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This study proposes a data-driven fault diagnosis for multicopter UAVs that uses the prin-

cipal direction vector of IMU sensor signals calculated by principal component analysis (PCA).

The main idea comes from the fact that a normal sphere-shaped distribution of the sensor

data changes to a specific elliptical shape under a certain thrust fault situation. The fault di-

agnosis is based on classification and regression using supervised learning with the gyroscope

and accelerometer datasets of an IMU. We analyze the performance of the proposed approach

depending on different learning algorithms. To verify the diagnostic performance, ground

experiments with a hexacopter on the gimbaled jig are performed for various cases of damaged

propellers. Then, the applicability of the proposed data-driven fault diagnosis is confirmed by

analyzing the accuracy of the fault’s location and degree.

Nomenclature

φ, θ,ψ = Roll, pitch, and yaw angles

Ixx, Iyy, Izz = Moment of the inertia of the UAV

Fx,Fy,Fz = Components of force vector

L,M,N = Moments acting on the center of gravity

τφgyro
, τθgyro

= The gyroscopic forces of each axis

JA = Actuator inertia

Ωk = Rotation speed of the k-th actuator

fk = Produced thrust by the k-th actuator

cT = Thrust coefficient

d = Length of the hexacopter UAV arm

cQ = Counter-torque coefficient
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ax,ay,az = Acceleration values measured by accelerometers

gx,gy,gz = Gyroscope data

X = Data matrix

U = Left singular vectors of X

Σ = Singular values of X

W = Right singular vectors of X

I. Introduction

A
multicopter unmanned aerial vehicle (UAV) can perform vertical takeoff and landing (VTOL) and hover flight

operations. Multicopter UAVs with more than four actuators have the advantages of actuator redundancy and

fault tolerance when compared to traditional aircraft such as helicopters [1]. However, multicopter UAVs have the

disadvantage of having difficulty performing stable flight missions if a problem occurs with the actuator during flight.

Because the multicopter UAV attains flight using only the thrust of its actuators, the thrust fault is directly linked to the

overall multicopter UAV safety. In addition, actuators are susceptible to crash and damage and thus have a possibility of

faulting the entire UAV system. When an actuator is damaged due to a fault during flight, human fatality, and property

damage can occur owing to collisions and falls [2]. The multicopter UAV may experience poor tracking performance or

excessive vibrations if some actuators fault.

Safety is the most critical concern in UAV operations. Unfortunately, small UAVs cannot conduct fault diagnosis

autonomously using their onboard sensors due to hardware limitations. Because it is difficult to mount additional

sensors for fault diagnosis and check for faults in a small multicopter UAV, there are frequent cases of flying without

knowing the fault that occurred in the actuator in advance [3]. According to the Survey report on the unmanned vehicle

industry in Korea [4], it was investigated that there were many faults in the actuator parts, such as propellers, motors,

and motor arms. Figure 1 displays the investigation results of parts that faulted more than five times during one year of

operation, focusing on companies that operate UAVs in Korea. The numbers indicate the frequency of occurrence, and

the investigation found that many component faults occurred on the propeller and frame motor side.

Fig. 1 The number of UAV’s fault depending on the equipment.[4]

2



The reliance on human efforts such as visual inspection for preflight checks increases the operational cost and limits.

Therefore, it is essential to diagnose the fault of the actuator of the UAV during the preflight phase without additional

sensors.

A. Related work

Given the increasing interest and expected widespread use of UAVs, accurate fault detection and diagnosis (FDD)

methods are critical for ensuring the safety and reliability of UAVs. In addition, since the performance of fault tolerance

control is determined according to the FDD method result [5][6], a study on a high-accuracy FDD method is being

actively conducted. FDD methods can be divided into two main categories, which have been proposed based on

model-based methods such as Kalman filter and dynamics models [7][8] and data-driven methods.

The model-based FDD method identifies the fault mechanism and then uses the associated fault physical model to

determine normal or abnormal conditions [9][10]. Faults can be diagnosed with high accuracy if the target model is

known precisely. However, it is difficult to obtain an actual physical failure model, and if the model accuracy is low,

the diagnostic accuracy also decreases [11]. Pin lyu et. al. [12] presented a fault diagnosis method for sensors in the

vertical direction of a multicopter UAV capable of dealing with the z-axis accelerometer, and Ron wang et. al. [13]

presented the same concept using a barometer sensor.

In the data-driven FDD method, when collecting data indicating the health of an object, a different fault diagnosis

method is used depending on whether the state information of the object is known or not. Suppose the state information

on whether the target is normal or abnormal is unknown. In that case, fault diagnosis is generally performed by

unsupervised learning, or semi-supervised learning [14]. On the other hand, fault diagnosis is performed by classifying

supervised learning-based data if the state information is known. The data-driven FDD method has the advantage

of diagnosing without knowing the fault physics model of the target. Shin et. al. [15] conducted a battery anomaly

detection study using the sequence-to-sequence type deep learning Model.

Table 1 Comparison of real-time fault diagnosis types with relevant studies

References UAV types Fault types Methods

Jaramillo,Jesse, et. al., 2022 [16] Hexacopter Thrust fault PWM signal

Ray et. al., 2021 [17] Qaudcopter Thrust fault Skewness scanning

Ghalamchi, et. al., 2019 [18] Quadcopter, Hexacopter Propeller fault Kalman filter

Ochoa, C. A. and Atkins, E.M., 2018 [19] Quadcopter Control fault Gaussian naive bayes learning

Pourpanah, F. et. al., 2018 [20] Quadcopter Thrust fault Fuzzy logic

Xi Chen and He Ren, 2018 [21] Fixed-wing System fault Hierarchical bayesian network

Most studies have focused on the diagnosis and handling of real-time thrust faults during flight. Table 1 summarises the
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real-time fault diagnosis studies that compare the UAV used, the different types of fault, and the method implemented.

Jaramillo et. al. [16] experimentally validated the thrust fault detection and dynamic control allocation for a hexacopter

UAV thrust fault by using PWM signals sent to each actuator’s Electronic Speed Control (ESC). Ray et. al. [17]

proposed to detect a thrust fault by using a skewness scanning method. Ghalamchi et. al. [18] have presented the

propeller fault detector that uses accelerometer data to detect abnormalities in multicopter UAV propellers. Ochoa and

Atkins [19] used a traditional supervised learning method for thrust fault diagnosis. Pourpanah [20] also used vibration

data and current data to detect the anomalous condition of the UAV. Xi Chen and He Ren [21] performed hierarchical

bayesian network-based learning to diagnose fault types and efficiency.

The real-time FDD methods have the advantage of coping with faults when faults occur during flight. However,

there is a disadvantage in that it cannot prevent in advance, which causes financial and time losses during the flight

mission. In addition, in the case of a hexacopter UAV, even if one actuator is faulted, there is a slight stagger, and the

control can be maintained only with PID control. However, it may cause additional faults by straining other actuators.

Therefore, it is necessary to study the FDD method during the preflight phase, which involves ground inspection before

flight. Table 2 shows the comparison of preflight or postflight diagnosis types with relevant studies.

Table 2 Comparison of preflight or postflight fault diagnosis types with relevant studies

References UAV types Fault types Methods

Mohamad Hazwan Mohd, and Wan Rahiman, 2022 [22] Quadcopter Motor arm fault Neuro-fuzzy, Neural network

Milad Memarzadeh. et. al., 2022 [23] Fixed-wing Control fault Compact clustering via label propagation

Kim, J. et. al., 2021 [24] Quadcopter Thrust fault Gaussian process regression

Zhenyu zhou and Yanchao Liu., 2021 [3] Quadcopter Misplaced payload, Propeller fault Nonlinear least squares model

Iannace. G. et. al., 2019 [25] Quadcopter Propeller fault Neural network

Ghalamchi. B. and Mueller. M., 2018 [26] Quadcopter Propeller fault Spectral analysis

Lee, C. et al., 2018 [27] Fixed-wing System fault Pattern analysis

Mohd and Rahiman [22] measured vibration using a sensor and experimentally validated the motor arm fault detection by

using fuzzy, neuro-fuzzy, and neural networks. Milad Memarzadeh. et. al. [23] conducted a study on diagnosing multiple

control fault problems using compact clustering via label propagation method (CCLP), one of the semi-supervised

learning approaches. Kim. J et al. [24] conducted a study to diagnose the degree of thrust fault by learning the predicted

disturbance value from the disturbance observer using Gaussian process regression in the preflight phase. Zhou and Liu

[3] developed a smart landing platform using a nonlinear least-square model that is possible to diagnose where the fault

is and whether there is a problem with the payload position. Iannace et. al. [25] detected propeller faults by learning the

sound pressure level. Ghalamchi and Mueller [26] detected the propeller fault by performing spectral analysis using the

Fourier transform. Lee. C et al. [27] conducted a fault diagnosis study using pattern analysis by learning the pattern of

labeled data using fault record data.
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B. Main contribution

In this paper, a part of the propeller was broken to simulate the thrust fault. Although the experiment in this paper

was conducted using propeller fault, if the fault of the motor itself occurs completely or partially, it is thought that a

similar trend will occur in the cluster data of the accelerometer or gyroscope. In this sense, the results of this study can

be easily applied to the thrust fault.

Unlike previous studies, this study used principal component analysis (PCA) of accelerometer and gyroscope signals

to diagnose thrust faults during the pre-flight phase of hexacopter UAVs. Subsequently, the PCA of the data is trained

for supervised learning to diagnose the thrust fault. The main contributions in this study are summarized as follows.

The first contribution is that the proposed method only uses the data from the IMU sensor installed default for

automatic control. Normally, the thrust fault diagnosis uses both an IMU sensor and RPM command or measurement.

The existing FDD methods often require separate equipment such as an RPM sensor or a force balance for the fault

diagnosis in the pre-flight phase. The proposed approach uses only accelerometer or gyroscope data of the IMU sensor

for diagnosis and can identify even the location and degree of the thrust fault.

The second contribution is to establish a standard FDD method that can be used for any hexacopter UAV with the same

actuator arrangement. It can be used as good evidence to support the judgment in inspections such as minor thrust

faults, basic maintenance, and preventive maintenance, which are difficult to judge only by visual inspection during the

current operation of the UAV.

Lastly, we developed a preflight FDD algorithm for diagnosing thrust faults of multicopter UAVs using jig testing on the

ground. The proposed FDD method can be used as a basis for preventive maintenance and help with visual inspection

tests by presenting a fault diagnosis method that can be used in the preflight phase.

This paper is organized as follows: Section II introduces the hexacopter UAV dynamic model and shows the feature

extraction process by the PCA, which describes the supervised learning in detail and what was used. Section III explains

the experimental setup and training procedure used to obtain the training data. In Section IV, the performance of the

proposed fault diagnosis method according to the dataset and supervised learning algorithms was compared. Section V

offers conclusions of the paper with pointers for future work.

II. Background

A. Hexacopter UAV Dynamic Model

A configuration of the hexacopter UAV is shown in Figure 2, which is considered as a 6-Degree of Freedom.

xB, yB, zB axes are originate at the mass center of the hexacopter UAV. The equations of the motion of the hexacopter

UAV dynamics obtained from Newton’s laws are as follows [28] :
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Fig. 2 The hexacopter UAV with PNPNPN configuration. P is a rotor rotates clockwise, and N is counter-

clockwise.




Ûu = rv − qw − gsinθ + Fx/m

Ûv = −ru − pw − gsinφcosθ + Fy/m

Ûw = qu − pv − gcosφcosθ + Fz/m

Ûp = (Iyy − Izz)qr/Ixx + τφgyro
/Ixx + L/Ixx

Ûq = (Izz − Ixx)pr/Iyy + τθgyro
/Iyy + M/Iyy

Ûr = (Ixx − Iyy)pq/Izz + N/Izz

(1)

where u, v, and w are the longitudinal, lateral, and vertical body velocities, and p,q, and r are the roll, pitch, and yaw

rates, respectively. The rates can be measured using gyroscopes. g is the acceleration of gravity, and φ, θ, and ψ are the

Roll, Pitch, and Yaw. Ixx, Iyy, Izz are the moments of the inertia of the UAV, respectively. In equation 1, Fx,Fy,Fz are

components of the force vector and L,M,N are moments acting on the center of gravity.

τφgyro
, τθgyro

represent the gyroscopic forces of each axis. τφgyro
, τθgyro

are as follows:.




τφgyro
= −JAq(Ω1 −Ω2 +Ω3 −Ω4 +Ω5 −Ω6)

τθgyro
= JAp(Ω1 −Ω2 +Ω3 −Ω4 +Ω5 −Ω6)

(2)

where JA is the actuator inertia. Ωk, k = 1,2,3,4,5,6 represents the rotation speed of the i-th actuator. Given the

hexacopter UAV dynamic model shown in Figure 2, the variables are calculated by [29]:
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

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1
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d
2
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−Ω2
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5
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6
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√
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2
d(Ω2

3
−Ω2

4
+Ω

2
5
−Ω2

6
)

N = cQ(Ω2
1
−Ω2

2
+Ω

2
3
−Ω2

4
+Ω

2
5
−Ω2

6
)

(3)

where fk = cTΩ
2
k
, k = 1,2,3,4,5,6 is the produced thrust by the i-th actuator, cT is the thrust coefficient, and d represents

the length of the hexacopter UAV arm. cQ is the counter-torque coefficient.

Acceleration values measured by accelerometers (ax , ay , az) include several types of acceleration, such as gravitational

acceleration, and acceleration that occurs when the velocity or direction of the UAV changes. The accelerometer values

were as follows:



ax

ay

az



=



Ûu

Ûv

Ûw



+



0 w −v

−w 0 u

v −u 0





p

q

r



+ g



sinθ

−cosθsinφ

−cosθcosφ



(4)

B. Feature Extraction by PCA

PCA is the process of computing the principal components and is used to find a change of basis on the data [30].

The PCA is defined as an orthogonal linear transformation. Suppose X is an n × p data matrix,

X =



x11 x12 · · · x1p

x21 x22 · · · x2p

...
...

...
...

xn1 xn2 · · · xnp



(5)

where n represents the number of data samples, each column provides a particular feature.

The principal components are computed using singular value decomposition (SVD) of the data matrix [31]. The SVD

of X is expressed as follows:

X = UΣWT (6)

where Σ is a rectangular diagonal matrix of positive numbers σk , called the singular values of X; U is orthogonal unit
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vectors of length n called the left singular vector of X; W is an orthogonal unit vector of length p and called the right

singular vectors of X . In this case, the right singular vector is the same as the principal direction vector of the dataset.

The matrix XT X can be written as:

XT X = WΣTUTUΣWT

= WΣTΣWT

= WΣ2WT

(7)

A comparison with the eigenvector of XT X establishes that W is equivalent to the eigenvectors of XT X .

This section examines the acquisition of the training data and extraction of the features needed to develop the fault

diagnostic method. Using Equations 5 and 6, Xacc,Xgyro ∈ Rn×3 composed of X−,Y−, and Z−axis accelerometer data

(ax , ay , az) and gyroscope data (gx , gy , gz) can be expressed as follows:

Xacc = UaΣaWT
a =



ax,1 ay,1 az,1

ax,2 ay,2 az,2

...
...

...

ax,n ay,n az,n



(8)

Xgyro = UgΣgWT
g =



gx,1 gy,1 gz,1

gx,2 gy,2 gz,2

...
...

...

gx,n gy,n gz,n



(9)

where Xacc is the accelerometer matrix, and Xgyro is the gyroscope matrix. U is composed of n× n left singular vectors,

Σ is the singular value matrix, and WT
a is a 3×3 matrix comprised of nine feature values with rotation components.

In addition, WT
g represents a rotation of the group coordinate axes of the IMU sensor data. The principal component

rotation value of the accelerometer, WT
a , and gyroscope data, WT

g , was used as the feature data for supervised machine

learning-based fault diagnosis.

In Figure 3, the black sphere is a collection of accelerometer data at the time of the preflight test if the multicopter is

healthy. If the actuator is normal, accelerometer data are distributed on a sphere even if the vibration occurs. Depending

on the measured data, the shape of the sphere is maintained, and only the size changes. When the thrust fault occurs, the
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Fig. 3 Scatter plot of the accelerometer in a 3-D feature space.

specific-axis accelerometer values get more significant due to vibration. This vibration makes the accelerometer dataset

to be a particular ellipsoidal shape. The cyan ellipsoidal shape shows the single thrust fault case.

Fig. 4 The movement of the multicopter UAV in the case of the actuator no.2 fault
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Figure 4 illustrates the movement of the multicopter UAV in the case of the actuator number 2 fault. When a single thrust

faults and the hexacopter begins to lose its horizontal attitude, the attitude controller levels the attitude by increasing the

power in the actuator opposite to the faulty actuator to maintain horizontal attitudes.

As a result, the up-and-down vibration of the actuator on the fault axis causes rotation about an axis parallel to and

normal axis to the fault axis. This movement creates a principal vector of specific accelerometers and gyroscopes data

sets for each fault case. According to Equation 4, it is possible to obtain accelerometer data that form a specific elliptical

shape in each case.

C. Thrust fault Diagnosis Model

For learning the fault diagnosis model, detailed knowledge of the internal dynamics of the system is not necessary.

Instead, the training data is the source of information about the behavior of the system. Supervised machine learning

requires labeling previously occurring fault cases in the training data and is typically utilized for data-driven cause

inference. A fault diagnosis model is developed using artificial neural networks (ANN) [32] and support vector machines

(SVM) [33].

This study develops a novel fault diagnosis model against the thrust faults of UAVs to address safety concerns. We

propose the following steps to diagnose the fault.

Step 1: Ground test for preflight examination or possibly flight test for postflight examination

Step 2: Acquisition of accelerometer and gyroscope dataset

Step 3: Extraction of singular values and vectors

Step 4: Training with the supervised learning

Step 5: Diagnosis of the faulty actuator

Fig. 5 A flow diagram of the fault diagnosis method
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III. FAULT DIAGNOSIS MODEL

A. Experimental Setup

1. Thrust fault Injection

The proposed fault diagnosis system detects which specific actuator is faulty. The principal case considered in this

study concerns the damage to one of the actuators in the proximity of the propeller tip. This specific case was chosen

because the extremities of the actuators are more susceptible to damage during regular UAV flight mission operations

and therefore a frequent fault case. Figure 6 shows the shape of the damaged actuator considered in the experiment.

Fig. 6 The shape of the damaged actuator

In Figure 6, A is a normal propeller, B is 10 %, C is 25 %, and D is a propeller simulating a damaged situation of 40 %

of the total length. After acquiring the IMU data for the four cases, supervised learning is performed to diagnose the

location and degree of the fault.

2. Hardware Setup

The IMU sensor data was collected using a PIXHAWK, which has a high-rate data logger capable of recording

onboard sensor signals with a sampling rate of 500 Hz. The axes of the IMU sensor are set as follows:

• The x-axis positive direction is heading to the front.

• The y-axis positive direction is to the right.

• The z-axis is positive downwards.

Table 3 and Figure 7 show the physical parameters and the actuator number of the hexacopter UAV used in the

experiments, respectively. The red dotted line in Figure 7 represents the damaged actuator.
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Fig. 7 The actuator locations of the hexacopter UAV

Table 3 Physical paramters of the hexacopter UAV

Physical parameters Specification

Total mass m 1.78 kg

Arm length d 0.28 m

Ixx, Iyy 9.06× 10−3 kg·m2

Izz 11.65× 10−3 kg·m2

3. Fault data Acquisition

Figure 8 shows the thrust fault diagnosis system using the jig equipment. The jig test equipment was used to get the

training data needed to create the thrust fault diagnostic model and perform the preflight diagnosis. This data is supplied

to the fault diagnostic method to assess the degree of fault of the UAV and to determine whether the flight is possible.

Fig. 8 The actuator FDD method test using the jig equipment
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Our proposed FDD method is based on supervised learning of which each data point of the hexacopter UAV thrust fault

is labeled. Accelerometer and gyroscope training data was acquired from the damaged propeller (shown in Figure 6)

when the hexacopter was operated for 10 s. The ground jig equipment with a real hexacopter UAV was then used to

verify the performance of the proposed system, as shown in Figure 8. The 3-DOF gimbal, mounted on a ground jig

equipment, allows the hexacopter UAV to control its attitude for the ground test. The hexacopter UAV was developed

based on a DJI’s F550 frame.

4. Training the Feature dataset from IMU signals

Flight data during various thrust fault situations is required to develop an actuator FDD method through supervised

machine learning methods. In this study, training data was acquired by preflight test a multicopter on ground jig

equipment during a specific thrust fault condition. Figure 9 shows the measured accelerometer datasets.

Fig. 9 Scatter plot of accelerometer data in a 3-D feature space

Comparisons were made between the performance of the ANN and SVM algorithms that were trained using accelerome-

ters and gyroscope sensor signal populations. Figure 10 shows a flow diagram of the proposed procedure. The input

features, that is the result of the accelerometer and gyroscope data’s PCA, distinguish between normal and defective

actuator cases. The trained output shows the classification of the extracted features from the acquired and preprocessed

signals in the diagnosis of the thrust fault.
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Fig. 10 A flow diagram of the FDD method procedure

IV. FAULT DIAGNOSIS RESULT

This section analyzes the results of the proposed fault diagnosis method. The proposed method was implemented

using MATLAB 2021a software. A total of 500 sample data points were used for the performance evaluation. Figure 11

provides a detailed discussion on the performance evaluation metrics.

Fig. 11 Confusion Matrix
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Where a "True Positive (TP)" means that the system predicts a faulty actuator as faulty. A "True Negative (TN)" is that

the system predicts a non-faulty actuator as non-faulty. "False Positive (FP)" means that the system predicts non-faulty

actuator as faulty. Lastly, "False Negative (FN) implies that as a faulty actuator is declared as non-faulty.

First, the performance of the proposed FDD method was calculated based on the accuracy, prediction speed, and training

times. "Accuracy" is calculated as the ratio of correctly predicted observations to the total number of observations. The

accuracy of the method should be as high as possible. The accuracy is defined by the following equation:

Accuracy(%) = TP + T N

TP + T N + FP + FN
× 100 (10)

"Prediction speed" refers to the number of times the module predicts data per second. The higher this value, the more

data can be diagnosed in the same amount of time. "Training time" refers to the time it takes to learn the diagnostic

module. In other words, the shorter the training time, the faster the module is learned. The diagnostic results of the ANN

and SVM algorithms are compared and summarized in Table 4. When comparing percentage accuracy and learning

time, the ANN using accelerometers provides better accuracy and faster learning time than the others. Although the

prediction speed was the second level in these cases, ANN is suitable for use. Therefore, this study adopted the ANN

using accelerometers for thrust fault diagnosis.

Table 4 Performance values of different type diagnosis method

Algorithm type Accuracy Prediction speed Training times

SVM (Accel) 95.6 % 2,300 obs/sec 1.4393 sec

ANN (Accel) 99.3 % 5,500 obs/sec 1.1029 sec

SVM (Gyro) 94.8 % 2,200 obs/sec 1.7237 sec

ANN (Gyro) 98.1 % 6,000 obs/sec 1.3835 sec

A. Performance Parameter

The performance of the proposed fault diagnosis method was measured based on True Positive Rate (TPR), False

Negative Rate (FNR), Positive Predictive Value (PPV), and False Discovery Rate (FDR). These parameters have been

used to judge the performance of the FDD method [34],[35]. The TPR is used to measure the percentage of actual

positive candidates. When performing multiple comparisons, the FNR is the probability of falsely rejecting the null

hypothesis for a particular test. The system with a higher TPR and lower FNR claims had higher efficacy. The PPV

measures the probability of a false region being predicted as a false region. The FDR provides information about how

many true regions have been detected as false regions among the overall detected cases.
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Fig. 12 Performance parameters

B. Fault diagnosis performance (detect location)

Supervised learning uses the right singular vector of the accelerometer data population obtained through the PCA.

The thrust fault diagnostic model was created using an ANN algorithm. Figure 13 shows a scatter plot of the trained

principle components. Each scatter in the figure represents the results of dimensionality reduction of the data to be

diagnosed. The values of the main axis calculated through the PCA are represented by the x-axis and y-axis labels.

This shows a certain trend for each thrust fault. Each scatter point represent the PCA value of the cluster data and are

well classified to distinguish the faulty actuator number. By analyzing the scatter result in Figure 13, the group data

formed for each fault case becomes distinct. In this experiment, even if a single case in actuator 1 is misdiagnosed as the

fault in actuator 6, everycase else is correctly diagnosed with a high accuracy.

Figure 14-15 show the confusion matrix plot to understand how the selected classifier performs in each class. The

rows show the true class and the columns represent the predicted class. The diagonal cells show the true class and the

predicted class match. If these diagonal cells are of high percentage, the classifier correctly classifies the observations

of this true class.

The result shown in Figure 14 provides an analysis of the predictions made on the test data using the TPR and FNR, and

Figure 15 shows the PPV and FDR. The TPR and PPV are shown in blue for the correctly predicted cases in each class,

and the FNR and FDR are shown in red for the incorrectly predicted cases in each class. Table 5 presents the diagnosis

of 140 data based on the TPR, FNR, PPV, and FDR, calculated using the confusion matrix.

The 100 % of TPR was accomplished for thrust fault number 1, 2, 3, 4, 5, and healthy class and 95 % for number 6 class,

respectively. At the same time, the FDD method attained the FNR value of 0 % and 5 %, respectively, for these classes.
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Fig. 13 The scatter plot of the trained principle components

The proposed method obtained the PPV 100 % for the number 2, 3, 4, 5, 6, and healthy class and 95.2 % for the number

1, respectively. Whereas the FDR values were determined as 0 % for number 2, 3, 4, 5, 6, and healthy class, 4.8 % for

the number 1 class. The FNR result shows about 4.8 % of cases in which the number 1 actuator is diagnosed to be

faulty when the number 1 actuator is not a fault. Also, the FDR results mean that about 5 % of cases are diagnosed

as non-faulty in the number 6 actuator when the number 6 actuator is faulty. In other cases, it is confirmed that the

proposed diagnosis method can be used for diagnosis with 100 % accuracy.

C. Fault diagnosis performance (degree of damages)

ANN-based regression is performed using the right singular vector data of the accelerometer obtained through

PCA to learn the degree of actuator damage. Figure 16 displays the results of the degree of damages-value regression

learning. Figure 15a represents that a comparison graph shows little error between the true value and the prediction. As

a result, it was calculated close to linear. Figure 15b means the errors between the prediction and true for each thrust

fault. Regression learning results that are close to a linear function are generated depending on the degree of the thrust
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Fig. 14 The True Positive Rate (TPR) / False Negative Rate(FNR)

fault. The learning performance indices are shown in Table 6.

Mean Absolute of Errors (MAE) refers to the average values of the absolute difference between the true and predicted

values in the dataset. Root Mean Square of Errors (RMSE) means the square root of the Mean Square of Errors (MSE). It

measures the standard deviation of the residuals. R-Squared Score represents the ratio of the variances of the dependent

variables. It is expressed as a number from 0 to 1. If the closer to 1, the better performance. For this reason, we adopt

the ANN using accelerometers to diagnose the fault’s degree.

D. Verification tests of fault diagnosis module

Based on the performance data of the previous section, the accelerometer data is learned using the ANN to diagnose

the location and degree of damage to the actuator. Randomly damaged propellers are used to verify the performance of

the proposed approach. Figure 17 shows the propeller and test environment.

About 15% of the propellers used in the verification test were damaged. 20 times tests are done at each actuator, and

Figure 18 and Table 7 show the success ratio of the correct diagnosis and the average value of the degree of damage.

18



Fig. 15 The Positive Predictive Value(PPV) / False Discovery Rate(FDR)

Fig. 16 Accuracy versus truth

In all cases where the experiments were conducted, the location of the thrust fault was accurately diagnosed. It was

confirmed that the result was similar to the actual damage rate of 15% by diagnosing a damage rate between 11 to 17%

for each actuator. These results show that fault severity diagnoses are made in nearly 10% of the training data. This
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Table 5 The diagnosis result values’ TPR, FNR, PPV, and FDR

Fault actuator number TPR (%) FNR (%) PPV (%) FDR (%)

Number 1 fault 100 % 0 % 95.2 % 4.8 %

Number 2 fault 100 % 0 % 100 % 0 %

Number 3 fault 100 % 0 % 100 % 0 %

Number 4 fault 100 % 0 % 100 % 0 %

Number 5 fault 100 % 0 % 100 % 0 %

Number 6 fault 95 % 5 % 100 % 0 %

Healthy 100 % 0 % 100 % 0 %

Overall performance 99.3 % 0.7 % 99.31 % 0.69 %

Table 6 Performance values of different type diagnosis method

Algorithm type Mean absolute of errors (MAE) Root mean square of errors (RMSE) R-squared score

SVM (Accel) 2.5628 4.2594 0.92

ANN (Accel) 0.41474 1.683 0.97

SVM (Gyro) 3.0569 4.3275 0.92

ANN (Gyro) 0.5764 3.3643 0.95

Fig. 17 The propeller and the test environment used for the verification

https://youtu.be/qL4NbXGelmQ

error is caused by the wide intervals of the data used in the regression learning process. Consequently, it is concluded

that more precise diagnoses can be achieved by further subdividing the current learning data. Based on these results, if

all training data intervals are subdivided, the accuracy will be higher. The test verified that the actuator’s fault location

and the degree of fault could be determined using only the IMU data.

V. CONCLUSION AND FUTURE WORKS

This study proposed the preflight fault diagnosis and health monitoring of hexacopter UAV actuators using the

principle direction vector of the accelerometer and gyroscope dataset calculated by the PCA method. Since the

20



Fig. 18 Fault diagnosis results by actuator location

Table 7 The diagnosis result of verification tests

Fault actuator Fault location diagnose success ratio Average predicted values (%)

Actuator 1 20 / 20 (100 %) 10.914

Actuator 2 20 / 20 (100 %) 12.025

Actuator 3 20 / 20 (100 %) 13.101

Actuator 4 20 / 20 (100 %) 16.792

Actuator 5 20 / 20 (100 %) 14.964

Actuator 6 20 / 20 (100 %) 11.367

accelerometer or gyroscope datasets are collected indoors without considering wind disturbances, this FDD method

is more suitable for the preflight phase before flying the hexacopter UAV in an outdoor environment. The proposed

FDD method was trained to classify the thrust faults. Performance comparison was conducted according to different

supervised learning algorithms. The final learning algorithm was selected by comparing the accuracy, prediction speed,

and learning time. Subsequently, the reliability of the method was verified by analyzing the diagnostic and monitoring

performance. As a result, the true positive rate of the FDD method was 99.3 %, the false negative rate was 0.7 %, the

positive predictive value was 99.31 %, and the false discovery rate was 0.69 %. The accuracy of diagnosing the degree

of damage to the actuator has a reasonably small error, so it can be used for preventive measures in preflight diagnosis.

Our proposed diagnostic module consists of real sensor data, which includes inherent noise. This characteristic increases

the similarity between the learning data and actual flight situations. Moreover, utilizing PCA-based data for learning

enhances the robustness of the diagnosis module against noise. This approach ensures that the module can handle noisy
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data and effectively extract relevant information for accurate diagnosis. In addition, accelerometers and gyroscopes can

be used for fault diagnostics without adding a separate sensor thus increasing the vehicle survival rate without additional

cost. This method is also applicable to any multicopter type UAV with an arbitrary number of propellers. In summary,

our proposed data-driven diagnosis scheme can be easily transferable beteewn multicopter vehilces when ever their

IMU data are available.

In future works, performing tests under a wider variety of environments will be necessary to verify the performance of

the proposed FDD. In addition, it is planned to consider multiple-thrust faults to extend the proposed FDD. To enable

real-time diagnosis under actual flight conditions, it is necessary to consider data noise. Therefore, we plan to apply

moving window method that performs the diagnosis at regular intervals to process sensor data. In addition, we will

improve the performance by combining with simulation-based data to compensate for the insufficient and biased data.
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