
Towards Autonomous Operation of Robonaut 2

Julia M. Badger Stephen W. Hart J.D. Yamokoski

The Robonaut 2 (R2) platform, as shown in Figure 1, was designed through
a collaboration between NASA and General Motors to be a capable robotic as-
sistant with the dexterity similar to a suited astronaut [1]. An R2 robot was
sent to the International Space Station (ISS) in February 2011 and, in doing so,
became the first humanoid robot in space. Its capabilities are presently being
tested and expanded to increase its usefulness to the crew. Current work on
R2 includes the addition of a mobility platform to allow the robot to complete
tasks (such as cleaning, maintenance, or simple construction activities) both
inside and outside of the ISS. To support these new activities, R2’s software
architecture is being developed to provide efficient ways of programming robust
and autonomous behavior.

In particular, a multi-tiered software architecture is proposed that combines
principles of low-level feedback control with higher-level planners that accom-
plish behavioral goals at the task level given the run-time context, user con-
straints, the health of the system, and so on. The proposed architecture is
shown in Figure 2. At the lowest-level, the resource level, there exists the
various sensory and motor signals available to the system. The sensory signals
for a robot such as R2 include multiple channels of force/torque data, joint or
Cartesian positions calculated through the robot’s proprioception, and signals
derived from objects observable by its cameras. The motor resources are the

Figure 1: Robonaut 2. Credit: J. Bibby

1



Figure 2: R2’s state of the art multi-tiered control architecture.

embedded motor units that accept input commands. For R2, this includes the
low-level torque control loops that run at each of R2’s joints.

Sensorimotor resource signals are combined at the control level into multi-
objective feedback controllers that optimize cost functions for tracking and/or
regulating reference inputs [2, 3]. Each objective function encodes a task (e.g.
desired reference position, joint limit avoidance, singularity avoidance, etc.).
Tasks are assigned a priority with lower priority tasks projected into the null-
space of higher priority tasks. This ensures that all objectives will be meet as-
suming the null-space projections do not lose rank. In cases where projections
lose rank, approximations can be made to allow progress towards achieving the
objective [2]. These controllers are sequenced and combined at the planner
level into coordinated control programs that attempt to accomplish high-level
goals like PickAndPlace, Grasp, PegInHole, Traverse, etc. These are the
“verbs” of the system. Control at this level incorporates higher-level constraints
while providing robust contingency plans that can accomplish the desired goals
in a variety of situations1. Finally, the arbitration level includes higher-level
functions such as goal planning, health monitoring, and user inputs. The arbi-

1Previous work by the authors provides one implementation of the first three levels of the
proposed architecture [4].

2



tration level can be used to decide between accomplishing user-level demands
as well as to pursue more undirected behavior designed to increase the robot’s
competency at a given task or in a given situation.

To implement the above architecture, the principles of component-based
software design were used in order to facilitate the dynamic reconfigurability
implicit at each level of the design. Implementing each block as a software com-
ponent with a well-defined but generic interface, allows an autonomous system
to easily swap in or out new sensory motor resources, controllers, and plans. In
such a way, programming new capabilities into the system reduces to a resource
allocation problem at the component level that can be submitted to machine
learning algorithms to find fault-tolerant solutions, increase performance, and
respond to previously unseen situations.

Specifically, the design is implemented using ROS [5] (for the planning and
arbitration levels ) and Orocos [6] (for the control and resource levels). This
system will streamline R2 application development by leveraging the benefits
of ROS, a service level architecture with tools for hardware abstraction, com-
munication, package management, with the benefits of Orocos, a real-time core
that has the ability to meet higher-performance requirements.

References

[1] M. Diftler, J. Mehling, M. Abdallah, N. Radford, L. Bridgwater, A. Sanders,
R. Askew, D. Linn, J. Yamokoski, F. Permenter, B. Hargrave, R. Platt,
R. Savely, and R. Ambrose, “The first humanoid robot in space,” in IEEE
Conference on Robotics and Automation, 2011.

[2] L. Sentis and O. Khatib, “Prioritized multi-objective dynamics and control
of robots in human environments,” in Humanoid Robots, 2004 4th IEEE
RAS International Conference on, vol. 2, pp. 764–780, IEEE, 2004.

[3] R. Platt, M. Abdallah, and C. Wampler, “Multiple-priority impedance con-
trol,” in IEEE International Conference on Robotics and Automation, 2011.

[4] S. Hart and R. Grupen, “Learning generalizable control programs,” IEEE
Transactions on Autonomous Mental Development, vol. 3, no. 3, pp. 216–
231, 2011.

[5] “Robot Operating System.” http://www.ros.org, November 2011.

[6] “The Orocos Project.” http://www.orocos.org, November 2011.

3


