
Swarm Intelligence in Cooperative Environments:
n-Step Dynamic Tree Search Algorithm Overview

Marc Espinós Longa,∗ Antonios Tsourdos,† and Gokhan Inalhan‡

Cranfield University, Cranfield, England MK43 0AL United Kingdom

https://doi.org/10.2514/1.I011086

Reinforcement learning tree-based planning methods have been gaining popularity in the last few years due to their

success in single-agent domains, where a perfect simulatormodel is available: for example,Goand chess strategic board

games. This paper pretends to extend tree search algorithms to the multiagent setting in a decentralized structure,

dealing with scalability issues and exponential growth of computational resources. The n-step dynamic tree search

combines forward planning and direct temporal-difference updates, outperforming markedly conventional tabular

algorithms such asQ learning and state-action-reward-state-action (SARSA). Future state transitions and rewards are

predicted with a model built and learned from real interactions between agents and the environment. This paper

analyzes thedevelopedalgorithm in the hunter–pursuit cooperative gameagainst stochastic and intelligent evaders.The

n-stepdynamic tree search aims to adapt single-agent tree search learningmethods to themultiagent boundaries and is

demonstrated to be a remarkable advance as compared to conventional temporal-difference techniques.

Nomenclature

At = joint agent actions at time step t
G = return
n = number of agents
t = current time step
Qi = state–action value table of intelligent agent i
q = Bellman state–action value function (expected return for a

given state and action)
Rt = joint rewards for each learning agent at time step t
St = joint Markov decision process states at time step t
T = terminal time step
α = learning rate (step size parameter)
βm = mean moment update parameter
βv = second moment update parameter
γ = discount factor
ϵ = exploratory parameter of ϵ-greedy action selection policy
nc = pursuers involved in a cooperative capture
λ = weight decay
π = policy (agent behavior)

I. Introduction

T HE machine learning field has been expanding over the last
decades because of its wide range of application. Typically, a

learning process can be classified into three main groups: super-
vised [1,2], unsupervised [3,4], and reward-based learningmethods
[5]. Addressing single-agent and multiagent domains often entails
partial or no information about the boundary conditions and a
high degree of uncertainty. Thus, the problem becomes untreatable
through input/output-driven data structures. Moreover, the inherent
complexity demands feedback to solve and optimize the problem;
i.e., unsupervised techniques are usually not enough. Reward-based
learning has demonstrated to be a natural fit in this area due to the

capability of generating unique solutions with reinforcements and
data restrictions.
Under the reward-based umbrella, stochastic search directly learns

policies without appealing value functions (i.e., estimates of succes-
sor states or state–action pairs), which is an efficient technique for
small state spaces. Darwinian models of evolution are used to refine
populations of candidate behaviors in evolutionary computation.
Genetic programming [6] and coevolutionary algorithms [7–9] are
solid contenders within this field. On the other side, reinforcement
learning (RL) uses value functions under aMarkov decision process
(MDP) framework by considering every state and action taken at
every iteration step. This fact often leads to rigorous policies that,
despite the increasing demand of computational resources, achieve
greater performance in large search spaces.
When training agents under anMDP, the RL spectrum encompasses

many design aspects that can be explored. From one-step updates in
sample temporal-difference (TD) methods [10–13] to n-step algo-
rithms that consider a variable or fixed number of MDP transitions
when computing state–action values [14,15]. As a result of bootstrap-
ping (estimates as a function of future value estimates), TD strategies
provide faster learning rates at the penalty of higher bias; i.e.,more error
is induced indirectly on every estimate. In contrast, Monte Carlo
methods, which are the most extreme form of n-step algorithms, delay
updates until the end of the episode (end of a finite sequence of time
steps), removing bias but significantly increasing the variance of the
optimization process. Both TD and Monte Carlo techniques directly
impact the length (depth) of the update rule, asFig. 1 shows.Otherwise,
we can improve the accuracy of our estimates by considering not only
the sampled RL transitions but also other potential cases: that is,
increasing the width of the update (see Fig. 1). Figure 1 expected
updates [16] contemplate all potential trajectories, weighing the value
estimates at a higher computational cost.
Planning is another powerful tool for speeding up learning by alter-

nating direct RL updates from real-world interactions with simulated
trajectories (model-based methods), which can be derived from agent
experience using replay buffers [18,19] or already-built environment
models [20]. After defeating the 18-time world champion Go player in
2016 [21], AlphaGo, which is based on the Monte Carlo tree search
(MCTS) [17], gives a new perspective on tree search single-agent
methods. Forward planning through an existing model is used to make
predictions and optimize action selection mechanisms. This algorithm
has recently inspired many powerful algorithms such as MuZero
(developed by DeepMind), which was validated and tested with super-
human performance across a large variety of Atari games [22].
Transitioning from single-agent to multiagent frameworks is no

trivial task. Even from a team learning perspective [5], where agents
are treated as a master individual and single-agent techniques
apply, there is an exponential computational demand linked to the

Presented as Paper 2022-1839 at the 2022 AIAA SciTech and 2022 Ameri-
canControlConference, SanDiego, CAandAtlanta,GA, January 3–7 and June
8–10, 2022; received 16 December 2021; revision received 17 February 2023;
accepted for publication 24 March 2023; published online Open Access 28
April 2023. Copyright © 2023 by the American Institute of Aeronautics and
Astronautics, Inc. All rights reserved. All requests for copying and permission
to reprint should be submitted to CCC at www.copyright.com; employ the
eISSN 2327-3097 to initiate your request. See also AIAA Rights and Permis-
sions www.aiaa.org/randp.

*Ph.D. Researcher, School of Aerospace, Transport and Manufacturing,
Bedfordshire.

†Head of Center, Director of Research, School of Aerospace, Transport and
Manufacturing, Bedfordshire. Senior Member AIAA.

‡Deputy Head of Center, School of Aerospace, Transport and Manufactur-
ing, Bedfordshire. Associate Fellow AIAA.

418

JOURNAL OF AEROSPACE INFORMATION SYSTEMS

Vol. 20, No. 7, July 2023

D
ow

nl
oa

de
d 

by
 1

93
.2

40
.1

72
.7

8 
on

 O
ct

ob
er

 3
1,

 2
02

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I: 

10
.2

51
4/

1.
I0

11
08

6 

https://orcid.org/0000-0001-7916-9383
https://orcid.org/0000-0002-4490-8358
https://orcid.org/0000-0002-3966-7633
https://doi.org/10.2514/1.I011086
www.copyright.com
www.aiaa.org/randp
http://crossmark.crossref.org/dialog/?doi=10.2514%2F1.I011086&domain=pdf&date_stamp=2023-05-03


associated state space (curse of dimensionality problem). Further-
more, like any other centralized system, the swarm depends on a
central (leading) node that is a single point of failure to the system
[23]. Notice that, herein, we define a swarm as a collection or team of
agents that collaborate to achieve a certain goal. On the other hand,
concurrent learning [5] uses a distributed network of agents to handle
multiple learning processes simultaneously [24,25]. Thus, decentral-
ized agent coadaption is required to achieve an optimal swarm
behavior; i.e., each learner must modify its behavior according to
other coadapting learners. The reward function plays a major role
when solving themultiagent reinforcement learning (MARL) prob-
lem. Nonetheless, distributed systems struggle to find an optimal
reward function that maximizes swarm performance due to the
existing independent learning processes (also known as the credit
assignment problem). Similarly, communication is crucial to
enhance the learning process. Although some techniques use direct
communication to share TD updates, policies, or even full episodes
[26], others opt for indirect bioinspired mechanisms [27,28].
This study aims to apply single-agent tree search RL algorithms to

the multiagent domain as a decentralized system through a hybrid
reward function, i.e., a combination of team and individual rewards.
Inspired by the MCTS and n-step tree backup updates [17], the
proposed n-step dynamic tree search (NSDTS) algorithm combines
forward planning with direct RL, enhancing learning speed and team
behavior after algorithm convergence. Action selection mechanisms
are improved by using a neural network model, built from real-world
experience, to perform a forward tree search. To guarantee system
robustness, communication has been disregarded and left for future
work; thence, individuals assume the best play of agents to carry out
future predictions. Lastly, expected updates are used to weigh state–
action value estimates that are kept in individual q tables (tabular
setting). Hence, the presented method addresses, from a theoretical
perspective, the fundamentals of a tree search in MARL.
Harvesting previouswork [29,30], the developed algorithm is tested

and validated in the hunter–prey pursuit environment againstQ learn-
ing: expected SARSA and SARSA temporal-difference methods. The
pursuit game, which involves several learning agents cooperating to
capture one or more evaders, has been used in MARL nearly since
inception [26,31–36]. This work conceives two scenarios, including
a grid world with two learning hunters. The first case considers a
stochastic prey that selects actions arbitrarily, and the latter considers
an intelligent agent that escapes from chasers given their position.
The rest of the paper is structured as follows: the theoretical

foundation in MARL is provided in Sec. II, including MDPs, TD
methods, and theNSDTS algorithm. Section III presents an overview
of the established system and a description of the tree search models.
Section IV formulates the hunter–prey pursuit problem by considering

environment features, game rules, and reward function. The results and
discussion of the hyperparameter analysis and algorithm performance
experimentation are presented in Sec. V. Concluding marks are given
in Sec. VI. Future work includes transitioning from tabular to function
approximation domain to scale up the experiment, adding complexity
with more agents and continuous environments (e.g., real-case appli-
cations such as drone delivery services, safe and rescue operations,
surveillance, warehousing, etc.). Communication and reward optimi-
zation may as well be considered.

II. Theoretical Background

The NSDTS and TDmethods comprise common RL elements and
are built in an MDP framework. This section offers a brief introduc-
tion to RL, including concepts such as MDP, return, or state–action
value estimates. Thereafter, the n-step dynamic tree search algorithm
is addressed.

A. Markov Decision Process

MDPs are mathematical formalisms that codify the problem of
one or more agents interacting with the environment. Nonetheless,
there are minor differences between single-agent and multiagent
frames. In the MARL configuration, for a given time t and a set of n
agents in St� �S0t ; S1t ; : : : ; Sn−2t ; Sn−1t � joint states, after executing
At� �A0

t ; A
1
t ; : : : ; A

n−2
t ; An−1

t � actions through some action selection
mechanism, the environment transitions all agents to the next MDP
state of St�1� �S0t�1; S

1
t�1; : : : ; S

n−2
t�1 ; S

n−1
t�1� and gives Rt�1 joint

rewards to every learning agent. Each cycle represents an MDP
step, and episodes are a collection of step sequences such as
hS0; A0; R1; S1; A1; : : : ; RT−1; ST−1i that, at time t � T, reach a ter-
minal joint state.
The goal of RL agents is to maximize long-term rewards. Thus, a

balance must be struck between instant gratification and protracted
implications of acts. A common approach to solving this dilemma is
to use the expected discounted sum of future rewards [Eq. (1)], which
is also referred to as return:

Gt ≐ Rt�1� γRt�2 � γ2Rt�3 � : : : �
X∞
k�0

γkRt�k�1 (1)

withGt expected to return at time step t, and γ being a discount factor
affecting future terms. It is worth noting that Eq. (1) is a finite
geometric progression if 0 ≤ γ ≤ 1.

The MDP features are defined by problem conditions. Sensor
constraints, environmental circumstances, or simply experimental
settings prevent agents from fully noticing joint states in partially
observable Markov decision processes [26]. Factored MDPs pro-
mote parallel processing via state aggregation and abstraction [37].
As will be stated in the Problem Formulation section (Sec. IV), the
experimentation in this paper is based on a fully observable MDP;
i.e., agents have complete knowledge of all current states without
restrictions.

B. Temporal-Difference Methods

TD techniques are contained in the sample-based learning gamut.
State–action value estimates Qi�St; Ai

t� are used to numerically
quantify the execution of certain action Ai

t in St joint states at the t
time step by any i agent. Each intelligent agent computes, stores,
updates, and uses its own estimates in the tables (tabular setting) to
improve decision making:

Qi�St; Ai
t� ← Qi�St; Ai

t� � α
�
Ĝi

t −Qi�St; Ai
t�
�

(2)

Commonly represented in sample-based learning, the incremental
update rule [Eq. (2)] uses the Ĝi

t return estimate as the target of the
update, from which the old state–action value is subtracted, forming
the TD error. Notice that α step size parameter, also known as a
learning rate, moderates the influence of the error in the equation.
Inspired by the recursive form of Bellman equations, TD

methods define the return as a succession of state–action values.

Fig. 1 Simplified map of sample-based learning methods [17].

ESPINÓS LONGA, TSOURDOS, AND INALHAN 419

D
ow

nl
oa

de
d 

by
 1

93
.2

40
.1

72
.7

8 
on

 O
ct

ob
er

 3
1,

 2
02

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I: 

10
.2

51
4/

1.
I0

11
08

6 



For a given policy πi (agent behavior), the Bellman state–action
function (i.e., expected return given state s and action a) is char-
acterized as

qiπ�s; a� ≐ Eπi �Gi
tjSt� s; Ai

t � a�

�
X
s 0

X
r

p�s 0; rjs; a�
�
ri � γ

X
a 0

πi�a 0js 0�qiπ�s 0; a 0�
�

(3)

Environment dynamics p, which are also seen as the probability
of transitioning to the next joint states s 0 and receive ri reward
given s and a, are often unknown. Consequently, the p term is
usually enclosed in α learning rate [Eq. (2)], which is tuned
through hyperparameter analysis.
Given s 0, the expectation term

X
a 0

πiqiπ

in Eq. (3) bootstraps the likelihood of selecting the next action by
multiplying it by its respective state–action value. Although the
expected SARSA return is defined as in Eq. (3), SARSA employs
the next state–actionvalueQi

t;π�St�1; A
i
t�1�, andQ learning§ exploits

the maximum state–action valuemaxQi�St�1; a
0�. Off-policy meth-

ods such as the expected SARSA and Q learning can adopt explor-
atory behaviorswithout affecting state–actionvalue updates,which is
a powerful technique to balance exploration and exploitation. On-
policymethods, instead, require specific policies like ε greedy [17] to
achieve that equilibrium. The experimentation carried out in this
research uses an ε-greedy policy for every agent.

C. n-Step Dynamic Tree Search

As a tree search algorithm, the proposed NSDTS incorporates
forward planning mechanisms and real-world updates. Let model-
based learning be decomposed in two submodules: a probabilistic
behavior model, and an environment model. The first is responsible
for forecasting future evader movement patterns based on current
joint states St. The latter determines St�1 joint states’ transition by
greedily selecting action Ai

t and assuming the best play of team
agents. Following Fig. 2, after N future samples, updates are back-
propagated to the root node of the tree. The estimated return for N
forward steps is presented in Eq. (4):

Ĝi
τ∶τ�N � Ri

τ�1 � γ
X

a≠Ai
τ�1

πi�ajSτ�1�Qi
τ�N−1�Sτ�1; a�

� γπi�Ai
τ�1jSτ�1�Ĝi

τ�1∶τ�N (4)

Note the difference between real time t and forward fictitious time
τ. According to the TD incremental update rule in Eq. (2), theQi table
is first refreshed at the τ� N − 1 time step, and then the subscript.
Furthermore, for the special cases of τ� 1 � N and τ� 1 � T,
where τ � min�T; t� �0; 1; : : : ; N − 1��, the estimated return is
computed either as an expected TD update and refers to Eq. (5)

Ĝi
τ� Ri

τ�1 � γ
X
a

πi�ajSτ�1�Qi�Sτ�1; a� (5)

or just Ĝi
τ� Ri

T , respectively. Equation (5) coincides with the
expected SARSA return; therefore, the state–action values are soft-
ened with the πi probability distribution. Note that Eq. (4) is the
multistep version of Eq. (5).
Once the model-learning stage ends, agent i gains real-world

experience through the enhanced policy πi. The full NSDTS algo-
rithm is disclosed step by step in Algorithm 1. Notice how future
sample trajectories and direct updates modify state-action values
simultaneously.

III. System Architecture

The architecture of the deployed system is presented in Fig. 3.
Agents can access, check, or update values within their decen-
tralizedQ tables to either execute forward planning or simply select
a greedy action. The MDP is fully observable; i.e., each agent
detects all joint state transitions from the environment. However,
actions taken by team agents are individually assumed, and hence
may differ from actual behaviors. Despite the actual disagreements,
these assumptions imply system robustness, leading to conserva-
tive policies. Swarming enhancements via data exchange and team
agreements figure into future work.
The probabilistic behavior model consists of a neural network that

predicts the evader’s next action given St joint states. The network
configuration is depicted in Fig. 3 for two different problem settings.
The stochastic prey study analyzes the cooperative performance of
two learning hunters against an evader with a uniform random policy.
The second problem setting considers an intelligent prey that escapes

Fig. 2 Three-step tree: backup update [17].

Algorithm 1: n-step dynamic tree search algorithm for ε-greedy
policy πi

Initialize Qi�s; a� for i ∈ �1; n� learning agents, s ∈ S joint states, and a ∈
A�s�
Initialize net�s� probabilistic behavior model and model�s; a� environment
model
Algorithm parameters: step size α ∈ �0; 1�, small ε > 0 for policy πi, planning
steps N
Loop for each episode �t � 0; 1; : : : ; T − 1�:
Initialize and store S0 joint states (not terminal)
Loop for n agents �i � 0; 1; : : : ; n − 1�:

Loop for N planning steps �τ � t� �0; 1; : : : ; N − 1��:
Predict aτ prey action with net�Sτ�
Ai
τ; R

i
τ�1; Sτ�1 ← model�Sτ; aτ� assuming best play

Store Ai
τ; R

i
τ�1; Sτ�1

Break loop if τ� 1 � T

if τ� 1 � T:
Gi

τ ← Ri
T

else:
Gi

τ ← Ri
τ�1 � γ

P
a π

i�ajSτ�1�Qi�Sτ�1; a�
Qi�Sτ; Ai

τ� ← Qi�Sτ; Ai
τ� � α�Gi

τ −Qi�Sτ; Ai
τ��

Loop for k � τ down to t� 1:
Gi

k−1 ← Ri
k � γ

P
a≠Ai

k
πi�ajSk�Qi�Sk; a� � γπi�Ai

kjSk�Gi
k

Qi�Sk−1; Ai
k−1� ← Qi�Sk−1; Ai

k−1� � α�Gi
k−1 −Qi�Sk−1; Ai

k−1��
Select Ai

t following π
i

Observe and store Rt�1; St�1

Loop for n agents �i � 0; 1; : : : ; n − 1�:
if t� 1 < T − 1:
Gi

t ← Ri
t�1 � γ

P
a π

i�ajSt�1�Qi�St�1; a�
else:
Gi

t ← Ri
t�1

Qi�St; Ai
t� ← Qi�St; Ai

t� � α�Gi
t −Qi�St; Ai

t��

§Note that the expected SARSA is a generalization of Q learning because
both expressions are equivalent if πi is a greedy policy.

420 ESPINÓS LONGA, TSOURDOS, AND INALHAN

D
ow

nl
oa

de
d 

by
 1

93
.2

40
.1

72
.7

8 
on

 O
ct

ob
er

 3
1,

 2
02

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I: 

10
.2

51
4/

1.
I0

11
08

6 



from pursuers, given their global positions. Hence, to achieve accurate
predictions, the latter approximator has twice asmany input neurons as
the jointMDP states, corresponding to the Cartesian decomposition of
agent locations. In both cases, the number of hidden neuronsu remains
a hyperparameter, whereas the output layer is constituted by the
available actions k that an agent can execute.

This can also be thought of as a classifier problem, with an
assortment of MDP states as the input and several action classes
as the output. Thereupon, the error of prediction is computed
through a cross-entropy function. Optimization is implemented
via backpropagation¶ using ADAM [38]. This upgraded version

of stochastic gradient descent leverages adaptive vector step
sizes (ergo, greater learning rates for parameters with higher errors)
and low-order moments that progressively boost weight gradients
toward constant directions. Altogether, these techniques improve
approximator learning processes, reaching global or local minima
faster.

IV. Problem Formulation

The hunter–prey pursuit problem has been a benchmark inMARL
for years. Continuous state spaces [34,36], grid domains [25,26], and
obstacles [24] are some environmental traits considered by the
authors. This section contains key aspects and fundamental rules that
characterize the experimentation setup.

Fig. 3 NSDTS system overview from an individual agent perspective (Fig. 3a), probabilistic behavior model for stochastic prey study (Fig. 3b), and

probabilistic behavior model for intelligent prey study (Fig. 3c).

¶This is a technique that computes the gradient of the loss function (error)
with respect to the function approximation parameters.

ESPINÓS LONGA, TSOURDOS, AND INALHAN 421

D
ow

nl
oa

de
d 

by
 1

93
.2

40
.1

72
.7

8 
on

 O
ct

ob
er

 3
1,

 2
02

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I: 

10
.2

51
4/

1.
I0

11
08

6 



Figure 4 reveals an eight-by-eight grid world with an evader and
two intelligent pursuers. The prey is placed in the center of the grid at
the start of each episode, whereas hunters are randomly assigned to
nonterminal states. Pursuers must capture the evader without collid-
ing. Individual captures occur when a hunter and a prey occupy the
same cell, whereas cooperative captures arise when two or more
pursuers are in the evader’s closest adjacent cells. To encourage
cooperation, captures involving multiple team agents receive higher
rewards (see Table 1).
Collisions, on the other hand, happen either when two or more

hunters occupy the same cell at the same time or if a hunter on the
grid’s edge conducts an action toward the wall. Agents engaged in a
crash are penalized. Furthermore, to encourage hunting efficiency,
pursuers are given a negative compensation each time step. Each
agent can move up, right, and down; or, given the occasion, they can
stay on the same cell.
This paper presents and evaluates the performance of two learning

hunters against a stochastic evader and an intelligent prey that,
following an ε-greedy policy, moves away from hunters given their
position. If the evader is cornered and no possible escape actions are
available, the agent randomly selects an action.

V. Experimental Results and Discussion

The gathered results from two distinct study cases are compre-
hended in this section.

A. Stochastic Prey Study

The NSDTS and Q-learning algorithms are compared in the
hunter–prey pursuit environment, alongside a simple evader with a
uniformly random policy. Because algorithm performance is deeply
dependent on the α learning rate, a hyperparameter analysis is carried
out first to tune α for each method. Table 1 summarizes the setup
configuration adopted for the study. The algorithm parameters are

applied to all methods, except from N planning steps that only apply
to NSDTS. The neural network learning rate (not to be confused with
α from the RL algorithms) influences theweight gradient size toward
a loss function’s minimum, whereas λ is used to avoid overfitting.
Adaptive vector step sizes and low-order moments of the ADAM
optimizer are regulated by the mean moment update βm and the
second moment update βv. Due to the prey’s uniformly random
policy, predicted action accuracy is not considered as a model per-
formance metric; output probability distribution is assessed instead.
Totals of five and onemillion samples have been used to train and test
the neural network model, achieving a model cumulative error of
4.2945 × 10−4. The stochastic batch size (batch size � 1) has been
considered during training. As far as the reward function is con-
cerned, a hybrid structure (i.e., a combination of individual and global
rewards) has been carefully designed to approach the credit assign-
ment problem, where nc refers to the number of pursuers involved in
the cooperative capture.
The hyperparameter analysis in Fig. 5 exposes the overall Q-

learning and NSDTS performances for five planning steps and dif-
ferent step sizes. With an optimal learning of rate α � 0.040, the
NSDTS outperforms Q learning by 800% after 25,000 episodes.
Besides, the agents learn at a higher pace, achieving almost 300%
improvement after policy convergence. Both algorithms develop
successfully cooperative behaviors; i.e., hunters learn how to execute
cooperative captures as the final averaged reward climbs to around
25, 60, and 70 for the Q learning, the two-step dynamic tree search
(2SDTS), and the 11-step dynamic tree search (11SDTS), respec-
tively (surpassing individual capture reward in Table 1). The 11-step
dynamic tree search presents minor enhancements with respect to its
two-step version due to the inner environment simplicity; i.e., the
2SDTS almost achieves an optimal policy. However, an increasing
problem complexity may require additional planning steps to reach
optimal policies.

B. Intelligent Prey Study

This subsection tests the NSDTS, Q learning, expected SARSA,
and SARSA against an intelligent evader that moves opposite to the
hunters. Similar to Sec. V.A, Table 2 gathers all system parameters
selected for the analysis. Despite the randomness involved in the ε-
greedy evader’s policy, the neural network model reaches 81.4% in
prediction accuracy, using a total of 25 and 5 million samples for

Fig. 4 Hunter–prey pursuit game environment (Fig. 4a), individual

capture (Fig. 4b), and cooperative capture (Fig. 4c).

Table 1 Hyperparameter analysis configuration:
stochastic prey study

Parameter Value

Algorithm parameters

Planning steps N 5
Discount factor γ 1.00
Exploring parameter ε 0.10

Model features

Input units 3
Hidden units 8
Output units 5
Neural network learning rate 10−3

Weight decay λ 10−3

Mean moment update parameter βm 9 × 10−2

Second moment update parameter βv 9.99 × 10−2

Batch size 1
Training samples 5,000,000
Testing samples 1,000,000
Model cumulative error 4.2945 × 10−4

Hybrid reward function

Colliding with boundaries or other agents −100
Each step −1
Individual captures �10

Cooperative captures �100 × nc

422 ESPINÓS LONGA, TSOURDOS, AND INALHAN

D
ow

nl
oa

de
d 

by
 1

93
.2

40
.1

72
.7

8 
on

 O
ct

ob
er

 3
1,

 2
02

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I: 

10
.2

51
4/

1.
I0

11
08

6 



training and testing accordingly. To prevent overfitting, the batch size
has been increased up to 500.
The results in Fig. 6 highlight the difference between the

NSDTS and the rest of the TD methods. After 25,000 episodes,
for a learning rate of α � 0.080, the five-step dynamic tree
search’s overall performance is more than 50 times better than
the rest, which represents an improvement of greater than 5000%.
An analysis based on optimal α demonstrates higher learning

Fig. 5 n-step dynamic tree search performance against Q-learning
temporal-difference method: a) step size analysis, and b) algorithm per-
formance with optimal learning rates through averaged sum of rewards.

Table 2 Hyperparameter analysis configuration,
intelligent prey study

Parameter Value

Algorithm parameters

Planning steps N 5
Discount factor γ 1.00
Exploring parameter ε 0.10

Model features

Input units 6
Hidden units 8
Output units 5
Neural network learning rate 10−3

Weight decay λ 10−3

Mean moment update parameter βm 9 × 10−2

Second moment update parameter βv 9.99 × 10−2

Batch size 500
Training samples 25,000,000
Testing samples 5,000,000
Model accuracy 81.4%

Hybrid reward function

Colliding with boundaries or other agents −100
Each step −1
Individual captures �10

Cooperative captures �100 × nc

Fig. 6 Evaluating n-step dynamic tree search performance against
Q-learning, expected SARSA, andSARSA temporal-differencemethods:
a) learning rate hyperparameter analysis, b) performance based on

averaged sum of rewards, c) averaged steps with optimal step sizes,
d) forward planning performance impact based on averaged sum of
rewards, and e) averaged steps.

ESPINÓS LONGA, TSOURDOS, AND INALHAN 423

D
ow

nl
oa

de
d 

by
 1

93
.2

40
.1

72
.7

8 
on

 O
ct

ob
er

 3
1,

 2
02

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I: 

10
.2

51
4/

1.
I0

11
08

6 



speeds on tree search agents. After 10,000 episodes, the five-step
dynamic tree search nearly converged to an optimal policy,
whereas conventional TD methods failed to reach suboptimal
policies even after 25,000 episodes. Introducing an intelligent
evader significantly increases the complexity of the problem and
search space. Therefore, algorithms such as Q learning require
more training to converge.
It is worth noting that the NSDTS takes more steps than any

TD learning technique to reach terminal states. The combination of
expected updates and forward planning allow agents to avoid colli-
sions and choose actions conservatively, resulting in higher rewards
at the expense of longer episodes. Likewise, a higher number of
forward planning steps results in greater cumulative rewards. Longer
tree search reasoning allows agents to learn at faster rates and avoid
complex states that heavily compromise agent operation, i.e., situa-
tions where collisions can easily arise without communication.

VI. Conclusions

The n-step dynamic tree search evaluates future joint states based
on an inferred model learned from real-world interactions, achieving
not only an optimal performance but also high learning rates. The
NSDTS presents overall improvements of 800 and 300% after policy
convergence with respect to Q learning in simple stochastic scenar-
ios. The performance gap between the multiagent tree search and
traditional TD learning significantly increases in more sophisticated
environments with intelligent evaders. The NSDTS manifests an
improvement greater than 5000% with respect to the expected
SARSA, Q learning, and SARSA: both in general performance and
after policy. Thus, this paper consolidates the n-step dynamic tree
search as a theoretical extension of tree search methods in the multi-
agent (tabular) domain.
The experimentation in thiswork is carriedoutwithin thehunter–prey

pursuit framework, under a decentralized tabular setting, and without
information exchange or agreements between team agents. Futurework
includes transitioning from tabular to function approximation domains
to scale up the experiment, adding complexity with more agents and
continuous environments (e.g., real-case applications such as drone
delivery services, search and rescue (SAR) operations, surveillance,
warehousing, etc.). Communication and reward optimization may be
considered as well. Future work includes transitioning from tabular to
function approximation domain to scale up the experiment, adding
complexity with more agents and continuous environments (e.g., real-
case applications such as drone delivery services, safe and rescue
operations, surveillance, warehousing, etc.). Communication and
reward optimization may as well be considered.

Acknowledgments

This research is sponsored by the Engineering and Physical Sci-
ences Research Council and BAE Systems under project reference
number 2454254.

References

[1] Cunningham, P., Cord, M., and Delany, S. J., “Supervised Learning,”
Machine Learning Techniques for Multimedia: Case Studies on

Organization and Retrieval, edited by M. Cord, and P. Cunningham,
Springer, Berlin, 2008, pp. 21–49.
https://doi.org/10.1007/978-3-540-75171-7_2

[2] Geng, J., Fan, J., Wang, H., Ma, X., Li, B., and Chen, F., “High-
Resolution SAR Image Classification via Deep Convolutional Autoen-
coders,” IEEEGeoscience and Remote Sensing Letters, Vol. 12. No. 11,
2015, pp. 2351–2355.
https://doi.org/10.1109/LGRS.2015.2478256

[3] Solan, Z., Horn, D., Ruppin, E., and Edelman, S., “Unsupervised
Learning of Natural Languages,” Proceedings of the National Academy
of Sciences, Vol. 102, No. 33, 2005, pp. 11,629–11,634.
https://doi.org/10.1073/pnas.0409746102

[4] Sivakumar, S., and Chandrasekar, C., “Lung Nodule Segmentation
Through Unsupervised Clustering Models,” Procedia Engineering,
Vol. 38, Jan. 2012, pp. 3064–3073.
https://doi.org/10.1016/j.proeng.2012.06.357

[5] Panait, L., and Luke, S., “Cooperative Multi-Agent Learning: The State
of the Art,” Autonomous Agents and Multi-Agent Systems, Vol. 11,
No. 3, 2005, pp. 387–434.
https://doi.org/10.1007/s10458-005-2631-2

[6] Haynes, T., Wainwright, R., Sen, S., and Schoenefeld, D., “Strongly
Typed Genetic Programming in Evolving Cooperation Strategies,”
Proceedings of the 6th International Conference on Genetic Algorithm,
Morgan Kaufmann, San Francisco, CA, 1995, pp. 271–278.

[7] Potter, M. A., and De Jong, K. A., “A Cooperative Coevolutionary
Approach to Function Optimization,” Parallel Problem Solving from

Nature, edited by Y. Davidor, H.-P. Schwefel, and R. Männer, Springer,
Berlin, 1994, pp. 249–257.
https://doi.org/10.1007/3-540-58484-6_269

[8] Ficici, S. G., and Pollack, J. B., “A Game-Theoretic Approach to the
Simple Coevolutionary Algorithm,” Parallel Problem Solving from

Nature, edited by M. Schoenauer, K. Deb, G. Rudolph, X. Yao, X., E.
Lutton, J. J. Merelo, and H.-P. Schwefel, Springer, Berlin, 2000,
pp. 467–476.
https://doi.org/10.1007/3-540-45356-3_46

[9] Miconi, T., “When Evolving Populations is Better than Coevolving
Individuals: The Blind Mice Problem,” Proceedings of the 18th

International Joint Conference on Artificial Intelligence, MorganKauf-
mann, San Francisco, CA, 2003.

[10] Claus, C., and Boutilier, C., “TheDynamics of Reinforcement Learning
in Cooperative Multiagent Systems,” Proceedings of the Fifteenth

National/Tenth Conference on Artificial Intelligence/Innovative Appli-

cations of Artificial Intelligence (AAAI ’98/IAAI ’98), Assoc. for the
Advancement of Artificial Intelligence (AAAI), Palo Alto, CA, 1998,
pp. 746–752.
https://doi.org/10.5555/295240.295800

[11] Tesauro, G., “Extending Q-Learning to General Adaptive Multi-Agent
Systems,” Proceedings of the 16th International Conference on Neural
Information Processing Systems (NIPS’03), MIT Press, Cambridge,
MA, 2003, pp. 871–878.
https://doi.org/10.5555/2981345.2981454

[12] Watkins, C. J. C. H., and Dayan, P., “Technical Note: Q-Learning,”
Machine Learning, Vol. 8, No. 3, 1992, pp. 279–292.
https://doi.org/10.1023/A:1022676722315

[13] Sałustowicz, R. P., Wiering, M. A., and Schmidhuber, J., “Learning
Team Strategies: Soccer Case Studies,” Machine Learning, Vol. 33,
No. 2, 1998, pp. 263–282.
https://doi.org/10.1023/A:1007570708568

[14] Al-Dabooni, S., and Wunsch, D. C., “Online Model-Free n-Step HDP
with Stability Analysis,” IEEE Transactions on Neural Networks and

Learning Systems, Vol. 31, No. 4, 2020, pp. 1255–1269.
https://doi.org/10.1109/TNNLS.2019.2919614

[15] De Asis, K., Hernandez-Garcia, J., Holland, G., and Sutton, R., “Multi-
Step Reinforcement Learning: A Unifying Algorithm,” Proceedings of
the AAAI Conference on Artificial Intelligence, Vol. 32, , Assoc. for
the Advancement of Artificial Intelligence (AAAI), Palo Alto, CA,
2018.

[16] van Seijen, H., van Hasselt, H., Whiteson, S., and Wiering, M., “A
Theoretical and Empirical Analysis of Expected Sarsa,” 2009 IEEE

Symposium on Adaptive Dynamic Programming and Reinforcement

Learning, IEEE, New York, 2009, pp. 177–184.
https://doi.org/10.1109/ADPRL.2009.4927542

[17] Sutton, R. S., and Barto, A. G., Reinforcement Learning: An Introduc-
tion, MIT Press, Cambridge, MA, 2018, pp. 185–188, 152, 190.

Fig. 6 (Continued)

424 ESPINÓS LONGA, TSOURDOS, AND INALHAN

D
ow

nl
oa

de
d 

by
 1

93
.2

40
.1

72
.7

8 
on

 O
ct

ob
er

 3
1,

 2
02

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I: 

10
.2

51
4/

1.
I0

11
08

6 

https://doi.org/10.1007/978-3-540-75171-7_2
https://doi.org/10.1109/LGRS.2015.2478256
https://doi.org/10.1073/pnas.0409746102
https://doi.org/10.1016/j.proeng.2012.06.357
https://doi.org/10.1007/s10458-005-2631-2
https://doi.org/10.1007/3-540-58484-6_269
https://doi.org/10.1007/3-540-45356-3_46
https://doi.org/10.5555/295240.295800
https://doi.org/10.5555/2981345.2981454
https://doi.org/10.1023/A:1022676722315
https://doi.org/10.1023/A:1007570708568
https://doi.org/10.1109/TNNLS.2019.2919614
https://doi.org/10.1109/ADPRL.2009.4927542


[18] Foerster, J., Nardelli, N., Farquhar, G., Afouras, T., Torr, P. H. S.,
Kohli, P., and Whiteson, S., “Stabilising Experience Replay for
Deep Multi-Agent Reinforcement Learning,” Proceedings of the

34th International Conference on Machine Learning, edited by D.
Precup, and Y. W. Teh, Proceedings of Machine Learning Research,
Cambridge, MA, 2017, pp. 1146–1155.

[19] Zhang, S., and Sutton, R. S., “A Deeper Look at Experience Replay,”
Preprint, submitted 4 Dec. 2017, https://arxiv.org/abs/1712.01275.

[20] Kaiser, L., Babaeizadeh, M., Milos, P., Osinski, B., Campbell, R. H.,
Czechowski, K., Erhan, D., Finn, C., Kozakowski, P., Levine, S.,
Sepassi, R., Tucker, G., andMichalewski, H., “Model-BasedReinforce-
ment Learning for Atari,” Preprint, submitted 1 March 2019, https://
arxiv.org/abs/1903.00374.

[21] Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A.,
Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A., Chen, Y., Lillicrap,
T., Hui, F., Sifre, L., van den Driessche, G., Graepel, T., and Hassabis,
D., ”Mastering the Game of Go Without Human Knowledge,” Nature,
Vol. 550, No. 7676, 2017, pp. 354–359.
https://doi.org/10.1038/nature24270

[22] Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L.,
Schmitt, S., Guez, A., Lockhart, E., Hassabis, D., Graepel, T.,
Lillicrap, T., and Silver, D., “Mastering Atari, Go, Chess and Shogi
by Planning with a LearnedModel,”Nature, Vol. 588, No. 7839, 2020,
pp. 604–609.
https://doi.org/10.1038/s41586-020-03051-4

[23] Moradi, M., “ACentralized Reinforcement LearningMethod for Multi-
Agent Job Scheduling in Grid,” 2016 6th International Conference on

Computer andKnowledgeEngineering, ICCKE2016. IEEE,NewYork,
2016, pp. 171–176.
https://doi.org/10.1109/ICCKE.2016.7802135

[24] Yu, C., Dong, Y., Li, Y., and Chen, Y., “Distributed Multi-Agent Deep
Reinforcement Learning for CooperativeMulti-Robot Pursuit,” Journal
of Engineering, Vol. 2020, No. 13, 2020, pp. 499–504.
https://doi.org/10.1049/joe.2019.1200

[25] Ho, J., andWang, C.-M., “Explainable and Adaptable Augmentation in
Knowledge Attention Network for Multi-Agent Deep Reinforcement
Learning Systems,” 2020 IEEE Third International Conference on

Artificial Intelligence and Knowledge Engineering (AIKE), IEEE,
New York, 2020, pp. 157–161.
https://doi.org/10.1109/AIKE48582.2020.00031

[26] Tan, M., “Multi-Agent Reinforcement Learning: Independent vs.
Cooperative Agents,” Readings in Agents, Morgan Kaufmann, San
Francisco, CA, 1997, pp. 487–494.
https://doi.org/10.5555/284680.284934

[27] Corne, D., Reynolds, A., and Bonabeau, E., “Swarm Intelligence,”
Handbook of Natural Computing, Springer Berlin, Baden-Württem-
berg, Germany, 2012, pp. 1599–1623.

[28] Longa, M. E., Tsourdos, A., and Inalhan, G., “Human–Machine Net-
work Through Bio-Inspired Decentralized Swarm Intelligence and
Heterogeneous Teaming in SAR Operations,” Journal of Intelligent

and Robotic Systems, Vol. 105, No. 4, 2022, Paper 88.
https://doi.org/10.1007/s10846-022-01690-5

[29] Espinós Longa, M., Inalhan, G., and Tsourdos, A., “Swarm Intelli-
gence in Cooperative Environments: Introducing the n-Step Dynamic
Tree Search Algorithm,” AIAA SciTech 2022 Forum, AIAA Paper
2022-1839, 2022, pp. 1–13.
https://doi.org/10.2514/6.2022-1839

[30] Longa, M. E., Tsourdos, A., and Inalhan, G., “Swarm Intelligence in
Cooperative Environments: n-Step Dynamic Tree Search Algorithm
Extended Analysis,” 2022 American Control Conference (ACC), IEEE,
New York, 2022, pp. 761–766.
https://doi.org/10.23919/ACC53348.2022.9867171

[31] Abed-alguni, B. H., Chalup, S. K., Henskens, F. A., and Paul, D. J., “A
Multi-Agent Cooperative Reinforcement LearningModel Using a Hier-
archy of Consultants, Tutors and Workers,” Vietnam Journal of Com-

puter Science, Vol. 2, No. 4, 2015, pp. 213–226.
https://doi.org/10.1007/s40595-015-0045-x

[32] Duman, E., Kaya, M., and Akin, E., “A Multi-Agent Fuzzy-
Reinforcement Learning Method for Continuous Domains,” Multi-

Agent Systems and Applications IV, Vol. 3690, Lecture Notes in Com-
puter Science Series (Including Subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), Springer, New York,
2005, pp. 306–315.
https://doi.org/10.1007/11559221_31

[33] Huang, J., Yang, B., and Liu, D.-Y., “A Distributed Q-Learning Algo-
rithm for Multi-Agent Team Coordination,” Machine Learning and

Cybernetics, IEEE, New York, 2005, pp. 108–113.
https://doi.org/10.1109/ICMLC.2005.1526928

[34] Ishiwaka, Y., Sato, T., and Kakazu, Y., “An Approach to the Pursuit
Problem on a Heterogeneous Multiagent System Using Reinforcement
Learning,” Robotics and Autonomous Systems, Vol. 43, No. 4, 2003,
pp. 245–256.
https://doi.org/10.1016/S0921-8890(03)00040-X

[35] Kuremoto, T., Tsurusaki, T., Kobayashi, K., Mabu, S., and Obayashi,
M., “An Improved Reinforcement Learning System Using Affective
Factors,” Robotics, Vol. 2, No. 3, 2013, pp. 149–164.
https://doi.org/10.3390/robotics2030149

[36] Wang, Y., Dong, L., and Sun, C., “Cooperative Control forMulti-Player
Pursuit-Evasion Games with Reinforcement Learning,” Neurocomput-
ing, Vol. 412, Oct. 2020, pp. 101–114.
https://doi.org/10.1016/j.neucom.2020.06.031

[37] Daoui, C., Abbad, M., and Tkiouat, M., “Exact Decomposition
Approaches for Markov Decision Processes: A Survey,” Advances in

Operations Research, Vol. 2010, July 2010, Paper 659432.
https://doi.org/10.1155/2010/659432

[38] Kingma, D. P., and Ba, J., “Adam: A Method for Stochastic Opti-
mization,” 3rd International Conference on Learning Representa-

tions, ICLR 2015—Conference Track Proceedings, International
Conference on Learning Representations (ICLR), Ithaca, NY, 2014,
pp. 1–15.

H. Choi
Associate Editor

ESPINÓS LONGA, TSOURDOS, AND INALHAN 425

D
ow

nl
oa

de
d 

by
 1

93
.2

40
.1

72
.7

8 
on

 O
ct

ob
er

 3
1,

 2
02

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I: 

10
.2

51
4/

1.
I0

11
08

6 

https://arxiv.org/abs/1712.01275
https://arxiv.org/abs/1903.00374
https://arxiv.org/abs/1903.00374
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/s41586-020-03051-4
https://doi.org/10.1109/ICCKE.2016.7802135
https://doi.org/10.1049/joe.2019.1200
https://doi.org/10.1109/AIKE48582.2020.00031
https://doi.org/10.5555/284680.284934
https://doi.org/10.1007/s10846-022-01690-5
https://doi.org/10.2514/6.2022-1839
https://doi.org/10.23919/ACC53348.2022.9867171
https://doi.org/10.1007/s40595-015-0045-x
https://doi.org/10.1007/11559221_31
https://doi.org/10.1109/ICMLC.2005.1526928
https://doi.org/10.1016/S0921-8890(03)00040-X
https://doi.org/10.3390/robotics2030149
https://doi.org/10.1016/j.neucom.2020.06.031
https://doi.org/10.1155/2010/659432


Cranfield University

CERES https://dspace.lib.cranfield.ac.uk

School of Aerospace, Transport and Manufacturing (SATM) Staff publications (SATM)

2023-05-03

Swarm intelligence in cooperative

environments: n-step dynamic tree

search algorithm overview

Espinós Longa, Marc

AIAA

Espinós Longa M, Tsourdos A, Inalhan G. (2023) Swarm intelligence in cooperative

environments: n-step dynamic tree search algorithm overview. Journal of Aerospace Information

Systems, Volume 20, Issue 7, July 2023, pp. 418-425

https://doi.org/10.2514/1.I011086

Downloaded from Cranfield Library Services E-Repository


