives and is better than S2 

in at least one objective. If this is the case, S1 is said to Pareto dominate S2. Neither S1 nor S2 Pareto dominates the 

                                                           
10 This number was used for the work described here, but it can be changed to a bigger number if the search cannot 

find any encounters satisfying the two objectives in reasonable time. 



other if they are equally good in all objectives, or if S1 is better in some objectives while S2 is better in others. In 

those cases, both S1 and S2 are best options and we say they are on the Pareto Front of the space of candidate 

solutions. The main target of our multi-objective search is to find those solutions at the Pareto Front. 

For a population of individuals (candidate solutions), we can compute the Pareto Front in the following way: go 

through the population and add an individual to the front if it is not Pareto dominated by any individual currently in 

the Pareto Front, and remove individuals from the front if they are dominated by this new individual [29]. 

The individuals in the population can be grouped according to how close an individual is to the Pareto Front. To 

do this, we assign a rank to each individual. Individuals presently in the Pareto Front are in rank 1. If we removed 

the rank 1 individuals from the population and compute the new Pareto Front, the individuals in the new front are 

assigned a rank of 2. Likewise for rank 3, and so on until no individuals remain. This is the mechanism for the Non-

dominated Sort, which is used by the NSGA-II as the prime criteria to rank individuals. Individuals with rank r are 

stored in Fr and individuals with lower ranks are first selected as elites to form the Archive (A). For full details, 

readers are referred to [29].  

Considering the second criteria, if there are too many individuals with the same rank competing to be selected as 

elites (since the size of the A is fixed at n), those evenly spread across that front would be chosen. The NSGA-II 

achieves this purpose by defining the sparsity for an individual. An individual is of high sparsity if the closest 

individuals on either side of it on the Pareto Front aren't too close to it. For the definition and computation of 

sparsity and the Sparsity Sort, readers are referred to [29].  

After the new elites are selected, they compete to be selected as the fittest individuals to breed the new 

population. The process is a Tournament Selection [29], where individuals are randomly selected with replacement 

to compete with the champion so far. The criteria for competition are first based on rank and then on sparsity. 

D. Genetic Operators 

After selecting the fittest individuals, their genomes are modified randomly (“tweaked”) in the hope of 

generating better individuals. As with biological evolution, not all such operations are beneficial, but some are, and 

those are the ones that will most likely survive into later generations (see sub-section E). We use three genetic 

operators to tweak the genome: genome cross-over, gene removal, and gene mutation. In the evolutionary process, 

all the genetic operators are called to operate on individuals with certain probabilities in each generation.  



Genome cross-over involves mixing and matching parts of two old genomes to form new genomes. We use the 

one-point cross-over approach, which randomly selects a position for cross-over and swaps the genes after that 

position, as is illustrated in Fig. 5.  

 

Fig. 5 Illustration of the one-point genome cross-over operator. 

Gene removal selects one gene in the genome (with uniform probability of each) and removes it. If the length of 

the genome is only one gene, then it does nothing. Gene removal is used to reduce the number of intruders involved 

in an encounter, thus favoring the second objective.  

Gene mutation has a certain probability (prob) of mutating each gene in a genome. If a gene is selected to 

mutate, Gaussian noise (~𝑁(0,  𝜎2)) is applied to the information stored in that gene. For example, in our case, there 

are 7 genes in a genome, and for each gene, the random number generator generates a random real number from 

range [0, 1]. If this number is less than prob, this gene will be mutated. Given that the value stored in this gene is 

value, then the new value (𝑣𝑎𝑙𝑢𝑒′) in the mutated gene is defined by equations (8) and (9). 

 𝑣𝑎𝑙𝑢𝑒′ = (1 + 𝑟𝑛𝑑) ∗ 𝑣𝑎𝑙𝑢𝑒 (8) 

 𝑟𝑛𝑑 ~ 𝑁(0,  𝜎2) (9) 

E. Formation of the Next Generation 

In the most common form of GA, the next generation of the population is generated from the old population. 

NSGA-II differs from this — it holds an archive of the same size as the population which contains the best n 

individuals (elites) found so far. Every generation, the population competes with the existing elites to be selected as 

one of the new elites. After the new elites are selected, they are used to breed the next generation of the population. 

VI. Case Study: ORCA-3D 

A. A Brief Explanation of ORCA-3D 



ORCA-3D (Optimal Reciprocal Collision Avoidance in 3D) [30] is a cooperative collision avoidance algorithm 

for multi-agent systems. The ORCA algorithm is an improvement of the Collision Cone approach [31], specifically, 

it avoids the oscillations often experienced in collision cone applications. Here, we are using ORCA for UAV 

conflict resolution — to do this, we enlarge the collision distance to the safe separation distance. In the remainder of 

this subsection, we will give an explanation of how ORCA-3D works. Readers who are not interested in that can 

safely skip to subsection B. 

As its name suggests, ORCA-3D works in 3D space, but to simplify our explanation here we will use only two 

dimensions. We assume A and B are two agents moving in the 2-D plane. Let PA, VA and rA denote the current 

position, velocity vector and radius of agent A respectively, and let PB, VB and rB be the position, velocity vector 

and radius of agent B respectively, as is shown in Fig. 6(a). We define the Collision Cone, which is written as 

CCA|B, as the set of colliding relative velocities (Vrel) between A and B. If A and B maintain a relative velocity in 

CCA|B, a collision will happen at some future moment, say 𝑡. Formally, CCA|B is defined by equation (10): 

 𝐂𝐂𝑨|𝑩 = {𝑽𝒓𝒆𝒍|∃𝑡 > 0 ∶  𝑽𝒓𝒆𝒍 ∗ 𝑡 ∈ 𝐷(𝑷𝑩 − 𝑷𝑨, 𝒓𝑨 + 𝒓𝑩)} (10) 

where the notation 𝐷(𝒙, 𝒓) represents a disc with center 𝒙 and radius 𝒓. A geometric interpretation of 𝐂𝐂𝑨|𝑩 is 

shown in Fig. 6(b).  

 

Fig. 6 (a) A configuration of two agents in a 2D plane. (b) The Collision Cone 𝐂𝐂𝑨|𝑩. If the relative velocity 

𝑽𝒓𝒆𝒍 is inside 𝐂𝐂𝑨|𝑩, a collision will happen at some future moment. 



It follows that if the two agents choose a relative velocity outside 𝐂𝐂𝑨|𝑩, then a collision will not occur in a time 

horizon 𝑡. For a decentralized system, this can be achieved in one of two approaches: (1) one of the agents chooses a 

new velocity vector while assuming the other will maintain its old velocity, or (2) the two agents cooperatively 

choose new velocities. In either approach, the new relative velocity should not be inside CC𝐴|𝐵 . The original 

Collision Cone approach uses the first approach and it sometimes results in oscillations [32].   

The ORCA approach uses approach (2) — given a minimum change for the relative velocity to be outside of 

𝐂𝐂𝑨|𝑩 denoted by 𝒖, each agent is required to take at least half of the responsibility to make this change happen. So, 

agent A should change its velocity by at least 𝟎. 𝟓𝒖 such that the end point of its velocity vector should fall in the 

half plane divided by a line (L1) through 𝐕𝑨 + 𝟎. 𝟓𝒖 perpendicular to 𝒖, as is shown in Fig. 7(a). 

This provides one constraint for A to choose its new velocity.   

 

Fig. 7 (a) two-agent ORCA. (b) Multi-agent ORCA.                                   

If there is more than one agent for A to avoid, each agent will exert a constraint for A, and the new velocity A 

chooses should satisfy all the constraints. The new velocity can be computed efficiently using linear programming, 

since the end point of the new velocity vector should fall inside the convex region surrounded by the lines (L1, L2, 

L3 ...) denoting the half-planes. See Fig. 7(b) for an illustration. 



If we extend the above algorithm to three dimensions, we have ORCA-3D (the use of the term “cone” above 

illustrates how the algorithm is extended).  

For an agent to use the ORCA-3D approach, the only information it needs about the other agents is their current 

relative positions, relative velocities and shapes. Here we assume that each UAV is fitted with ADS-B or its 

equivalent to broadcast the information to its peer UAVs. We also assume the noise to this information follows 

normal distributions. Further failures of the ADS-B are not modeled.  

There is an open source C++ implementation of ORCA-3D11, but we re-implemented12 it in Java for easy 

integration with the other parts of our framework. In the following two subsections, we report the use of a random 

search based approach and our proposed method to test the capability of the ORCA-3D algorithm for multi-UAV 

conflict resolution. All the experiments13 were done on a PC with an Intel Core i3-2350M 2.30GHz CPU and the 64 

bit Ubuntu 14.04 Operating System. The experiments were run using Java 7 with a maximum memory of 1024MB 

for the JVM. 

B. Applying a Random Search Approach 

In the random search method, we generate a stream of encounters using a simple random approach, terminating 

only when a certain (large) number of encounters have been generated and evaluated, or a certain (more modest) 

number of encounters that lead to incidents have been found. Assuming this process has indeed generated some 

encounters that lead to incidents (thus meeting the first objective that we gave in Section II), we then select a subset 

of those that have the lowest cardinalities (thus meeting the second objective). 

For the first step, we use a process that repeats a simple step a large number of times — we randomly generate a 

multi-UAV encounter, then run a simulation to decide whether or not it can lead to an incident. If an incident 

happens, this encounter is recorded. As noted above, this process terminates when a certain (large) number of 

encounters have been generated and evaluated, or enough encounters that lead to incidents have been found. In this 

case, we set limits of 100,000 encounters overall and 500 incidents. The cardinality of the generated encounters is 

random, between 2 to 11 — the upper limit was set at a value we thought should be sufficient to “stress” the conflict 

                                                           
11 Original ORCA-3D can be found in http://gamma.cs.unc.edu/RVO2/downloads/. 
12 Our Java implementation of ORCA-3D can be found in https://github.com/superxueyizou/ORCA_3D_UAV.git. 
13 The code for the experiment can be found and downloaded from https://github.com/superxueyizou/ORCA-3D-

Testing.git. 

http://gamma.cs.unc.edu/RVO2/downloads/
https://github.com/superxueyizou/ORCA_3D_UAV.git
https://github.com/superxueyizou/ORCA-3D-Testing.git
https://github.com/superxueyizou/ORCA-3D-Testing.git


resolution algorithm. The bounding values for the parameters of the individual generated intruders are shown in 

Table 3 (see Section IV.A for the meaning of these parameters).  

 

A randomly generated encounter and the associated simulation run is visualized in Fig. 8. There are 8 intruders. 

In this case, with the help of the ORCA-3D conflict resolution, every UAV reached its target safely. 

 

Fig. 8 A simulated random encounter of 9 UAVs. No incident occurred. 

We conducted 5 trials, each with a different number as the seed for the random number generator. For each trial, 

we generated and evaluated 100,000 encounters. So, in all we ran simulations for 500,000 encounters. However, no 

incidents occurred. The time it took for each trial is shown in Table 4. It can be noted that these times are not huge 

— even using a single ordinary PC. 

Table 3  Bounding values for the parameters 

parameters T R θ Y Gs Bearing Vs 

min 10 0 -180 -20 2 -180 -2 

max 30 20 180 20 10 180 2 



Table 4  Time cost for each trail 

Since we cannot find enough encounters that can lead to an incident (indeed, we found none at all), we cannot 

proceed with the second step. The random search based approach failed, at least in this case. Since no incidents 

occurred in these 500,000 encounters, it appears that the ORCA-3D algorithm is very likely to be capable of 

handling more than 11 UAVs. 

C. Applying Our Proposed Evolutionary Search Method 

We also used our proposed method to test the capability of ORCA-3D. The NSGA-II algorithm was set to evolve 

for 20 generations, each generation having a population of 5,000. So, in this case, we also evaluated 100,000 

encounters in a search. For the initial population, the length of the genome is uniformly chosen from 1 to 10, 

inclusive, giving a maximum cardinality of encounters of 11 as before. The bounding values of the parameters are 

the same as those used in the random search approach. Again we ran 5 searches with different seeds for the random 

number generator. The result is shown in Table 5. In this table, row 1 lists the seed for each search; row 2 lists the 

time cost for each search; row 3 lists the number of encounters in the Pareto Front; row 4 lists the number of 

encounters in the Pareto Front that can lead to an incident; and row 5 lists the minimum number of intruders in an 

encounter that can lead to an incident. 

Table 5  Statistics of the 5 searches using our proposed method 

seed 97846789 194679667 249719121 567971664 946163716 

time 412s 410s 410s 397s 395s 

seed 567672542 588764257 679463479 884185791 898946497   

time 221s 213s 226s 169s 198s 

in Pareto Front 27 18 6 49 13 

with incidents 20 11 0 0 8 

fewest intruders 9 3 >10 >10 9 



In these multi-objective searches, we are interested in encounters in the Pareto Front. Three out of five searches 

found encounters that can lead to incidents in the Pareto Front. The minimum number of intruders that can cause an 

incident with the own-ship is 3. This 4 UAV encounter is shown in Fig. 9.  

 

(a) Front view 

 

(b) Top view                                        (c) Side view 

Fig. 9 A simulated 4 UAV encounter that leads to an incident. 

In this encounter, the own-ship first traveled at a constant level from left to right. At the time when the 

maneuvers began, intruder 1 was climbing in above the own-ship and intruder 2 was flying outwards from the left of 

the own-ship and also above the own-ship. This caused the own-ship to descend. But intruder 3 was climbing from 

below the own-ship, and a violation of safe separation happened.  



Since we had found an encounter with a cardinality of 4 that can lead to an incident, we conclude that the 

ORCA-3D algorithm cannot handle 4 UAVs in all cases. The exact reason for the incident could be determined with 

further analysis of this encounter, which is beyond the scope of this paper. For our purposes is it sufficient to 

observe that with certain traffic patterns ORCA-3D is not able to find paths that avoid the separation violation with 

the own-ship, because of the constraints imposed by the other UAVs. 

D. Discussion 

Our proposed method can find incidents which the random search approach cannot easily find. The key 

difference between the two is the former's utilization of metaheuristic search using NSGA-II. NSGA-II's key 

strength is that it maintains an archive of best candidate solutions (elites) found so far, and breeds further candidate 

solutions from those best candidates. Each new generation of the population therefore tends to have desirable 

features descended from these elites. After each generation, the addition of the best new individuals to the set of 

elites general leads to the set of elites improving over time.  

In order to have the new generation inherit the good features of the elites, the desirable features should be 

quantified and embodied in the fitness function (the quantification of the objectives). In our case, the good features 

we choose are (1) a lower proximity between the own-ship and the intruders in a simulated encounter, and (2) a 

lower cardinality of the encounter. They are quantified and embodied in the valuation functions of the two 

objectives. Better selection of features14 may, in the future, make our method even more powerful. 

Our proposed method can find the encounters meeting the two criteria more quickly (in a practical time with 

modest processing facilities) than our random search approach. The random search based approach takes about 400s 

on average to explore 100,000 encounters, while our approach only takes about 210s. For the random search based 

approach, the main time expense is the simulation runs to evaluate these encounters, while for our method, the 

expense includes two parts: the simulation runs and the overhead of the multi-objective search framework. Our 

method is faster because the evolutionary search algorithm favors individuals that score well on our low-cardinality 

objective, and thus the simulated encounters tend to have fewer UAVs involved. This reduces the computing effort 

required to simulate them. 

Our proposed method is probably most valuable in the early stage of UAV conflict resolution algorithm 

development. It can quickly find challenging encounters for an algorithm and can help to find its limitations, such 

                                                           
14 The selection of good features is, as ever, problem-specific, and relies on a deep understanding of the problem. 



that the algorithm can be improved. One weakness of our method is that there is no way to assign statistical 

confidence to the results — it is effective at fault-finding, but not at providing confirmatory evidence of fault-

freeness. In contrast, random search approaches (when their probabilities are tuned to match actual patterns of 

operational data) can provide such confidence — see, for example, the work of Stroeve et al as discussed in [33]. In 

practice, the two techniques may thus prove complimentary. 

VII. Summary and Conclusions 

In this paper, we tackled the problem of testing the capability of multi-UAV conflict resolution algorithms. The 

random search approach to this problem has some drawbacks, so we reformulated the problem as a multi-objective 

search problem. We developed a method to automatically find encounters meeting the objectives using agent-based 

simulation and multi-objective search. We devised a way to automatically generate encounters with any number of 

UAVs involved. Fast-time agent-based simulations were used to evaluate the encounters with respect to the 

objectives and a GA based multi-objective search method was designed to search for encounters satisfying the 

objectives. Experiments were conducted to compare our proposed method and the random search based approach by 

using the two to test the capability of ORCA-3D for conflict resolution. 

The results show that the proposed method can find encounters meeting these objectives more efficiently than 

the random search based approach. The resulting encounters providing the starting points for further analysis of the 

conflict resolution algorithm, which will in turn allow algorithm developers and users to fully understand its 

limitations. Thus in general, our approach has the potential to offer an effective means of validating, or at least 

determining some limits of, SAA algorithms, thereby helping developers and regulators decide whether these 

important algorithms can be deployed 

There are some limitations of our approach: (1) as mentioned in Section II, in our simulations, all intruders are 

generated to have conflict with the own-ship. However, we note that some dangerous situations may well exist that 

don’t start with intruders in conflict with own-ship (but where conflict resolution action then places it in conflict 

with them later); (2) we also ignore incidents between pure intruders and we are only interested in incidents 

involving the own-ship. We acknowledge that some intruder-intruder accidents might be interesting because they are 

caused by own-ship's actions. By doing so, some specific types of faults in the algorithm may be ignored; (3) 



considering the small-size and operational scenarios of the studied UAVs, follow-up research may be needed to 

model the effects of wind and static obstacles in simulations. 
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