Certification of Safety-Critical Software Under DO-178C
and DO-278A

Stephen A. Jacklin
NASA Ames Research Center, Moffett Field, CA, 94035

The RTCA has recently released DO-178C and DO-2784as new certification guidance for
the production of airborne and ground-based air trdfic management software, respectively.
Additionally, RTCA special committee SC-205 has ats produced, at the same time, five
other companion documents. These documents are RTCBO-248C, DO-330, DO-331, DO-
332, and DO-333. These supplements address frequignaisked questions about software
certification, provide guidance on tool qualificaton requirements, and illustrate the
modifications recommended to DO-178C when using mettbased software design, object
oriented programming, and formal methods. The objetive of this paper is to first explain
the relationship of DO-178C to the former DO-178Bn order to give those familiar with DO-
178B an indication of what has been changed and whaas not been changed. With this
background, the relationship of DO-178C and DO-27&o the new DO-278A document for
ground-based software development is shown. Last,naoverview of the new guidance
contained in the tool qualification document and tle three new supplements to DO-178C and
DO-278A is presented. For those unfamiliar with DO178B, this paper serves to provide an
entry point to this new certification guidance for airborne and ground-based CNS/ATM
software certification.

I. Introduction

TCA DO-178B has long been regarded as a document providingrémier means or path to obtain FAA

certification of software to be used in airbornsteyns. DO-178B was not intended to be a procestedor
software certification, but rather a descriptionwdfat high-quality software development process$esilsl be put
in-place to create airborne software that perfoitsisiesired function. In principal, if life cyclevidence can be
produced to demonstrate that these processes heame dorrectly and appropriately implemented, theohs
software should be certifiable. The document isnta@ed by the RTCA (Radio Technical Commission for
Aeronautics, established 1935), which is a privsociation of over 250 aeronautical organizatiorduding the
FAA, NASA, DOD, other government agencies, airlmanufacturer, airline operators, aircraft equipnsemtpliers,
and various pilot associations.

Seven years ago, the RTCA created special comnfiee (SC-205) to produce a revision of DO-178B to
account for new software development and verifigatechnologies that were deemed immature at the BO-
178B was written. The new version, DO-178C “Sofvaonsiderations in Airborne Systems and Equipment
Certification® was released in December 2011. Rather than plalingf the new guidance in DO-178C, the
special committee decided to place the vast mgjofithe new guidance in six other documents. Tlileg@iments
were released together with DO-178C. They are:

« RTCA DO-278A: Software Integrity Assurance Considerations fom@nunication, Navigation,
Surveillance and Air Traffic Management (CNS/ATBYstems

RTCA DO-248C: Supporting Information for DO-178C and DO-278A

RTCA DO-330: Software Tool Qualification Considerations

RTCA DO-33f: Model-Based Development and Verification Supplette DO-178C and DO-278A
RTCA DO-33Z: Object-Oriented Technology and Related Technigslement to DO-178C and
DO-278A

« RTCA DO-333: Formal Methods Supplement to DO-178C and DO-278A

! Aerospace Engineer, Intelligent Systems DivisMajl Stop 269-2, Senior Member AIAA
1
American Institute of Aeronautics and Astronautics

DO-178, DO-178A
Predecessor Documents

v

.llllllllllllllllllllllll. Illllllllllllll.
= DO-248B FAQ & : DO-178B : DO-278 -
: Discussion Papers : "‘
Ground-Based
Airborne CNS/ATM
Software Software

Figure 1. RTCA airborne and CNS/ATM software certification-related documents introduced in December
of 1992. Dashed lines indicate supplements.

Figure 1 illustrates the functional relationshipaifborne and CNS/ATM software certification-rethtéocuments
published by RTCA prior to December 2011. DO-178&sva derivative product of DO-178A, DO-178, andeoth
documents and was released in December 1992. Titierge contained in DO-178B was intended to beiegipke

to both airborne and ground-based software devedopnO-278 was intended to be a supplemental dentito
modify the guidance of DO-178B for CNS/ATM softwatéence, both DO-178B and DO-278 together wereeto b
referenced for the ground side. DO-248B was antiatdil supplement that provided no additional ¢iegtion
guidance, but contained an appendix of frequerdked software certification questions, severaludision papers
of key DO-178B concepts, and the rationale usedréate the DO-178B and DO-278 documents. The bixes
dashed lines indicate supplemental documents teet mot intended to be complete in themselves.

Figure 2 illustrates how the new documents intrediuscy RTCA in December 2011 for DO-178C and DO-278A
relate to each other. In this diagram, the daslwe@dindicate supplemental documents that arentended to be
used on their own. The supplemental documents mdaé guidance contained in DO-178C and DO-278Ati@n
airborne side, DO-178C is the key document arglat direct derivative of DO-178B. On the groundesidO-278A
is the key document, but it is not a direct derivabf DO-278. Rather, DO-278A combines the guidaot DO-
178C and DO-278 to produce a stand-alone referlemaround-based software verification. For bottbaine and
ground-based software, DO-331, DO-332, and DO-388ige additional guidance for software using meloketed
development, object-oriented programming, and férmmeethods, respectively. These supplements provide
additional guidance for both DO-178C and DO-2784t beed not be used if not applicable. DO-330 staad-
alone document containing guidance for tool quadifon and is intended to be used not only by perssing tools
to verify software or auto-generate code, but &lgmersons developing the software tools. The tlaslelopers
need not read DO-178C or DO-278A because the go@aontained in those documents that is relevantofal
software development is repeated in DO-330.

The purpose of this paper is to provide an overndéithe new guidance for safety-critical airbormel ayround-
based CNS/ATM software contained in DO-178C, DOA&78nd the other documents. In section I, the lsirities
of DO-178C to DO-178B will be presented by reviegvithe basics of the DO-178B verification philosophy
section Ill, an overview of the major new guidamoatained in DO-178C is presented to highlight whed been
changed. Section IV discusses the relationship@fZ38A developed for ground-based CNS/ATM softwaréhe
guidance presented in DO-178C for airborne softwéhe remaining sections of the paper provide audision of
the new guidance contained in the other documeetgjon V for DO-248C, section VI for DO-330, seatiVIl for
DO-33, section VIII for DO-332, and section IX fDO-333.

Within the scope of this paper it is not possibleite all or even most of the guidance contaimethé new DO-
178C document set from RTCA. Taken as a whole, ntbe documents comprise over 1000 pages of new
documentation. The interested reader must dowrtleese documents from RTCn order to fully appreciate and
apply the new guidance. This paper provides aryquutint for those interested in understanding thape of these
publications.

2
American Institute of Aeronautics and Astronautics

DO-248B

DO-178B i DO-248C FAQ & : DO-278
* = Discussion Papers = ‘
DO-178C DO-278A
DO-330
Tool Qual.
Ground-Based
Airborne Software CNS/ATM Software

Cert. Guidance Cert. Guidance

.IIIIIIIIIIIIIII

Model-Based |[«fmmmmi DO-331 ===l Model-Based

;IIIIIIIIIIIII‘

Object-Oriented |«@mummmi DO-332 ==l Object-Oriented

.IIIIIIIIIIIIIII

Formal Methods h: DO-333 -# Formal Methods

Figure 2. Relationship of the new RTCA document sefor airborne and CNS/ATM software certification
introduced in December 2011.

II. The A-B-Cs of the DO-178C Software Verification PHosophy

The purpose of this section is to identify the &amiiies of the guidance contained in DO-178C tetpersions
of the document. DO-178C is built on the principbssablished by its predecessor documents, DOQ@8178A,
and DO-178B. Since testing can never prove theralesef software errors, the primary DO-178C phifgspis to
demonstrate the quality of the software developnpeatess from beginning to end in an effort to mize the
creation of error. DO-178C, like DO-178B, calls for extensive amount of requirements-based softteatiang to
be performed, but equally important is the emphpksised on system safety analyses, software arsalgeéware
reviews, and formal proofs used to augment and aaitpe development process. The subsections bielemtify
the guidance presented in DO-178B that is retaim&D-178C.

A. Software Levels and Coverage.

DO-178C (section 2) uses the same software leaksgories (SL-A to SL-E) as are used in DO-178Be Th
meaning of these categories is unchanged from theaming in DO-178B. Level A is the highest levEkoftware
criticality. Like DO-178B, DO-178C (section 6) rdaps extensive verification coverage testing foreleA and B
software. Coverage refers to the degree to whicbhait be proved that the verification activities eowll
requirements, code structure, and object code. D&E1divides coverage into two types, requiremeated
coverage and structural coverage. Requirementsmasarage analyzes the software test cases toroahit they
provide proof that all requirements have been fatis Structural coverage is met by proving tha thst cases
execute all code statements and that all data icmuphd control paths have been tested.

3
American Institute of Aeronautics and Astronautics

B. Software Development Plan.

The Software Development Plan identifies the metloddsoftware development. It specifies the coding
standards, programming languages, software tedti@lgygging tools, software development proceduaed, the
hardware used to develop and execute the softwarstated by DO-178C (section 4), the purposedsctioose
requirements development and design methods, tants,programming languages that limit the oppotyufor
introducing errors, and verification methods thaswre that errors introduced are detected”. Tautkude things
like compilers, linkers, and V&V tools. Reviews dcebe regularly conducted throughout the softvelreelopment
process to ensure that the Software Developmenti®laeing followed.

C. Software Development Process.

As was true in past versions of DO-178, DO-178Ct{sa 5) views the software development process kife
cycle that starts with the planning and developn@insoftware requirements, continues through thitwsoe
development and testing, and ends with the deplayared maintenance of the software. The softwaveldpment
process begins with recognition that the softwargairt of a larger system (e.g., an aircraft). 3ystem defines the
requirements of the software. In DO-178C, thesereferred to as the system requirements allocatesbftware.
The list of requirements includes not only the perfance specifications of what the software is sspd to do, but
also includes requirements derived from the Sys$afiety Assessment and other documents. The decdopaxf
system requirements into software requirements irsma key step in the software development procéks.
incomplete or incorrect formulation of the softwaeguirements will produce validation failures dgrisoftware
integration testing. Validation is the process efedmining that the software requirements are cbard complete.
DO-178C does not provide guidance for softwarededion testing because it is reasoned that softweateis
verified to be correct should, in theory, have @adidation problems during software integration itegt unless the
software requirements are incomplete or incorrect.

The software development process transforms higdl-nd derived high-level software requirements gode
via a sequential process. In the first step, tlghtevel requirements are used to develop the sofwarchitecture.
From the software architecture, low-level and detliow-level requirements are developed. A deringgliirement
is anything that the software must do to functiooperly, yet is not stated as part of the softwaegormance or
safety requirements. Low-level requirements areld useproduce the source code, and the source codsed to
generate the object code for the target computesorhetimes happens that high-level requiremergsuaed to
generate source code directly, in which cases thagelevel requirements are also considered tdolbelevel
requirements. Like DO-178B, DO-178C requires tradag from requirements to code.

D. Software Verification Process.

The software verification process is aimed at shgwhe correctness of the software. It consisteqbirement
reviews, code reviews, analyses, and testing. tappsin the decomposition of high-level system meoents to
object code are considered in this process. DO-1@88 DO-178C require examination of the output bf a
processes to check for software correctness afidd@rrors. DO-178C (section 6) requires thatthg high —level
software requirements are correctly and complefelyned from the system requirements, 2) the higelle
requirements are complete and consistent, 3) thea® architecture correctly and completely medthigh-level
requirements, 4) the low-level requirements colyeahd completely fulfill the software architecturg) the low-
level requirements are consistent and correcth®)bftware code correctly satisfies all low-leregjuirements, 7)
all code is traceable to one or more low-level neuents, and finally, 8) the object code correatiplements the
software on the target computer, and it is traceaht complies with all low-level and high-leveljugements.

E. Certification.

The certification process described in DO-178Ct{eacl0) is the same as that presented in DO-1%8iware
certification (technically, “approval”) is obtained the result of the certification authority agmgethat the Plan for
Software Aspect of Certification (PSAC) has beeliilfied. In the United States, the authority respibte for
certifying aircraft flight software is the FederAliation Administration (FAA). The PSAC is develapen
collaboration between the software developer’'s @estied Engineering Representative (DER) and the .FR#&
same certification liaison process presented inIJ8B is also contained in DO-178C (section 9).

F. Other Similarities.
The sections contained in DO-178C describing tHensoe life cycle (section 3), the software configtion
management plan (section 7), the software quatibu@nce plan (section 8), the software developstamidards

4
American Institute of Aeronautics and Astronautics

(section 4.5), the software design standards ¢sedtl), and the overall verification activitiestie performed are
generally the same as those presented in DO-178B.

I1l. What's New in DO-178C ?

Since DO-178C was seven years in the making, omhtnaissume that the document has been substantially
changed from DO-178B, but this is not true. AlthbugO-178C has many minor changes, these are meighigr
editorial in nature or are clarifications made telphreaders better understand key DO-178B concdjtsse
changes are frequent and helpful. However, the stiteture and content of DO-178C is essentialey game as
that seen in DO-178B. The utility of this similgrits to make DO-178C backward compatible with DGR by
design. This means that existing software thatlbeen previously approved under DO-178B is also aglle
under DO-178C.

The major new guidance, additions, and modificatiomroduced in the DO-178C documentation set are
contained in the supplemental documents and witlibeussed in later sections of this paper. Theettibns below
highlight some of the new guidance contained inDkke178C core document.

A. Activities, Guidance, and Guidelines.

One of the most frequent changes seen in DO-1788aisthe word “activities” is used to replace therd
“guidance” found in DO-178B, and wherever “guidebfi appeared in DO-178B, DO-178C uses the word
“guidance”. The reason for these changes is thedse DO-178B described processes (e.g., softvesalapment
process) in terms of a list of activities the salfterdeveloper was to perform, it made sense talwath activities,
not guidance. Commensurate with this effort, tHeets in Annex A have also been modified to incladeew
“activity” column that lists the relevant activiieassociated with all verification activities supgpw the objective.
DO-178C reserves use of the word guidance to itelitde most important steps to certification autles. The
word guideline is still used in some places, bainieaning is intended to indicate a list of sugpgrinformation.

B. Parameter Data Item Files.

DO-178C treats parameter data items in the sam@ena@s executable object code. DO-178C definegiea
data items as data that influences the behavidheoSoftware without modifying the executable objemde. The
parameter data file is directly usable by the pssirgy unit of the target computer. Parameter detdatéms can be
used to configure the software or provide dataliafemation that the executable code can use irtwian. In
nearly all instances, DO-178C replaces the phrasecutable object code” used in DO-178B with “exable
object code and parameter data items”. In makirggdiiange, DO-178C calls for the same verificapfoocess to be
followed for parameter data file items as that dfmeexecutable object code.

C. Bi-directional Software Traceability.

DO-178C emphasizes that two-way or bi-directiomatéability is required between 1) system requirgme
(allocated to software) and high-level requiremgRjshigh-level requirements and low-level requiesnts, 3) low-
level requirements and source code, 4) softwareirements and test cases, 5) test cases and presedud 6) test
procedures and test results. Although DO-178B plybiaad this intent, the actual wording impliedceability only
in the decomposition direction from high-level regments to source code. DO-178C makes it cleat tha
traceability needs to be verifiable in both direns and that verifiable trace data between thestesmmust exist.
This assures that orphan source code and deacksmante are not inadvertently produced.

DO-178C allows an exception to requirements trailigalior compilers that produce object code thatniot
directly traceable to source code. However, théngo€ planning process must provide a means tacttis code
and ensure its verification.

D. Product Service History.

Under alternative methods (section 12.3), DO-1786vides expanded guidance for using product service
history as a means to gain certification creditft@are that has been in service a length of timd amose
executable object code has not been modified mnaontrolled manner may be given certification @rdaO-178C
states that the software developer should progusarount of certification credit sought in therPlar Software
Aspects of Certification (PSAC). Product servicstdiiy is identified as part of the PSAC in DO-178C.

E. Tool Qualification Levels.

5
American Institute of Aeronautics and Astronautics

DO-178C states that the tools used to generatevator to verify software must themselves be iestifo be
correct. This tool verification process is callaeghlification. Moreover, a tool such as a compilaelified for one
project is not necessarily qualified for a differeproject. DO-178C distinguishes between tools used
automatically generate software from tools usedutwmate some portion of the verification procéissgeneral,
DO-178C requires greater scrutiny of software gatien tools. DO-178C sets forth five tool qualificen levels
(TQL-1 — TQL-5) based on the software level, ancthier the tool is used to generate software, tifyveoftware,
or used to detect software errors. DO-178C refeesreader to the tool qualification supplement (B&D) for
specific guidance.

F. Formal Methods and Assurance Cases.

DO-178C removes explicit reference to the use ohfd methods as an alternative method to satisfyl3@C
objectives, but instead cites the use of assurea®es to provide adequate confidence and evidbata product or
process satisfies its requirements. DO-178C defaresassurance case as a technique in which argsiraest
explicitly given to link the evidence to the claimscompliance with the system safety objectivesathonale for an
assurance case may be included in the software glémat means of verification is planned. Guidaoa the use of
formal methods is presented in the DO-333 suppl¢meformal Methods.

IV. RTCA DO-278A: Software Integrity Assurance Consideations for CNS/ATM Systems

DO-278A provides guidance for the production ofugrd-based, Communication, Navigation, Surveillamce]
Air Traffic Management (CNS/ATM) software, just B©-178C provides guidance for the production obaine
software. Because the former DO-278 was intenddxt tosed as a supplement to DO-178B (see Fig.NJ/&TM
software developers were required to be familiathvidO-178B. DO-278 described the additions, defetjcand
modifications to DO-178B that applied to the vesfiion of ground-side software.

In contrast, DO-278A was created by combining D@Q Aand DO-278 to make a single, stand-alone documen
As a result, DO-278A may be used without referetac®0-178C. Both DO-178C and DO-278A have the same
section names and use the same section numberslifidrences are that some subsections have beksdad DO-
278A. A good many of the differences between DO A®d DO-278A are produced by changes in terminglog
for example:

“Software level” in DO-178C was replaced with Sagsance level” in DO-278A

“Certification” authority in DO-178C was replacedth “approval” authority in DO-278A

“Aircraft” or “airborne system” in DO-178C waspkaced with “CNS/ATM system” in DO-278A
“Adaptation” data in DO-178C was replaced witlatameter” data in DO-278A

The “Plan for Software Aspects of Certificatid?SAC)” in DO-178C is referred to as “Plan for Saite
Aspects of Approval (PSAA)” in DO-278A

A. Assurance Level Definitions.

Whereas DO-178C defines five software levels (Atdc)categorize the effect of software failure inbaine
systems, DO-278A defines six assurance levels (ADE)-178C abbreviates software level with SL, whsr®O-
278A uses AL for assurance level. Table 1 comp#resDO-178C and DO-278A software level classifizati
schemes. As cited in DO-278 (but removed from D@A)7 assurance level 4 (or AL-4) was developeddooant
for “certain CNS/ATM systems where AL-3 was tooirgjent and AL-5 was too lenient”. DO-278A includas
column in the Process Objectives and Output Tadflésnex A to indicate the objectives that speadiffig apply to
AL-4.

B. Tool Qualification.

DO-278A contains essentially the same tool qualtfan guidance contained in DO-178C. Like DO-17BO-
278A requires software development and verificatmols are qualified when the processes used in2D8A are
eliminated, reduced, or automated by the use dfvaoé tools. The main difference is that DO-278ket into
account the additional assurance level used for/8NE systems. DO-278A refers the reader to DO-3@0ah in
depth discussion of the activities and guidanceadol qualification.

C. Service Experience.
The Product Service History section from DO-178Csvexpanded and added to DO-278A as the Service
Experience section. This section describes wavious usage of a software product cancbunted toward
Table 1: Comparison of DO-178C software levels anDO-278A assurance levels.

6
American Institute of Aeronautics and Astronautics

Software Failure Effect Category DO-178C Softwaewé! DO-278A Assurance Level
(Airborne Software) (CNS/ATM Software)

Catastrophic SL-A AL-1

Hazardous SL-B AL-2

Major SL-C AL-3

Less than major, more than minor Not used AL-4

Minor SL-D AL-5

No Effect SL-E AL-6

approval credit. DO-278A specifies the requiremdntsreceiving credit for product service histoifhe main

objective is to verify that an equivalent level s#fety is provided by the service experience hysas would be

otherwise obtained by following the standard DOR&#fuidance. Whereas DO-178C identifies flight-hoassa

useful metric for airborne software service expaee DO-278A cites in-service hours as an apprtgprigetric for

CNS/ATM systems. DO-278A also provides guidancesigstems having deactivated code and for thosersgst
using recovery methods to recover from softwarsystem errors.

D. COTS Software.

DO-278A includes an extensive section on the ugeomimercial Off-The-Shelf (COTS) software in CNSMT
systems. This section expands the COTS materiakpted in DO-278. In DO-278A, COTS software iswsafe
that is sold by commercial vendors without modifica or development of the software required. Aoftware
needed to integrate COTS software into a CNS/ATMtey (e.g., wrapper code) is approvable only ifsit
developed in a manner that fulfills all the objees of DO-278A.

The guidance provided by DO-278A for COTS softwai®s to ensure that the level of confidence in COTS
software is the same as that for software devel@medrding to the standard guidance provided inZJQA. In
order to identify any software development weakesssf COTS software, DO-278A recommends that a gap
analysis be performed to identify the extent tockihtihe objectives of DO-278A can be demonstratduate been
achieved by the COTS software. An assurance planldlpe developed to specify how the gaps will &tésfed for
the assurance level sought. DO-178A recommendsat@dd TS software integrity assurance case be deselthat
provides a rationale for demonstrating that thévgmie meets its requirements through a rigorousemtation of
claims, arguments, evidence, assumptions, judiifics, and strategies. As such, COTS software essntially be
shown to meet all the objectives of DO-278A. DO-&{Besents an extensive explanation of the softywéening,
objectives, activities, acquisition, verificationpnfiguration management and quality assuranceegsss and
objectives in Section 12 and in the tables of AnAex

E. Additional System Considerations.

DO-278A addresses additional topics for groundvearfe verification not considered in DO-178C. Thase
software communication, security, adaptability, acutover (or hot-swapping). More than airborne wafe,
ground-software is comprised of many distributestesyn components. System communication guidanceisded
for ground software systems that are coupled t@geffhe main concern when coupling systems is shfitvare
approved to a lower assurance level might potéytadrrupt software approved to a higher level. Demeral fix
for this situation is to specify further verificati activities to increase the assurance level ef [dwer-level
software. A section on hot-swapping specifies aoldil considerations to ensure software integotysiystems that
are in use 24-hours a day and require real-timvaoé and hardware updates.

V. DO-248C: Supporting Information for DO-178C and DOZ/8A

DO-248C provides a list of frequently asked questjaliscussion papers, and rationale for DO-178CD-
278A. It is not intended that this supplement drisom front to back, but rather topically. A It searchable key
words is provided to help the reader find the npestinent material for a topic of interest.

DO-248C provides a wealth of discussion papers ¢hatain explanatory information supporting thedguice
found in DO-178C and DO-278A. Those who worked dB&+ZB5 will recognize that these discussion papers

7
American Institute of Aeronautics and Astronautics

encapsulate the great debates held during the fatim of DO-178B and DO-178C. Discussion papersevtae
primary means SC-205 members used to facilitagud&on of proposed changes to DO-178B. Most avet ¢h-2
page) documents that describe the supporting éofor a proposed change. Literally hundreds stulsion
papers were written over the course of the project.

DO-248C also presents an appendix of 84 frequeasthed questions and answers. Examples are:

e Does the DO-178C/DO-278A definition of COTS softavamclude software option-selectable software?
» What needs to be considered when performing stralotoverage at the object code level?
 How can all Level D (AL-5) objectives be met if ldevel requirements and source code are not redfiire

The last section of DO-248C presents 11 rationajeraents, one to discuss the intended use of emutios in
DO-178C (2 thru 12) plus a rationale for the ci@matf the supplements to DO-178C and DO-278A.

It is important to note that while DO-248C is imsting and useful, it does not provide any addition
certification or approval guidance for airbornegoound-based CNS/ATM software. It provides a laggantity of
explanatory material and a record of the greatraeqnis and rationale developed while writing the genvdance.

VI. DO-330: Software Tool Qualification Considerations

DO-330 is a stand alone document that providesedjuies to judge when tool qualification is necegsand if
so, what verification activities are recommende@-880 presents guidance for both tools used taematware
and tools used to verify software. The goal of gnédance is to ensure that these tools are dewtltpthe same
software assurance level as the software they peodu verify. DO-330 repeats much of the same gquada
contained in DO-178C because it is intended to & by audiences that are not familiar with DO-18®O-
278A. Hence, DO-330 is very similar in appearanoce @ontent to DO-178C, and has the same document
organization. Software developers and automateifioagion tool developers, therefore, need not labk>O-178C.
The subsections below highlight some of the toallifjuation guidance provided by DO-330.

A. Tool Qualification Levels.

DO-330 defines five tool qualification levels (TQLsTool qualification level 1 (or TQL-1) is the Hhigst
qualification level and has the most objectives aedfication activities. TQL-1 is required for $afare tools that
are used to generate either DO-178C software 18véBL-A) software or DO-278A assurance level 1 (AL-
software. TQL-2 is required for software tools that used to generate either SL-B or AL-2 softwai@L-3 is
required for software tools that are used to gaaezdher SL-C or AL-3 software. TQL-4 and TQL-%aequired
for software tools that are used to verify softwémnet generate it). DO-330 places more stringentfigation
requirements on tools used to generate code thaEla used to verify code. This distinction is thensaas that
defined in section 12.2 of DO-178C and DO-278A.

B. Tool Verification Activities.

Annex A of DO-330 presents the Tool Qualificatiobj€xrtive Tables to indicate which objectives, pssEs,
and activities need to be satisfied as a functioth® TQL. TQL-1, TQL-2, and TQL-3 (the higher léskegenerally
require the satisfaction of every process, evetiyiac and every output verification step listadthe tables. TQL-1
also has the most objectives requiring satisfactipn independence. TQL-2 has less objectives rauuiri
independent satisfaction than TQL-1, but requite®at the same activities. TQL-3 has fewer actgtihan TQL-2
and does not require independence of verificatiocept for the quality assurance activities. TQLtde(special
category that has no equivalence to a DO-178C softvievel) provides less stringent satisfactiontha tool
planning process, the tool development processttangerification of outputs. TQL-5 (equivalent$&-D) further
relaxes the requirements by requiring no tool dmwelent process or verification tool requirementecpss,
integration process, or testing of tool outputsLT&Js not addressed by the Annex of DO-330.

C. Tool Development Life Cycle and Processes.

DO-330 provides essentially the same software deweént guidance for tool qualification as that prasd in
DO-178C for software verification. An important tiiction, however, is that DO-330 recognizes thaté are two
life cycles to consider. There is the life cycls@dated with the development of the software tant there is the
life cycle of the software on which the tool wilh@l application. DO-330 provides guidance for both.

DO-330 requires that a tool operational requireméhOR) document be written to specify the requiata of
how the tool will be used within the software lifgcle. The requirements set forth in the TOR arpiired to be
verified and validated. DO-330 recommends the saofisvare development life cycle processes as thpseified
in DO-178C or DO-278A, but references the TOR nathan system requirements. The tool requiremergsia

8
American Institute of Aeronautics and Astronautics

turn, developed from the TOR and are then useceteldp the tool architecture and low-level requieats. The
verification of the tool design process, the tomdling process, and the tool integration processiandar to those
presented in DO-178C and DO-278A. Like DO-178C, BED- requires bi-directional traceability between
requirements and code.

D. Tool Verification Process.

The tool verification process recommended by DO-880sists of two parts. The first part is comprisdd
combination of reviews, analyses, and test casesrify that the requirements are correct, thatttw architecture
meets the requirements, that the low-level requémmi satisfy the software architecture requirememd that the
source code fulfills the high and low-level requiients.

The second part of tool verification ensures thatgoftware tool meets its intended requirement saftware
development or verification tool. The tool operatibverification process is performed to providefatence that
the outputs and functionality of the tool complytiwthe tool operational requirements in the intehdperational
environment. The operational verification processisists of a combination of reviews, analyses, tutis to
demonstrate full coverage of the software life eyicitended to be eliminated, reduced, or automibyedse of the
tool. The test cases and procedures used to shaw Safisfaction should be requirements-based t@sis.test
procedures should include tests of the object dodes operational environment. The set of inputediin the test
cases should represent those found in actual =l u

VIl. RTCA DO-331: Model-Based Development and Verificabn Supplement

The DO-331 supplement is intended to augment DGE158d DO-278A when model-based development and
verification are used as part of the software dijele. The supplement does not provide guidancéheruse of
models for verification purposes. It does not déscinow model-based development may be used to guppo
automated code generation, automated test gengratidghe automated verification of software regmients and
architectures. Rather, the aim of the supplemetat identify how the guidance in DO-178C and DO-2%8ay be
modified when software is developed using modekbasethods.

In DO-331, a model can be an abstraction of actafilvare code or a portion of the verification prss. The
model may also contain requirements and/or defimitf the software architecture so that it may bedufor direct
analysis of the software behavior.

DO-331 repeats some of the guidance contained iR1D&C to show precisely where modifications and
additions for model-based design apply. The follgyvsubsections provide a summary of the major naidlagice
contained in DO-331.

A. Model Requirements.

DO-331 makes a distinction between requirementsgecification models and requirements for desigdets.
Specification models use high-level software reguients to state model functional, performance rfante, and
safety characteristics. Design models use priméoily-level requirements and software architectyrecgications
to represent internal data structures, data flawd, eontrol flow. In either case, DO-331 requireattthe models
specify the configuration items, modeling techngjumodel element libraries, interface descriptimmsnfiguration
items, and model development environment. Traciéabiétween the design model, low-level requireraeartd the
model code is required. There should be no modi tlsat cannot be traced back to low-level requéires

B. Model Coverage Analysis.

The objective of model coverage analysis is to alisc requirements contained in the model that were
exercised by verification test cases. DO-331 recentds model coverage be shown for all state madtansitions,
logic equation decisions, numeric data equivaletasses (and boundary data), and all derived rexpaints. Model
coverage analysis should be performed using remeints-based verification test cases.

C. Model Simulation.

In order to obtain certification credit for simutat, DO-331 requires that the applicant clearly vehohat
reviews and analyses are needed to satisfy thelmed#cation objectives. The analyses must shbat simulation
cases exist for each model requirement and thaeteanulations address both normal range and nodssttest
inputs. Verification of the executable object caglencouraged to be primarily performed by testimghe target
computer environment. The objective of model siriatais to verify that the model satisfies the negments used

9
American Institute of Aeronautics and Astronautics

to create it and to gather evidence that the misdedcurate, consistent, and compatible with ateap-level, high-
level, and low-level requirements.

D. Software Model Standards.

DO-331 recommends that software models be develapsthndards that define the modeling techniqsesl u
to build the models. These software model standapésify the methods and tools used to developrtbéels,
including the modeling language. The software madahdards should include guidance on programniylgss
such as naming conventions, diagram layouts, alitevelements, and the number of nesting levelsahitactural
layers. The software model standards should statéet/el of traceability between requirements atietrolife cycle
data. The software model standards should alsoifgpety constraints on the use of modeling toolsl amodel
element libraries.

VIIl. RTCA DO-332: Object Oriented Technology and Related echniques Supplement

RTCA DO-332 was written to provide guidance on tise of object oriented programming languages that u
concepts such as inheritance, polymorphism, oveitga type conversions, exception management, dimam
memory management, virtualization, and other cotscept universally in common usage at the time D@BLwas
written. The DO-332 supplement is very well writtand includes much explanatory text concerninglthsic
features of object-oriented programming.

DO-332 identifies the additions, modifications, addletions to be made to the DO-178C (or DO-278A)
objectives and activities when object-orientatathitégues are used in airborne or ground-based amftwAnnex A
of DO-332 contains modifications to the verificatiactivities specified in DO-178C, while Annex Cepents
modifications to the verification activities speed in DO-278A. Annex D provides a discussion ofneuabilities
associated with the use of objected-oriented tdogies. The highlights of the new guidance are gmesd below.

A. Software Development Process.

DO-332 recommends that the class hierarchy useddie based on high-level requirements and velrifie
consistency. A locally type-consistent class higmgrshould be developed with associated low-leggLirements
wherever substitution of types happens. Local tasistency is required to be verified. DO-332 aals for the
software development process to include a plandfpramic memory management. A strategy for exception
management should also be included. DO-332 sthtgbt-directional trace data should exist to shmgeability
between requirements and methods, since methodsisme to implement all functionality in object-aried
programs. In addition, a requirement which trages tmethod in a class should also trace to the adeit its
subclasses.

B. Software Verification Process.

DO-332 states that test cases should ensure #sst cbnstructors properly initialize the stateheirtobjects. In
cases where inheritance with method overriding dywbmic dispatch are used, verification activité®uld be
done to ensure that all type substitutions are aadethat each class pass the same verificatitindess their parent
types.

DO-332 stresses the importance of having verificactivities to verify that dynamic memory alldoat is
done correctly. Verification activities must shohat the dynamic memory management is robust taeede
ambiguity, fragmentation starvation, de-allocatistarvation, memory exhaustion, premature de-allocatost
updates, stale references, and unbounded allocatiote-allocation times. It should be verified thhere is
sufficient memory to accommodate the maximum s@naguired. The memory must be verified to succdlgsf
allocate memory for every request as long as tisesefficient free memory. The means of calculatimg amount
of free memory remaining should also be verifiedhé¢oaccurate and free from leakage problems wherebhyory
which is no longer needed fails to be de-allocated.

C. Vulnerability Analysis.

DO-332 presents a vulnerability analysis discusgioAnnex D. The purpose is to describe the comafibns
that may arise with the use of object-oriented nedbgies. These special problems are associatédintieritance,
parametric polymorphism, overloading, type conwarsiexception management, dynamic memory management
and virtualization. Examples of the extensive vVeaiion guidance provided by the annex include:

10
American Institute of Aeronautics and Astronautics

e With regard to inheritance, a demonstration of tyg@nsistency by verifying that each subclass is
substitutable for its superclass is recommendedryEverification activity performed on the supessahould
also be performed on the subclass.

» For software having parametric polymorphism, vesfion activities should show that operations actin
substituted parameters implement the intended srtaehavior. Each unique instantiation of a paranized
type or combination of types should be verified.

» To minimize the problems associated with overlogdthe use of explicit type conversion should bedu®
reduce overloading ambiguity. Verification actigiishould ensure that type conversions (impliait explicit)
are safe and that all implications are understood.

 Itis recommended that a strategy be developedndlb all exceptions such as range checks, bouratks,
divide-by-zero checks, or checks on post-conditidtns desired that all code modules handle exoaptin the
same way.

e It recommended that an automatic method of memecjamation be provided instead of relying on the
correct use of malloc() and free() for dynamic meymmoanagement.

» It is advised that worst-case execution timing kfgrmed considering all in-code dynamic memory
operations. Separate threads used for memory mareagde.g., garbage collection) and should be densd

as part of the task load.

Annex D also discusses activities for verificatiof traceability, structural coverage, componentedas
development, memory management, and timing for atfgented programs. Though procedural programming
techniques require verification of these as wdljeot-oriented programming requires additional gees. DO-332
recommends verifying traceability between the resments of a subclass and the requirements of faitso
superclasses to ensure type substitutability. Biaitiey should be shown between object code anddhece code if
multiple dynamic dispatches are possible throughlhpoint. Detailed discussion of these points arahy others
are presented in the annex of DO-332.

IX. RTCA DO-333: Formal Methods Supplement to DO-178Cad DO-278A

RTCA DO-333 states that formal methods are mathieaist based techniques for the specification,
development, and verification of software aspectdigital systems. The objective of the supplenisrib provide
additions to and modification of the DO-178C obijess, activities, explanatory text, and softwafe tycle data
that apply when formal methods are used as paheo$oftware life cycle. The supplement makes dieatr formal
methods may be used for all or just a small pathefverification process and may supplement otieefication
methods. In addition to the modifications of DO-C7&he supplement also provides clarifications lom tise of
formal methods through discussion papers contaimégpendix B.

The supplement requires that if formal methodsweed to verify some aspect of the software devedspm
process, then the software plans must explainrtemded usage. The Plan for Software Aspects difiCation
(PSAC) should provide an overview of how formal huats will be used and what evidence those methalils w
provide. The Software Development Plan should plewdetails on the specific use of formal methodddiions
required to the Software Verification Plan (SVPg a&specially important. All assumptions relatedhe use of
formal analysis to detect errors and to verify tiomality should be justified therein. The SVP shibshow that
there are no verification gaps produced by the éoation of formal and procedural analyses.

A. Formal Models.

DO-333 considers a formal model to be an abstemtesentation of certain aspects of a system (de)cfor
which the model notation uses precise, unambigwmes,mathematically defined syntax and semanties.models
may be graphical (e.g., state machine diagram$ffgretial equations, or computer languages. Bexdasmal
notations are precise and unambiguous, they cansbd to assist verification by helping show accyrand
consistency in the representation of requirememid Bfe cycle data. DO-333 does not require all thé
requirements of a formal model to be formally essexl. However, if the high-level requirements and-level
requirements are both formally modeled, then forarvalysis can be used to show compliance. DO-338ede
formal analysis as the use of mathematical reagottirguarantee that properties are always satisfjed formal
model.

B. Automated Reviews and Analyses.
A substantial amount of the guidance provided kg Formal Methods Supplement consists of definingitwh
DO-178C-required reviews and analyses can be augehem replaced by formal analysis. DO-333 allols tise

11
American Institute of Aeronautics and Astronautics

of formal analysis to show satisfaction of the chjes for software output review and analysis.nk@r methods
may be used to optionally demonstrate the compdiarioutputs to inputs, the accuracy of softwapesentation,
the consistency of requirements, the conformancandards, the traceability of requirements toegc@hd/or the
algorithmic correctness. Similarly, for both high#l and low-level requirements, formal analysiarisacceptable
means of showing accuracy, consistency, verifighiliraceability, and conformance to standards. ¥33-also

presents the specific aspects of software architecnd source code review and analysis that masatigfied by
formal analysis. The precise and unambiguous laggud formal models helps reviews and analysedso lbe

precise and unambiguous.

C. Verification of Source Code and Executable Code.

DO-333 states that formal methods can be usecdeiwvéfification of the source code or object codeb@th) if
the requirements for each code are formally expaes$ formal models of the codes exist, and ifral evidence
demonstrates that the formal models of the codéshysthe requirements. If formal models exist bath the source
and the object codes, the verification of propergservation between source code and object callmiged using
formal analysis.

D. Coverage Analysis.

DO-333 discusses the ways in which formal analysy be used to satisfy the coverage requiremenOsf
178C and DO-278A. This guidance states that wheyn law-level testing is used to verify that low-léve
requirements for a software component are satisfteeh the DO-178C guidance for structural coveragalysis
should be followed. When only formal methods aredu® verify that low-level requirements are s#&idfthen the
guidance in DO-333 (section 6) applies. The suppldrmtates that although it is possible to usexaund of testing
and formal analysis to show that verification evice exists for all high-level and low-level requirents, no known
test cases exist. In this case, the supplementitsecartification authorities to approve softwamverage if it can
be demonstrated by a combination of methods thattsiral and requirements-based coverage havedmseved.

DO-333 requires that all assumptions made duriegféhmal analysis are verified. It should be den@ted
that for all input conditions, the required outfiais been specified; and likewise, for all outptlte, required input
conditions have been specified. Analysis test cakeslld provide evidence that the formal analysisieves the
required coverage level. All code structures musshown to be covered by either formal or procddamalyses.
DO-333 states that when a combination of formalhmeé$ and testing are used to assess coveragejohaict
(requirements-based) tests executed on the taagdwhre should always be done to ensure that fhwese in the
target computer will satisfy the high-level requnents.

X. Conclusion

This paper provided an overview of the new cedtiizn guidance contained in RTCA DO-178C, DO-278A,
DO-330, and the related supplemental documentdedtdsy RTCA SC-205 for the development of safettiea
airborne and CNS/ATM ground-based software. Theahje of this paper was to help those not familiéh the
new DO-178C documentation set to gain an apprecidtr the scope of the information contained ia tiearly
1000 pages of new guidance material from RTCA. ¥iene of the DO-178B software verification guidaneas
presented prior to discussing the new materiabéhiced in DO-178C and DO-278A. Following this, arerview
of the new content contained in DO-178C for airleosoftware verification and in DO-278A for grounased
CNS/ATM software verification was discussed. Théwe thighlights of new guidance contained in the othe
documents supporting DO-178C and DO-278A were ptesen subsequent sections. These other docuraents

RTCA DO-248C: Supporting Information for DO-178C and DO-278A

RTCA DO-330: Software Tool Qualification Considerations

RTCA DO-33f: Model-Based Development and Verification Supplette DO-178C and DO-278A
RTCA DO-33Z: Object-Oriented Technology and Related Technigslement to DO-178C and
DO-278A, and

« RTCA DO-333: Formal Methods Supplement to DO-178C and DO-278A.

Although within the scope of this paper it was possible to present every detail of the new guidaiicis
hoped that the summary information contained heveih stimulate interest in these publications. Theader
requiring specific information must download thelkeuments from RTCAin order to fully appreciate and apply
the new guidance.

12
American Institute of Aeronautics and Astronautics

Acknowledgments

The new DO-178C, DO-278A, and companion documergshte work of RTCA Special Committee 205 (SC-
205). Although the first credit goes to the RTCAfktthe organizing work of the SC-205 leaderstgpm also
deserves special recognition. The author especiadifes to acknowledge the effort and devotion©f295 chairs,
Jim Krodel (Pratt & Whitney) and Gerard Ladier (#us), and executive committee members Barbara kimgb
(FAA-CAST Chair), Mike DeWalt (FAA), Leslie AlfordBoeing), Ross Hannan (Sigma Associates), Jean-Luc
Delamaide (EASA), John Coleman (Dawson Consulting)att Jaffe (ERAU), and Todd White (L-3
Communications/Qualtech). Also deserving speciabgeition are the leads and co-leads of the sulpgroRon
Ashpole (Silver Atena), Ross Hannan (Sigma AssesjatFrederic Pothon (ACG Solutions), Leanna Rierso
(Digital Safety Consulting), Pierre Lionne (EADS 8PS), Mark Lillis (Goodrich GPECS), Herve Delseny
(Airbus), Jim Chelinni (Verocel), Duncan Brown (Ra-Royce), Kelly Hayhurst (NASA), David Hawkens
(NATS), and Don Heck (Boeing). Several others whaieed these committees prior to publication of DBC
and the SC-205 committee members themselves whaseqare far too numerous to mention are cited in
Appendix A of DO-178C (including the author of tipaper).

The author’s support of RTCA SC-205 was providedthy NASA Aviation Safety Program, the NASA
Intelligent Resilient Aircraft Control (IRAC) Praje and the NASA System-Wide Safety and Assurance
Technologies (SSAT) Project.

References

!RTCA DO-178B, “Software Considerations in AirborBgstems and Equipment Certification,” December 1992

2RTCA DO-178C, “Software Considerations in Airbo®gstems and Equipment Certification,” December 2011

SRTCA DO-278A, “Software Integrity Assurance Consat®ns for Communication, Navigation, Surveillanaed Air
Traffic Management (CNS/ATM) Systems,” December 201

‘RTCA DO-248C, “Supporting Information for DO-178@d&DO-278A,” December 2011.

SRTCA DO-330, “Software Tool Qualification Considécas,” December 2011.

SRTCA DO-331, “Model-Based Development and VerifioatSupplement to DO-178C and DO-278A,” Decembér120

"RTCA DO-332, “Object-Oriented Technology and Relatechniques Supplement to DO-178C and DO-278A¢ebwber
2011.

SRTCA DO-333, “Formal Methods Supplement to DO-1728@ DO-278A,” December 2011.

*RTCA, www.rtca.org

13
American Institute of Aeronautics and Astronautics

