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ABSTRACT 

Social media have great potential to support diverse information sharing, but there is widespread 

concern that platforms like Twitter do not result in communication between those who hold 

contradictory viewpoints.  Because users can choose whom to follow, prior research suggests 

that social media users exist in “echo chambers” or become polarized. We seek evidence of this 

in a complete cross section of hyperlinks posted on Twitter, using previously validated measures 

of the political slant of news sources to study information diversity.  Contrary to prediction, we 

find that the average account posts links to more politically moderate news sources than the ones 

they receive in their own feed. However, members of a tiny network core do exhibit cross-

sectional evidence of polarization and are responsible for the majority of tweets received overall 

due to their popularity and activity, which could explain the widespread perception of 

polarization on social media.    
 

Keywords: Social media, diversity, homophily, echo chambers, polarization, network analysis, 

political slant 
 

  



2 

 

Network structure and patterns of information diversity on Twitter 

1. INTRODUCTION 

Because anyone can post and re-share content, social media has been connected to 

increased participation and diversity of expression, raising hopes for a role for social media in 

promoting innovation, building social capital and empowering workers within firms and in 

society in general (An et al., 2011; Bertot, et al., 2010; Kane et. al, 2009; Woodly, 2008).  Given 

the opportunities available in big data and the imperative to make use of them (LaValle, et al, 

2013), business leaders have turned in increasing numbers to analyzing social media data in 

order to learn from customers (Culnan, McHugh, and Zubillaga, 2010; He, Zha and Li, 2013; 

Chen, Chiang, and Storey, 2012), and computer scientists have developed many tools to help 

achieve these ends (see e.g. Pang and Lee, 2008).  Firms have also adopted internal social 

networking platforms in great numbers.  Yammer, a popular enterprise social networking 

platform, claims to be used by more than 500,000 firms, including 85% of the Fortune 500 

(Yammer, 2015).  

It is easy to see why many see social media as potentially valuable external sources and 

internal conduits of diverse knowledge (Kane, Majchrzak and Ives, 2010). Innovation has long 

been seen as deriving from recombining diverse ideas (Schumpeter, 1934), and diverse ideas are 

assumed to flow through diverse networks (Hampton, Lee, and Her, 2011) like those created by 

connecting a diverse user base via social media. In general, diversity among individuals is 

thought to lead to better performance in solving problems (Hong and Page, 2004) and modern 

crowdsourcing approaches to innovation would seem to thrive on the fuel of diversity (Jeppesen 

and Lakhani, 2010).   
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However, information technologies, while providing historically unprecedented potential 

for free public expression, also provide self-regulating mechanisms that allow users to customize 

content feeds. In making these choices, people tend to connect with similar others (McPherson, 

Smith-Lovin, and Cook, 2001) and seek out information that confirms their previously-held 

beliefs (Nickerson, 1998). It is therefore unclear if the diverse points of view of social media 

users ever actually come into contact with each other, or if they cyber-balkanize themselves into 

“echo chambers” in which they are only exposed to ideas they already hold (Van Alstyne and 

Brynjolffson, 2005).  

Many of the most lucid and powerful research studies on this topic to date have been in 

the setting of political information diversity and communication – a setting we also study in the 

present paper.  In addition to being economically and societally consequential, political 

communication is an appealing setting for the study of information diversity: there is a clear left-

right spectrum of opinion, which simplifies the difficult issue of how to measure diversity in a 

meaningful way (Page, 2010).  Additionally, it is not too much of a stretch to view political 

communication among social media users in the United States as an example of a market for 

information in which two principal organizations (the Democratic and Republican political 

parties) are competing for attention and influence.   

In prior literature, there is some evidence in favor of a tendency to echo chambers, some 

evidence in favor of polarization and still other evidence in favor of a tendency for people to 

limit themselves to expression of moderate and mainstream ideas on social media (see discussion 

in Section 2).  We believe that a likely reason for the conflicted nature of the literature is that 

earlier work has generally focused too narrowly on unrepresentative or incomplete data sets.  

Social networks and online communities often have a core-periphery structure consisting of a 
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highly interconnected core of important and active nodes, surrounded by a larger, less densely 

connected periphery (Borgatti and Everett, 2000; Dahlander and Fredriksen, 2012, Wu, et al., 

2011).  

By focusing on highly active users, prior research on the phenomena of echo chambers 

and polarization has arguably only emphasized the study of the network core, whose behavior is 

not representative of the average user of the platform (Adamic and Glance, 2005; Conover, et al, 

2011; Bakshy, Messing and Adamic, 2015). Moreover, it could even be argued that by 

constructing their data sets by including only those individuals with clear partisan affiliation 

(Adamic and Glance, 2005; Bakshy, Messing and Adamic, 2015), or those who posted about 

politically divisive topics (Conover, et al., 2011; Barbera et al., 2015), prior research studied only 

users prone to political division and therefore sheds little light on the nature of social media in 

general.  Due to its traditional survey methodology, Hampton, et al. (2014) does not have this 

limitation but on the other hand it also cannot answer those questions which would require large-

scale network data as evidence.  

Here, we seek to reconcile the differing perspectives on patterns of diversity in social 

media with a study of a nearly complete cross-section of Twitter posts (“tweets”) containing 

hyperlinks to news stories, together with the associated follower network data.  Our data set 

includes 908,000 tweets posted by 215,174 users based on a 300 hour data set, representing a 

nearly complete record of all such activity on Twitter during the collection period. We test 

hypotheses implied by prior research as well as characterize the overall structure of the Twitter 

follower network with respect to ideological diversity.  Because we have the follower graph, we 

are also able to relate the slant of the information an account receives to the slant of the 

information they post themselves.  Rather than echo chambers or cross-sectional evidence of 
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polarization, we find that, on average, Twitter accounts post links to more politically moderate 

(but not necessarily centrist) news sources than the links they receive in their own feed. Members 

of a tiny but highly followed network core behave differently from the typical user, however, and 

post links to sources that are more politically extreme than what they receive in their own 

newsfeeds.   While our empirical setting is political slant, we believe that the implications go 

beyond this narrow application and provide a basis for understanding the structure of self-

organization in social media more generally. 

 

2. THEORIES OF INFORMATION DIVERSITY ON SOCIAL MEDIA 

No one can read every article or interact with every user on the internet; instead, internet 

users must make choices about where to direct their attention.  Given the human tendency toward 

homophily (McPherson, Smith-Lovin and Cook, 2001) and confirmation bias (Nickerson, 1998), 

social media users are likely to follow other users whose opinions are similar to their own.  At 

the extreme, this could lead to fragmentation of users into ideologically narrow groups, in which 

people are only exposed to information that confirms their previously-held opinions (Van 

Alstyne and Brynjolffson, 2005; Burt, 2004). We refer to this as the “echo chambers” theory of 

social media. Empirical studies have confirmed some of these fears: there is a tendency for blogs 

with the same political and ideological inclination to link to each other (Adamic and Glance, 

2005; Conover, et al, 2011; Hargittai, Gallo and Kane, 2008) and a tendency of readers to engage 

with a small subset of content (Schmidt, et al., 2017) aligned with their ideological preferences 

(Lawrence, Sides and Farrell, 2010). Homophilous behavior is then magnified by algorithmic 

information filters on certain social media sites such as Facebook (Bakshy, Messing and Adamic, 

2015; Lazer, 2015). 
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A related view says that homophily may not lead people to be disconnected and ignorant 

of opposing views, as echo chambers theory would have it.  Instead, the relationship between 

groups of connected individuals may be mutually aware and antagonistic. Sunstein (2002, 2008) 

argues that when like-minded individuals discuss a controversial topic, there is a tendency for 

them to adopt an even more extreme position on that topic than they initially held. Barbera et al. 

(2015) document this process unfolding over time in partisan debate of controversial issues on 

Twitter.  Conover et al. (2011) show that while people “retweet”1 like-minded others on Twitter, 

they “@-mention”2 users they disagree with in the context of argument and other negative 

commentary.  The prevalence of @-mentions illustrates that although conservatives and liberals 

do not retweet each other’s content, they are indeed aware of each other and may even follow 

each other.  In short, on Twitter, people belong to groups that are antagonistic, not ignorant of 

each other. We refer to this as the “polarization” theory of social media. 

Despite all of this evidence, however, the idea that social media users segregate 

themselves into homogenous or polarized communities is far from an established fact.  Some 

have theorized that while social network ties may tend to be formed among similar others, there 

are many dimensions along which that similarity may be manifest (Watts, Dodds, and Newman, 

2002) and social media users may be connected not only to people with whom they agree 

politically, but also to people with whom they share other similarities, such as workplace, alma 

mater and so on.  This phenomenon of simultaneous contact with people from different contexts 

has been called “context collapse” and can lead users to limit their expression of potentially 

controversial beliefs (Marwick and boyd, 2010; see also Bernstein (2012) for a similar finding in 

                                                      
1 To “retweet” is to re-share a message one has received with one’s own followers 
2 On Twitter an “@-mention” is to include another user’s handle in a tweet (post), prepended with an @ sign, which 

uniquely identifies the specific individual, creates a clickable hyperlink to their profile page and notifies the target 

individual that they have been mentioned in the tweet. 
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an organizational context). Centola and Macy (2007) argue that certain phenomena – including 

potentially controversial expressions such as political beliefs – are most likely to occur and exert 

influence in the context of a highly clustered network such that there is the possibility of 

receiving multiple reinforcing signals from one’s network neighbors.   These recent theories echo 

the pre-internet theory of public opinion that people tend to articulate what they perceive to be 

the mainstream point of view or withhold their voice entirely, creating a “spiral of silence” for 

minority viewpoints (Noelle-Neumann, 1974).  Finally, to the extent that individuals fear they 

are being surveilled by government actors, they may share more politically moderate views in 

public than those they actually hold (see Stoycheff, 2016). Collectively, we refer to these ideas as 

the “mainstreaming” theory of social media. 

There is empirical support for the mainstreaming narrative of social media use as well. 

On average, it has been found that people are much less likely to discuss controversial topics on 

social media than in private (Hampton et al. 2014).  For political hashtags on Twitter, repeated 

exposures are important precursors to an individual's adoption of those hashtags in their own 

posts (Romero, Meeder and Kleinberg, 2011), which could be interpreted as seeking repeated 

confirmation from their community before sharing something potentially controversial.   

Our primary goal is to consider evidence for and against the theories of echo chambers, 

polarization, and mainstreaming. In this and the following sections, we therefore ask what we 

would expect to find in a complete cross-section of Twitter posts if the above theories were in 

fact true. We articulate a number of detailed hypotheses to test on this basis, but our overarching 

questions are simply whether Twitter shows evidence of widespread (1) echo chambers (2) 

polarization and/or (3) mainstreaming.  Before going into these specific theories, we state the 

relatively uncontroversial hypothesis that social media users display homophily. In other words, 
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we would expect the typical Twitter user to tweet links to news sources with similar political 

slant to the slant of the content they receive from the people they follow: we expect followers 

and followees to tweet at a similar level of political slant (we define how we measure slant 

below).   

Hypothesis 1H: The mean political slant of news sources in tweets by individuals is 

significantly correlated to the mean political slant of the tweets that they receive from 

their followees.  

 

For notational convenience, we group differing hypotheses about the same variables under the 

same hypothesis number, but append letters to indicate which theories they correspond to.  For 

instance, Hypothesis 1H describes the homophily hypothesis about the relationship between incoming 

and outgoing slant, while Hypothesis 1EC, Hypothesis 1P, and Hypothesis 1M (below) describe the echo 

chambers hypothesis, polarization hypothesis and mainstreaming hypothesis, respectively. We continue to 

use “H” for homophily, “EC” for echo chambers, “P” for polarization, and “M” for mainstreaming 

throughout. 

2.1 Echo Chambers 

For our purposes, what cross-sectional observations would be consistent with echo 

chambers? In an echo chamber, one only hears things one might have said oneself.  If the 

homophily of Hypothesis 1H is strong enough to create echo chambers, we would expect not just 

correlation between political slants, but indeed for people to tweet at the same mean level of 

political slant as those that they follow.   

Hypothesis 1EC: The mean political slant of news sources in tweets sent by individuals is 

the same as the mean political slant of the tweets that they receive from the people they 

follow.  
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In addition to mean outgoing slant being the same as mean incoming political slant, a 

meaningful echo chamber would lack diversity in information, in which people send and receive 

information from only a narrow range of viewpoints.  This lack of diversity drives conformity 

with a slanted perspective.  By the same logic, an individual who receives diverse information 

would tweet in a more politically balanced way: 

Hypothesis 2EC: The larger the standard deviation of political slant an account receives, 

the closer mean outgoing slant will be to the political center  

   

The imagery of “echo chambers” further suggests a closed social network neighborhood, 

in which ideas reverberate among people who know each other but who are disconnected from 

the outside world.  Network theory supports the notion that people in highly clustered positions 

in the social network are likely to be similar with respect to political slant:  individuals in such 

dense clusters accrue shared, mutual knowledge as a consequence of communicating with each 

other (Granovetter, 1973; Hansen, 1999; Burt, 2004).  Moreover, beliefs and social behaviors 

spread by the process of ‘complex contagion,’ (Centola, 2010) in which the ‘infectiousness’ of a 

behavior increases with repeated exposures and thus tend to spread within rather than between 

clusters of ties (see also Romero, Meeder and Kleinberg, 2011 for evidence on political speech 

on Twitter consistent with the theory of complex contagions). As a result, we would expect 

people within dense clusters to be more politically similar to each other than people who are not 

in highly clustered network positions.  

Hypothesis 3EC: The greater the clustering around an individual, the closer the political 

slant in their own tweets is to the political slant in the tweets they receive from the people 

they follow.  
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2.2 Polarization 

Sunstein (2002, 2008) argues that when like-minded individuals are connected, the views 

they express can be more extreme than what they would have expressed prior to deliberation, in 

part because of social pressure toward conformity. He refers to this phenomenon as polarization. 

Conover et al. (2011) document polarization as a phenomenon in which the two sides are not 

ignorant of each other (as the simple echo chambers theory would have it) but rather in conflict: 

although people do not retweet information from users on the other side of the political spectrum, 

they are aware of them and what they are saying.  In this view of polarization (that we adopt 

here), people read at least some information from both sides of the political spectrum, but only 

tweet out information consistent with their own side. If Twitter accounts are not just 

homophilous but also polarized, it would suggest that they tweet at more extreme levels of slant 

than the average slant of information they receive in their news feeds (which, because it contains 

at least some information from the other side of the spectrum is closer to the political center than 

the slant of the information consumed from their own side of the spectrum).   

Hypothesis 1P: The mean political slant of news sources in tweets by individuals is more 

extreme than the mean political slant of the tweets that they receive from the people they 

follow.  

 

If exposure to opposing viewpoints brings polarization, then indeed this theory makes a 

different prediction from that of Hypothesis 2EC with respect to the diversity of incoming ideas: 

Hypothesis 2P: The larger the standard deviation of political slant an account receives, 

the more extreme outgoing slant is relative to incoming slant. 
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2.3 Mainstreaming Theory 

Finally, we turn to hypotheses implied by mainstreaming.  The component theories that 

make up our “mainstreaming” theory (especially context collapse and the spiral of silence) do 

not explicitly make predictions about the choices individuals make about what information to 

consume – only the information they choose to put into the public domain themselves.  A very 

strong hypothesis that takes the original idea of a spiral of silence very literally is that whatever 

they read, we would find people tweeting only politically centrist content themselves. 

However, to successfully tweet at the true political center, people would have to know 

where the political center was.  This may not be realistic.  Instead, people’s understanding of 

which opinions are centrist may be biased toward the information they are exposed to (e.g. 

democrats will think the center is further left than republicans will).  Indeed, it has been shown 

that centrist content is often perceived as biased against one’s own side (Vallone, Ross and 

Lepper, 1985).  Therefore, a more behaviorally realistic version of the mainstreaming hypothesis 

is that we would expect individuals to Tweet material that is more politically neutral (centrist) 

than what they receive, even if it is not at the true political center. 

Hypothesis 1M: The mean political slant of news sources linked to in an individual’s own 

tweets is more politically centrist than the mean political slant in the tweets they receive 

from the people they follow.  

 

 

2.4 Beyond average behavior: macroscopic and subnetwork analyses 

The above hypotheses are specified in microscopic terms, —in that we treat individuals 

as the units of analysis—and will be tested on the entirety of link-posting behavior on Twitter 

during the study period. These hypothesis tests serve our theoretical questions and provide the 

foundation of our empirical analysis.  
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To paint a fuller picture, however, and to better connect our work with prior research on 

social media, we also include a series of analyses that take other perspectives on the data.  In 

particular, scholars of online communities have been concerned with their macroscopic core-

periphery structure (Dahlander and Fredriksen, 2012; Collier and Kraut, 2012; Wasko, Teigland 

and Faraj, 2009), which Wu, et al. (2011) have demonstrated also describes Twitter networks. In 

a classic core-periphery structure, the network core is a set of nodes (individuals) that tend to be 

connected to each other; the periphery is a (typically larger) set of nodes that tend to be 

connected to nodes in the core, but not to each other (Borgatti and Everett, 1999).   In the setting 

of Twitter, this is to say that there is a set of highly-followed accounts (the core) that tend to 

follow each other; more typical users (the periphery) follow members of the core, but are less 

likely to follow other typical users. 

2.4.1 Analyses of macroscopic structure 

Members of the news-sharing core differ from other users with respect to their network 

position; it is possible that they also differ from other users in terms of the correlation between 

incoming slant and outgoing slant.  To check for this possibility, we repeat a basic analysis of the 

relationship between incoming and outgoing slant on two subgraphs3 of the Twitter news-sharing 

network.  In particular, we distinguish those accounts that are highly followed and active in 

posting many links to news items from those that are not.   

We expect to find a higher correlation between incoming and outgoing slant in the ‘news-

centric core’—the subgraph of individuals who are both highly followed and post many news 

items—than in subgraphs comprising individuals who are not highly followed or do not post 

                                                      
3 A subgraph consists of a certain subset of nodes of a larger network, along with all of the links between 

them.     
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many news items or both. People in the news-centric core may be maintaining a public identity 

centered around news, and so may connect with fewer people for reasons other than discussion 

of news.  They may also engage in self-conscious management (Marwick and boyd, 2010) of 

their list of followees -- to demonstrate party loyalty, for example -- which would result in a 

higher correlation between incoming and outgoing slant.   

In contrast to members of the news-centric core, those who are highly followed but do 

not post many links to news items are probably highly followed for other reasons, such as 

celebrity, and may not pay as much attention to the variable of political slant when choosing 

whom to follow.  Those who post many links to news items but are not highly followed may well 

demonstrate homophily on political slant, but because they are less likely to be public figures, 

they may not be curating their followee list as self-consciously as members of the news-centric 

core.  Finally those who are neither highly followed (among the individuals in our data 

comprising people who posted hyperlinks and their followers and followees) nor highly active 

posters of news may be less active users of Twitter, or actively using Twitter for other purposes, 

and thus are expected to demonstrate less homophily on political slant than those in the news-

centric core. 

Hypothesis 4H: The mean political slant of news sources in tweets sent by individuals in 

the news-centric core of Twitter users is closer to the mean political slant of the tweets 

that they receive from their followees than for people outside of the news-centric core. 

 

Following the logic above and Wu, et al.’s (2011) observation that ‘coreness’ is not a 

binary but rather a continuous variable, we would expect that the higher the thresholds we use to 

separate individuals who are “highly followed” and “post many links to news” from everybody 

else (i.e. the stricter the definition of what constitutions the news-centric core), the more 

homophilous members of the core would be. Moreover, prior work (Conover, et al., 2011) has 
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found not just homophily but indeed polarization when focusing on accounts in what we argue is 

likely to be the network core.   

Hypothesis 4P: The stricter the definition of what constitutes the news-centric core, the 

more extreme outgoing slant is, relative to incoming slant. 

 

2.4.2 Correspondence of macroscopic network structure and political slant  

Earlier studies of political division on social media have shown a clear correspondence 

between the macroscopic structure of a network and the political slant of its nodes (Adamic and 

Glance, 2005; Conover et al, 2011).  In particular, this work shows that the network is starkly 

divided into two (one liberal and one conservative) modular clusters of nodes, such that nodes 

tend to be connected within each cluster, but only sparsely connected between clusters.  By 

showing how cleanly political slant corresponds to network structure, these excellent studies lend 

strong support to the cyber-balkanization theory (Adamic and Glance, 2005) and polarization 

theory (Conover et al., 2011), discussed above. 

These studies are nevertheless limited in two important ways.  First, both studies use only 

a binary, liberal v. conservative representation of slant, preventing more nuanced examination of 

homophily. Second, both studies only consider the behavior of elites and self-identified partisans 

(i.e. members of the news-centric core, whom we have just argued are not representative of the 

typical user) and thus shed no light on how social media works as a platform for discourse for the 

vast majority of users.  

Because our data includes a continuous representation of political slant and includes all 

Twitter users rather than only elites, we are able to address these two limitations. First, we are 

able to analyze the core separately from other users.  Second, rather than considering 
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classifications of nodes into two categories (liberal v. conservative), we focus instead on 

permutations of nodes defined either by political slant or other means.  

A permutation is simply an ordering of the nodes of a network such that each node is 

assigned an ordinal number from 1 to N (where N is the number of nodes in the network). 

Permutations can be defined by any number of means, but in the present context we will be 

particularly interested in permutations derived from the political slant variables: those in which 

the nodes are ordered from most liberal (and thus given the number 1) to the most conservative 

(and thus given the number N). A “good” permutation is one in which nodes that are close 

together in the network are close together in the ordering of nodes.   

The echo chambers and polarization theories have been associated with a close 

correspondence between network structure and political slant, while the mainstreaming theory 

predicts the opposite.  In the following hypotheses (labeled 5Ma – 5Md, with an “M” to indicate 

that they express the mainstreaming point of view, and “a”, “b”, “c” or “d” to identify a specific 

detailed hypotheses), we compare the quality of permutations in this sense.  Section 3.4.3, below, 

provides more concrete details on measurement of permutation quality.   

Essentially, just as prior  work (Adamic and Glance, 2005; Conover et al, 2011) showed 

that classifying nodes into liberal v. conservative was a good fit to the macroscopic division of 

the network into two distinct communities, we will ask if a continuous measure of political slant 

is a good one-dimensional description of network structure. We wish to ask this question for both 

incoming and outgoing slant and for the network core and network periphery. To establish 

whether permutations based on incoming or outgoing slant are “good” descriptions of 

macroscopic network structure, we will compare them to permutations derived from standard 
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community discovery algorithms (see methods, below); we repeat this process separately for the 

core and the periphery. 

Accordingly, we test the following hypotheses about the quality of nodal permutations 

for the core. 

Hypothesis 5Ma: Outgoing political slant is not a good description of the community 

structure of the network core. 

Hypothesis 5Mb: Incoming political slant is not a good description of the community 

structure of the network core. 

 

We go on to test the following hypotheses about the quality of nodal permutations for the 

periphery. 

Hypothesis 5Mc: Outgoing political slant is not a good description of the community 

structure of the network periphery. 

Hypothesis 5Md: Incoming political slant is not a good description of the community 

structure of the network periphery. 

 

 

3. DATA AND METHODS  

Our primary analysis is based on relatively old (from 2009), but exceptionally complete 

data that is described here. Additionally, to provide robustness checks, we conducted similar 

analyses on sampled data from early 2017.  Data, methods and results of these robustness checks 

are presented in Appendix A.  

3.1 The Twitter Dataset 

Our Twitter data for our primary analysis comes from Galuba et al. (2010). For 300 

continuous hours, starting on Thursday, September 10th, 2009, 19:56:47 GMT, the Twitter 

Search API was continuously queried for the search string “http”. The text of each tweet returned 
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by the query was parsed for any URLs and user names it contained. Each URL mentioned in the 

tweets was stored. If the URL was created by one of the popular URL shortening services (e.g. 

bit.ly), HTTP redirects were recursively followed to expand the URL to its original form. All the 

URLs were also URL-decoded to ensure uniform representation under the percent-encoding 

(%xx) notation. For each tweet, the Twitter API was queried for the metadata about the tweet’s 

author as well as all the users that the author follows. 

 

3.2 Measurement of Political Slant 

Gentzkow and Shapiro (2011) published measurements of the political slant of the 119 

most widely visited sources of online news in the United States, building on data from comScore 

Plan Metrix with 12 months data in 2009 (the same year as the Twitter data). Plan Metrix data 

come from a survey distributed electronically to approximately 12,000 comScore panelists. The 

survey asks panelists the question “In terms of your political outlook, do you think of yourself 

as. . .? [very conservative / somewhat conservative/ middle-of-the-road/ somewhat liberal / very 

liberal]”. The average number of daily unique visitors in each category is reported by comScore 

for each site for each month.  

Using this data, they posit the model of utility of a visit to a website in equation 1. The 

utility is that of user i going to site j on visit k on a given day, given the site quality α, political 

slant γ, and dummy variable c set to 1 if visitor i is conservative and 0 if they are liberal (they 

omit data from individuals who answered “middle of the road”). 

𝑢𝑖𝑗𝑘 = 𝛼𝑗 + (2𝑐𝑖 − 1)𝛾𝑗 + 𝜀𝑖𝑗𝑘                                                                                                     (1)          

 

They estimate these parameters from the visit data, under the discrete choice modeling 

assumption that the visit would be made if and only if uijk ≥ uirk ∀r ≠ j.  We use the estimated 
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parameter γ as our measure of political slant.  We also use α as a control variable indicating site 

quality. For the analysis, we use all tweets that contain any of the 119 domain URLs from 

Gentzkow and Shapiro (2011)4.   

Although Plan Metrix data are only available for relatively large sites, visits to news sites 

are highly concentrated. The 119 sites in the sample represent over 95% of all visits to news sites 

via independent browsing online (Gentzkow and Shapiro, 2011), and given the greater expected 

concentration of exposure on social media than independent browsing (i.e. finding news stories 

through other means, such as direct access of sites, search engines, or news aggregators) (Hong, 

2012), the sample is expected to be even more completely representative for the setting of 

Twitter.   

Because the data set for our primary analysis is relatively old, we also conducted a 

robustness check on 2017 data.   This required us to calculate updated measurements of political 

slant and devise an approach to constructing an informative, if much smaller, sample of Twitter 

accounts. These methods, along with results for robustness checks are reported in Appendix A.  

 

3.3 Variables 

For each user, we calculated mean and standard deviation of incoming political slant 

(incoming slant) and mean and standard deviation of outgoing source slant (outgoing slant). The 

distribution of an individual account’s outgoing slant comprises the political slant of each URL 

source that the user tweeted. The distribution of incoming slant comprises the slant score of 

every URL tweeted by the individuals whom that user follows (his/her followees). For both 

incoming and outgoing slant, if a news source was tweeted more than once, its slant score would 

                                                      
4 for further detail on Genztkow and Shapiro’s methods, see their online appendix: 

http://web.stanford.edu/~gentzkow/research/echo_modelappdx.pdf 
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be counted more than once in the distribution. Similarly, we calculate mean incoming (outgoing) 

quality for each individual from Gentzkow and Shapiro’s α. Finally we tabulate the count 

(number) of incoming and outgoing tweets for each user.  Note that we fit models on data for 

users that both sent and received tweets containing links to news sources; to calculate incoming 

slant, however, we consider tweets from all users, including those who did not receive any news 

links in their own timelines.  The output of those Twitter users who are widely followed but do 

not follow other accounts (typically public figures) is therefore still accounted for in the data. 

Using the Twitter data, we construct a follower-followee network.  A directed network tie 

exists from user i to user j if user j is a follower of user i. From this data, we calculated the 

clustering coefficient, (Watts and Strogatz, 1998), which captures the degree to which one’s 

followers and followees also follow each other.  More specifically, it is a measure of how many 

links there are among a node’s neighbors, divided by the number of links that could exist among 

a node’s neighbors5.  

3.4 Statistical Models 

3.4.1 Average behavior 

We fit ordinary least squares (OLS) models to test all versions of Hypotheses 1-3.   For 

the variants of Hypothesis 1, the primary independent variable is incoming slant. Hypotheses 2 

and 3 concern how one variable affects the relationship between incoming and outgoing slant.  

Thus, for variants of Hypothesis 2, we are interested in the interaction between the standard 

                                                      
5 Let A denote the adjacency matrix of a network, such that Aij = 1 when there is a tie from node i to node j. Further, 

let nei(i) = {j: Aij =1 ∨ Aji = 1} denote the set of vertices that are neighbors of node i, and gi =|nei(i)| denote the 

number of neighbors of node i.  Then the clustering coefficient of node i, Ci is defined as follows. 

 

𝐶𝑖 = 
∑ ∑ 𝑨𝒋𝑘 = 1,𝑘𝑗  𝑗, 𝑘 ∈ 𝑛𝑒𝑖(𝑖)

(𝑔𝑖)(𝑔𝑖 − 1)
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deviation of incoming slant and the main effect6 of incoming slant.  For Hypothesis 3EC, we are 

interested in the interaction between clustering coefficient and the main effect of incoming slant. 

3.4.2 Core-Periphery structure 

Hypotheses 4H and 4P concern the difference between the behavior of people who are 

highly followed and post many news articles and other individuals.  To test these, we select 

nodes that are greater than or equal to some threshold quantiles, s and t, of outdegree and number 

of news stories posted, for s, t ∈ {0.75, 0.80, 0.85, 0.95}. We then consider the induced subgraph 

containing only those nodes that have outdegree greater than s% of nodes and have posted more 

news stories than t% of nodes in the full network.  We then regress outgoing slant (dependent 

variable) on incoming slant (explanatory variable) for only those tweets coming from within this 

subgraph and separately, for all tweets coming from any source using OLS.  

 

Figure 1: An illustration of two different permutations of the same matrix.  Left: a good 
permutation that places connected nodes close together in the permutation and as a result 
concentrates ties toward the diagonal of the matrix.  Right: a bad permutation, in which nodes 
that are connected in the network are not close in the permutation; as a result, tie weight is not 
concentrated toward the diagonal.  

                                                      
6 NB: here and below “effect” is intended only in the sense of “statistical effect” and not in the sense of  

“causal effect.” 
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3.4.3 Concordance of community structure and slant 

Hypotheses 5Ma-5Md concern the concordance between the macroscopic community 

structure of the network and the political slant of the nodes.  For these hypotheses, we are asking 

if permutations based on slant are good in the sense that nodes that are closely connected in the 

network are also close together in the permutation ordering (see Figure 1 for a toy example).   

However, it is unclear a priori how to measure such correspondence between slant and 

structure, and then, how to determine if a given level of correspondence between slant and 

structure is a lot of correspondence or only a little.  In other words, how good is good? In order 

to test these hypotheses, we therefore (1) define a measure of permutation quality (2) use 

standard community-discovery algorithms from the literature to define permutations that 

represent network structure well and measure their quality, (3) measure the quality of 

permutations based on slant, and (4) define a significance test to determine if the quality of the 

slant-based permutations are significantly worse than the community-discovery algorithmic 

permutations. 

 Hypotheses 5Ma, and 5Mb concern the news-centric core, and Hypotheses 5Mc and 

5Md concern those outside of the news-centric core.  The “core” subgraph is defined as above, 

using nodes greater than or equal to some quantiles s, t of outdegree and news posting activity 

such that a regression of outgoing slant on incoming slant yields the highest estimated parameter. 

Because of the computational expense of conducting these analyses on all ~213,000 nodes 

outside of the news-centric core using our methods, we test the latter hypotheses on a subgraph 

consisting only of moderate users.  We define this subgraph as giant component of those 

accounts between the 25th and 75th percentiles for outdegree and less than the 75th percentile for 
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number of news items posted.  This results in a subgraph of 75,640 Twitter accounts (a little 

more than one third of all news-active accounts), which omits the large number of least active 

and least followed accounts.    

To measure quality of permutations, we start with the intuitions that connected nodes 

(those that follow each other) should be close together in a “good” permutation and that ties 

(matrix entries equal to 1) between nodes whose indices are close together in a given 

permutation will be close to the diagonal of the permuted adjacency matrix. Conversely, of 

course, ties between nodes that are far apart in the permutation will be far from the diagonal in 

the permuted adjacency matrix.  We use these intuitions to define an idealized model against 

which to compare the observed permuted data such that we can evaluate them quantitatively. 

 We define the idealized model as a probability matrix, Z, such that matrix entries 

(network ties) closest to the diagonal are modeled as having probability 1, with linearly declining 

probability further from the diagonal.  Note that this is not a fitted model, so the “probabilities” 

are not estimated from the data; as an idealized model, the matrix of probabilities functions more 

as a “scoring matrix:” we calculate the likelihood of the idealized model, Z, under the observed 

permuted data in question.  

Concretely,  

Zi,j = 0 (No self loops) 

Zi,j = 1 ,   j ∈ {i+1, i-1} (Highest probability closest to diagonal) 

Zi,j = Zi,j-1 – 1/n ,  j ≥ i+2  

(Decreasing probability with distance from diagonal) 

Zi,j = Zi,j+1 – 1/n ,  j ≤ i-2  

where i and j are row and column indices, respectively, and n is the number of nodes. In general, 

a log likelihood is calculated by summing the log probabilities of the data points, conditional on 
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the model.    A matrix of probabilities of ties existing where they do in the permuted matrix P, 

conditional on Z can be obtained by simply taking the Hadamard (pointwise) product of Z and P. 

To calculate the log likelihood ℓp of Z under some permutated adjacency matrix, P, we then 

simply sum the log of the values in the resulting product matrix:   

ℓ𝑝 = ∑ ln (𝑍𝑖𝑗𝑃𝑖𝑗)𝑖𝑗                                                                                                      (2)  

The higher the log likelihood, the more closely the permuted observed matrix adheres to the 

idealized model, Z.   

In addition to the permutations implicit in sorting the nodes according to their outgoing 

and incoming slants, we also consider two algorithmically-defined permutations deriving from 

the network structure (pattern of follower/followee ties) alone, rather than taking into account 

political slant or any other nodal attribute.  Algorithmically defined permutations attempt to 

place nodes close together in the permutation ordering if they are close together in the network.  

In the first of these, we follow the usual procedure of spectral clustering: we calculate the 

eigenvectors of the Laplacian matrix (a transformation of the adjacency matrix representation of 

the network) and then rank nodes according to the values in the eigenvector corresponding to one 

of the smallest eigenvalues not equal to zero7 (see e.g. (Dhillon, 2001; Von Luxburg, 2007) for 

more detail).  To find the smallest eigenvalues and corresponding eigenvectors of the “moderate 

user” subgraph, we use ARPACK numerical methods (Lehoucq, Sorensen, and Yang, 1998), 

which are therefore approximate.  In the second algorithmically-defined permutation, we use the 

method of Clauset, Newman and Moore (2004), as implemented in the igraph analytical software 

package (Csardi and Nepusz, 2006), which produces a full hierarchical dendrogram as a side 

                                                      
7 Usually the best description of the macroscopic structure of a network is found in values of the eigenvector 

corresponding to the smallest non-zero eigenvalue, but not always.  We therefore consider the eigenvectors 

corresponding to the 5 smallest eigenvalues and take the best, where best is defined as yielding the highest 

likelihood of Z (see below). 
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effect of finding a smaller number of communities. We simply take the ordering of nodes at the 

bottom level of that dendrogram as our permutation.8  

We visualize the difference between these four permutations of nodes (two by slant and 

two by community discovery algorithm) by plotting the adjacency matrix, with the rows and 

columns in permutation order for the core and moderate users subgraphs (Figures 2 and 3).  On 

these plots, if rows are indexed by 𝑖 ∈ {1…𝑁}, and columns are indexed by 𝑗 ∈ {1…𝑁}, then a 

point at location (i,j) on the visualization indicates that there exists a tie between node i and node 

j (account j follows account i on Twitter).  The closer a permutation is to the idealized model, Z, 

the more the points in these plots will be concentrated toward the matrix diagonal.   

It remains to be determined how much higher a log likelihood has to be to be considered 

significantly better than the likelihood of an alternative permutation of the observed matrix. 

Typically, likelihoods are compared via likelihood ratio tests.  Strictly speaking, however, 

likelihoods calculated from a matrix probability model on two different permutations of the same 

data are not from nested models, and thus the chi-squared limiting distribution on the traditional 

likelihood ratio test cannot be assumed. Instead, we calculate a critical value for distinguishing 

between the likelihoods of this model under these two permutations computationally.   

We calculate the worst-case reduction of log likelihood due to incorrect ordering for each 

of 5% of the total number of nodes and tabulate the reduction of log likelihood that would occur 

if the edges incident to those nodes were moved as far away from the diagonal as possible.  We 

repeat this procedure 1000 times and take the 95% percentile of the resulting distribution to be 

                                                      
8 We grant that this permutation is based on a partial, rather than full ordering of nodes, since the first pair of nodes 

that are grouped together in a given branch of the dendrogram could appear in either order in the final permutation.  

However, since the number of such interchangeable pairs is small, and the distance that each node in these pairs 

could move in the permutation is at maximum 1 spot, we take the partial ordering output from the R function to be 

representative of the quality of all such possible permutations.  
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the critical value.  If the log likelihood of an alternative permutation is less than this critical 

value, we would consider that alternative permutation to be a worse description of network 

structure.  

 

 

 
Figure 2: The adjacency matrix of the news-centric core, permuted by outgoing slant (top left) 
by incoming slant (top right) by the method of Clauset, Newman and Moore (2004) (bottom left) 
and by the values of the eigenvector corresponding to one of the smallest eigenvalues of the 
Laplacian matrix (bottom right).  

  



26 

 

 

 
Figure 3: The adjacency matrix of the “moderate users” subgraph taken from the periphery, 
permuted by outgoing slant (top left) by incoming slant (top right) by the method of Clauset, 
Newman and Moore (2004) (bottom left) and by the values of the eigenvector corresponding to 
one of the smallest eigenvalues of the Laplacian matrix (bottom right).  
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3.5 Descriptive Statistics 

In our dataset, after processing and selecting those who both received and sent tweets 

containing links to the sources we covered, we were left with a group of 215,174 Twitter 

accounts that posted 908,565 tweets containing a hyperlink to one of the 119 news sources for 

which Gentzkow and Shapiro provide an estimated political slant.  There were 14,870,199 

follower-followee relationships among these accounts, and only 6709 accounts did not follow 

and were not followed by any of the other accounts that posted links to the 119 domains. 

There were 165,624 accounts that had outgoing slant less than zero (liberal) and 49,550 

accounts that had outgoing slant greater than zero (conservative). This is consistent with Pew’s 

survey results, which indicate that liberals were significantly more active on social media at that 

time (Pew Research Center, 2012). Descriptive statistics are in Table 1 and correlations are in 

Table 2.  We also tabulated the counts of users by mean incoming slant and mean outgoing slant. 

As Table 3 shows, we find that some people read tweets from the opposite side of the political 

spectrum from the side they tweet on themselves. 

 

Table 1: Descriptive Statistics 

 Min Median Mean  Max Sd 
Mean outgoing slant -1.5568 -0.251 -0.233 2.263 0.393 
Count of outgoing tweets 1 1 4.156 3321 22.495 
Quality of outgoing tweets 0 5.970 5.802 8.630 1.251 
Mean incoming slant -1.557 -0.233 -.226 1.879 0.232 
Count of incoming tweets 0 147 715.8 100984 2238.6 
Quality of incoming tweets 0 5.878 5.847 8.630 0.768 
Standard Dev. of incoming slant 0 0.335 0.321 1.687 0.139 
Count of outgoing retweets 0 0 0.7631 867 3.96 
Outdegree 0 11 70.77 52731 348.7 
Indegree  0 17 71.33 32511 252.66 
Clustering Coefficient 0 0.081 0.108 1 0.116 
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Table 2: Correlation matrix 

 

Mean 

outgoing 

Slant 

Count of 

outgoing 

tweets 

Quality of 

outgoing 

tweets 

Mean 

incoming 

Slant 

Count of 

incoming 

tweets 

Quality of 

incoming 

tweets 

Outdegree indegree 
Clustering 

Coefficient 

Count of 

retweets 

ln(outdegree+2)/ 

ln(indegree+2) 

outSlant 1 0.017 -0.1342 0.395 0.063 -0.087 0.025 0.0352 0.0163 0.0315 0.0276 

outCount 0.017 1 -0.005 0.034 0.086 -0.015 0.0554 0.0463 -0.0419 0.2044 0.1243 

outQuality -0.134 -0.005 1 -0.084 -0.023 0.243 -0.0095 -0.0154 -0.0084 -0.0221 -0.0167 

inSlant 0.395 0.034 -0.0836 1 0.09 -0.216 0.0413 0.0586 0.0351 0.0423 0.0278 

inCount 0.063 0.086 -0.023 0.09 1 -0.033 0.6449 0.8956 -0.1116 0.0893 -0.0269 

inQual -0.087 -0.015 0.243 -0.216 -0.033 1 -0.021 -0.0345 0.033 -0.0256 -0.0818 

outdegree 0.025 0.055 -0.0095 0.041 0.645 -0.021 1 0.7685 -0.0992 0.0413 0.0943 

indegree 0.035 0.046 -0.0154 0.059 0.896 -0.035 0.7685 1 -0.1125 0.0537 -0.0074 

Clustering Coef 0.016 -0.042 -0.0084 0.035 -0.112 0.033 -0.0992 -0.1125 1 -0.0159 -0.1747 

rtCount 0.031 0.204 -0.0221 0.042 0.089 -0.026 0.0413 0.0537 -0.0159 1 -0.0011 

ln(OD+2)/ 
ln(ID+2) 

0.028 0.124 -0.0167 0.028 -0.027 -0.082 0.0943 -0.0074 -0.1747 -0.0011 1 

 

 

Table 3: Tabulation of mean incoming and outgoing political slant by account 

 

Mean incoming slant 

Mean out. slant (-1.75,-1.25] (-1.25,-0.75] (-0.75,-0.25] (-0.25,0.25] (0.25,0.75] (0.75,1.25] (1.25,1.75] 

(1.75,2.25] 0 0 9 38 18 2 0 

(1.25,1.75] 0 2 29 100 71 6 0 

(0.75,1.25] 0 25 1073 2847 1153 100 3 

(0.25,0.75] 1 112 4959 11640 3335 123 4 

(-0.25,0.25] 6 536 27949 47400 2432 125 7 

(-0.75,-0.25] 4 519 43881 34305 973 67 1 

(-1.25,-0.75] 2 1840 14856 7241 281 19 0 

(-1.75,-1.25] 0 3 222 122 1 0 0 

 

4. RESULTS 

4.1 Average behavior 

We begin with results for average behavior of all individuals who tweeted a link to one of 

the sites covered by the Genztkow and Shapiro data.  We report regression coefficients from 

OLS models in Table 4. To ease interpretability with respect to the main variables of interest 

(incoming and outgoing slant), all other variables are centered at their mean and scaled to unit 
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variance.  Additionally, all covariates are included both as main effects and as interaction effects 

with incoming slant.   

Most notably, the estimated parameter for the mean political slant of sites linked-to in 

incoming tweets ranged from 0.667 to 0.724, significantly less than 1.  Robustness checks with 

recent data (see Appendix A) are in agreement with the full analysis presented here; parameter 

estimates from 2017 data were 0.586 and 0.751.  Additional statistical results are mentioned in 

line with the text, below. 

 Hypothesis 1H stipulates that there is a significant correlation between the political slant 

in incoming versus outgoing tweets.  As just mentioned above, we estimated a positive and 

significant regression parameter for this relationship across all models.  We do find homophily, 

and the null hypothesis is therefore rejected. 

4.1.1 Echo Chambers 

Hypothesis 1EC makes a stronger statement than Hypothesis 1H about the relationship 

between incoming and outgoing slant, positing that they are equal.  If Hypothesis 1EC were true, 

we would expect the regression parameter to be equal to 1.0 (meaning the outgoing slant is equal 

to 1.0 times the incoming slant, and therefore equal).  Given the standard errors of the estimated 

coefficients, we fail to reject a composite null hypothesis of correlation but not equality: the 

outgoing slant is not equal to the incoming slant.  The slant at which people tweet is correlated 

with but not equal to the slant of the material they receive.   
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Table 4 Relationship between incoming and outgoing political slant 

 DV: Mean slant of sites in outgoing tweets 

 I II III IV 

Mean slant, sites in  incoming tweets 0.667 *** 0.697 *** 0.720 *** 0.724 *** 
0.003  0.004  0.004  0.004  

ln(Count of incoming tweets)   0.036 *** 0.032 *** 0.029 *** 
  0.001  0.002  0.004  

ln(Count of outgoing tweets)    0.010 *** 0.007 *** 0.007 *** 
  0.010  0.001  0.001  

Mean quality of sites in incoming tweets   0.008 *** 0.008 *** 0.008 *** 
  0.001  0.001  0.001  

Std deviation of slant of incoming tweets   0.013 *** 0.012 *** 0.012 *** 
  0.001  0.001  0.001  

ln(# followers+2)     0.013 *** 0.018 *** 
    0.002  0..002  

ln(# followers+2) ÷ ln(#followees+2)†     0.007 *** 0.007 *** 
    0.001  0.002  

Clustering coefficient       0.012 *** 
      0.001  

Incoming slant x  ln(Count incoming 
tweets) 

  0.086 *** 0.018 *** -0.004  
  0.004  0.005  0.005  

Incoming slant x  ln(Count outgoing tweets)    0.044 *** 0.040 *** 0.042 *** 
  0.003  0.003  0.003  

Incoming slant x  quality of incoming tweets   0.023 *** 0.020 *** 0.022 *** 
  0.003  0.003  0.003  

Incoming slant x  st. dev. of incoming slant   0.086 *** 0.066 *** 0.062 *** 
  0.003  0.003  0.003  

Incoming slant x  ln(# followers+2)     0.133 *** 0.156 *** 
    0.007  0.008  

Inc. slant x ln(#followers+2) ÷ 
ln(#followees+2)† 

    -0.058 *** -0.068 *** 
    0.004  0.004  

Incoming slant x  Clustering coefficient       0.030 *** 

      0.003  

Intercept -0.083 *** -0.084 *** -0.078 *** -0.078 *** 
0.001  0.001  0.001  0.001  

# of Twitter accounts  208465  208465  208465  204464  

Adjusted R2 0.156  0.171 0 0.173  0.177  

Notes:  standard errors are printed below parameter estimates. 
***: p< 0.001; **: p< 0.01;  *: p < 0.05 
Except for mean incoming slant and mean outgoing slant, all variables are centered and scaled 
to unit variance 
† the logarithm of the number of followers/ees plus 2 is taken to avoid dividing by zero for those 
with no followees. 
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Hypothesis 2EC concerns the relationship between the diversity of news consumed and 

the effect of incoming slant on outgoing slant.  The theory of echo chambers implies that less 

diversity should result in more conformity; in other words, given the fact that the estimated 

parameter for the main effect of incoming slant is less than one, we should expect a negative sign 

on the estimated parameter for the interaction between the standard deviation of incoming slant 

with the mean incoming slant, such that less diversity results in an outgoing slant closer to 

incoming slant.  Contrary to the prediction of hypothesis 2EC, we do not see this; in fact, we see 

a positive and significant parameter estimate. We continue our discussion of this parameter 

estimate with respect to hypothesis 2P, below. 

Hypothesis 3EC speaks to the notion that clustering is associated with “echo chambers” 

in social media.  It is intended to represent the notion that people in clustered positions (those 

whose followers and followees also follow each other), may be even more likely than those in 

unclustered positions to tweet at a similar political slant to their network neighbors.  Table 4, 

model IV reports a regression coefficient of 0.030 for the interaction between clustering and 

incoming slant.  Therefore we reject the null for Hypothesis 3EC, as we do find evidence that 

people in positions of high clustering tweet more similarly to the people they follow than people 

in positions of low clustering.  However, we must note that the effect of clustering, while 

statistically significant, is only of modest magnitude.  A one-standard deviation increase in 

clustering coefficient would only result in a predicted increase in outgoing slant from 0.724 

times the incoming slant to 0.754 times the incoming slant. 

Finally, it should be noted that the models in Table 4 all have low R2.  Incoming slant 

predicts outgoing slant, but only with a lot of error.  This large error is itself a sort of evidence 

against the idea of widespread echo chambers.  If the mean difference between outgoing slant 
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and incoming slant is substantial, as we see for the whole population, then clearly people are not 

only being exposed to views they would have tweeted themselves. 

 

4.1.2 Polarization  

The theory of polarization says that the average incoming slant should be more centrist 

than average outgoing slant, because people receive some information (that they disagree with) 

from the other side of the political spectrum. Thus, Hypothesis 1P says that the estimated 

parameter for incoming slant’s effect on outgoing slant should be greater than one.  Since the 

parameter in our models is at most approximately 0.72 (0.75 for 2017 data) we fail to reject the 

null for Hypothesis 1P for the whole population.   

Although the main effect of incoming slant on outgoing slant is less than one, the 

parameter estimate for the interaction between the standard deviation of incoming slant and 

mean of incoming slant is positive and significant: the greater the exposure to diverse views, the 

more extreme outgoing slant is relative to incoming slant.  Thus we reject the null for Hypothesis 

2P.  Although the population as a whole does not show evidence of polarization, this result 

suggests that there is some heterogeneity, and those that are exposed to more diverse viewpoints 

could be seen as more polarized by this measure. People exposed to a narrow range of slant tend 

on average to post more moderately than what they read, but the wider the range of slant that a 

user is exposed to, the less moderate they are. Our analysis of the network core, below, returns to 

this issue. 
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4.1.3 Mainstreaming 

Hypothesis 1M considers the relationship between incoming and outgoing political slant 

from the perspective of mainstreaming theory. Although a strong version of the theory would say 

that the average Twitter user tweets at the same level of slant as the mean of the whole 

population, our Hypothesis 1M recognizes that people do not necessarily know where true 

political center is and says only that people tend to tweet more centrist material than the material 

they read in their own newsfeeds.  As already stated, the estimated coefficient from Table 4 

ranged from 0.67 to 0.72 (or 0.59 and .75 on models fit on 2017 data – see Appendix A), 

statistically significantly less than 1, and greater than 0.  In other words, we reject the null for 

hypothesis 1M.  Overall, Twitter accounts do tend to tweet more centrist material than the 

material posted by the accounts they follow, but not necessarily at or near the political mean of 

the population. As we explore below, however, there is heterogeneity in this population, and the 

average does not tell the whole story. 

 

4.2 Beyond average behavior: macroscopic and subnetwork analyses 

4.2.1 Core-periphery structure 

Hypotheses 4H and 4P concern a core of highly followed users who are active in posting 

links to news stories.  Hypothesis 4H predicts a larger estimated parameter for the effect of 

incoming slant on outgoing slant within the core (as compared to the periphery), and hypothesis 

4P states that the higher the standards used to define the core, the higher that parameter will be. 

The parameter for the interaction between outdegree and incoming slant in Table 4 already 

provides suggestive evidence in favor of these hypotheses: the more followers a user has, the 

greater the expected slope of outgoing slant with respect to incoming slant.   



34 

 

Tables 5, 6, and 7 summarize more direct evidence relevant to these hypotheses: the 

estimated parameter for the effect of incoming slant on outgoing slant is reported for different 

definitions of the core with respect to both outdegree and news posting activity.  When we 

consider only those tweets from inside the core, the maximum parameter estimate that we find is 

1.086; when we consider all tweets from all sources, we find an even higher parameter: 1.172.   

All specifications we tested for the core yielded a higher parameter for the effect of 

incoming slant on outgoing slant than the one we found in our study of the whole population in 

Table 4.  We confirmed the statistical significance of these comparisons in unreported dummy 

variable regressions (p was within machine precision of zero for all models); we thus reject the 

null for Hypothesis 4H.   

As for Hypothesis 4P, there is a clear pattern evident in Tables 5 through 7: the more 

restrictive the definition of the core, the higher the estimated parameter for the effect of incoming 

slant on outgoing slant.  In both tables, the higher the quantile of degree used as a threshold for 

core membership, the greater the estimated parameter.  The magnitude of the effect of raising the 

quantile threshold of news posting activity is smaller than that for degree and in Table 5 is 

generally highest at the 90th quantile of news posting in each column, except the last column, 

corresponding to the strictest definition of the core.  In this right-most column of both tables, the 

maximum parameter estimate is found when we define the core as consisting only of those 

individuals who are above the 95th percentile for both outdegree and number of news items 

posted.  We therefore reject the null for hypothesis 4P: the stricter the definition of what 

constitutes the news-centric core, the greater is the effect of incoming slant on outgoing slant.   
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Table 5: Estimated parameter for incoming slant in regression of outgoing slant on incoming slant for 
news-centric core, with different definitions of which nodes belong to the core, considering only 
communication within the core 

  Quantile of outdegree 
  75th 80th 85th 90th 95th 

Quantile of 
news 

posting 

95th *0.9522 0.9731 0.9929 1.0099 *1.0863 

90th *0.9630 0.9804 1.0029 1.0281 *1.0802 

85th *0.9500 *0.9689 0.9867 1.0196 *1.0623 

80th *0.9451 *0.9622 0.9789 1.0162 *1.0659 

75th *0.9236 *0.9433 *0.9663 0.9988 *1.0447 

Note: * indicates 95% confidence interval for the mean does not contain 1.0 

 

 

 

Table 6: Estimated parameter for incoming slant in regression of outgoing slant on incoming slant for 
news-centric core, with different definitions of which nodes belong to the core, considering all tweets. 

  Quantile of outdegree 
  75th 80th 85th 90th 95th 

Quantile of 
news 

posting 

95th *1.0362 *1.0594 *1.0878 *1.1078 *1.1723 

90th *1.0294 *1.0452 *1.0714 *1.1016 *1.1477 

85th 1.0072 *1.0284 *1.0505 *1.0874 *1.1270 

80th 0.9944 1.0142 *1.0370 *1.0811 *1.1315 

75th *0.9613 0.9848 1.0093 *1.0573 *1.1093 

Note: * indicates 95% confidence interval for the mean does not contain 1.0 

 

 

Table 7: Number of accounts in news-centric core, with different definitions of which nodes belong to the 
core. 

  Quantile of degree 
  75th 80th 85th 90th 95th 

Quantile of 
news 

posting 

95th 6332 5489 4553 3478 1956 

90th 11003 9427 7708 5705 3157 

85th 15929 13480 10799 7866 4303 

80th 20882 17473 13805 9879 5347 

75th 30435 24973 19392 13513 7034 

 
 

4.2.2 Polarization in the core 
Tables 5 through 7 show that the more restrictive the definition of the network core, the 

higher the parameter estimate for the relationship between incoming slant and outgoing slant.  

For moderately restrictive definitions of the network core (for example, those accounts with 

greater than the 85th percentile of outdegree and 90th percentile of news items posted in Table 5) 

the parameter estimates for incoming slant are not significantly different from 1.0.  We therefore 

would be able to reject the null for Hypothesis 1EC – that the mean political slant of news 
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sources in tweets by individuals is statistically indistinguishable from the mean political slant of 

the tweets that they receive from the people they follow – for the news-centric core thus 

moderately defined.  However, for the most restrictive definitions of the core the average 

outgoing slant is in fact more extreme than the average incoming slant, indicating not so much 

echo chambers, in which we would expect people to be reading and tweeting at the same 

political slant, but rather a tendency to polarization, in which we see people reading more centrist 

material on average than what they tweet themselves.   

What emerges is a more nuanced picture of the whole. The vast majority of Twitter 

accounts that post news items do not post many of them, have a moderate number of followers 

among other news-posting accounts, and tend to post news items from more centrist sources than 

what they read themselves.  On the other hand, a small minority of Twitter accounts constituting 

the network core posts relatively many news items from more politically extreme news sources 

than those in their own news feeds.     

This is not to say that the core only posts material from the political extremes or that the 

periphery only posts centrist material, simply that on average the core posts more extreme 

material and the periphery posts more centrist material than the accounts they follow.  Our results 

also do not support the extrapolation that the centrist tendency of accounts in the periphery is due 

to a tendency of following more extreme accounts in the core. We regressed outgoing slant on 

incoming slant after excluding core accounts and the tweets originating from those accounts (in 

the manner of Table 5, but for the periphery rather than for the core).  After thus removing the 

effects of the core from the periphery, the estimated parameter for incoming slant’s effect on 

outgoing slant was 0.7030, only slightly higher than the estimate for the complete data from 

Table 4, model I. 
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4.2.2 Correspondence of community structure and political slant: core 

Is the Twitter follower network organized according to the political slant of its nodes?  

The theories of echo chambers and polarization would predict yes, while the theory of 

mainstreaming would predict no.  Here we make several comparisons between permutations of 

nodes based on slant to those deriving from the patterns of ties alone using community discovery 

algorithms.  Figures 2 and 3 visualize the adjacency matrices of the core and typical users 

subgraphs according to the community discovery-based and slant-based permutations of the 

nodes.  The following paragraphs quantify these comparisons. 

Section 3.4.3, above, describes the matrix probability model of which we calculate the 

likelihood on the algorithmic and slant partitions. In short, the likelihood of this model is 

calculated by pointwise multiplication of Z (see above) with some permuted adjacency matrix P 

and will be high to the extent that a given permutation concentrates tie weight toward the 

diagonal of a matrix. Critical values for differences in likelihoods were determined 

computationally. 

The likelihoods of the diagonal gradient model under the four permutations of the core 

subgraph are presented in Table 8.  Critical values are also given, which represent the 95th 

percentile of the log likelihood expected when 5% of nodes are removed from their proper place 

in the permutation and placed in a worst-fit location in the permutation. Any log likelihoods 

below a permutation’s critical value can be considered worse descriptions of network structure. 

Strikingly, the outgoing slant permutation is a much poorer fit to the diagonal gradient 

model than any of the other three permutations, and indeed the likelihood of Z given the 

outgoing slant permutation is significantly less than the other three according to our critical 

values, leading us to reject the null for Hypothesis 5Ma. Additionally, for the core, the likelihood 

of the incoming slant permutation is not less than the critical values of the Clauset, Newman and 
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Moore (2004) and Laplacian eigenvector-based permutations.  We fail to reject the null for 

Hypothesis 5Mb and find incoming slant to be an equivalently good description of network 

structure as standard community discovery algorithms.  With evidence in favor of 5Mb but not 

5Ma, our results are partially in accord with prior literature for the core. 

 

4.2.3 Correspondence of community structure and political slant: periphery 

 

The likelihood of the diagonal gradient model under the four permutations of the 

“moderate users” subgraph is presented in Table 9.  Both of the slant permutations are worse 

than the critical value of the log likelihood for both of the community discovery algorithms. We 

therefore reject the null for Hypotheses 5Mc and 5Md: community discovery algorithms produce 

better descriptions of network structure than either incoming or outgoing political slant.  For 

users outside of the core, our results contradict earlier studies:  network structure is not well-

described by the political slant of the users. 

 

Table 8: log likelihood of Z under various permutations of nodes of the core 

 Log likelihood of probability  
model Z 

Critical value to be considered 
worse than this permutation 

Laplacian Eigenvector -43063.8 -55396.7 
Incoming Slant -45213.0 -57810.8 
Clauset, Newman and Moore -45961.4 -58396.4 
Outgoing slant -72539.6  

 

Table 9: likelihood of Z under various permutations of nodes of the moderate users subgraph 

 Log Likelihood of 
probability model Z 

Critical value to be considered 
worse than this permutation 

Clauset, Newman and Moore -27611.6 -50379.4 
Laplacian Eigenvector -35840.4 -55604.4 
Incoming Slant -79691.0 -87822.2 
Outgoing slant -94787.2  
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Table 10: Summary of hypothesis tests by theory  

 
Hypothesis 
number 

Hypothesis text 

Main 
analysis: null 
Hypothesis 
rejected? 

2017 
Robustness 
check: Null 
Hypothesis 
rejected? 

Homophily (H)  

 1H The mean political slant of news sources in tweets by individuals 
is significantly correlated to the mean political slant of the tweets 
that they receive from their followees. 

Yes Yes 

 4H The mean political slant of news sources in tweets sent by 
individuals in the news-centric core of Twitter users is closer to the 
mean political slant of the tweets that they receive from their 
followees than for people outside of the news-centric core. 

Yes  

Echo Chambers (EC)  

 1EC The mean political slant of news sources in tweets sent by 
individuals is the same as the mean political slant of the tweets 
that they receive from the people they follow. 

No No 

 2EC The smaller the standard deviation of political slant an account 
receives, the closer mean outgoing slant will be to mean incoming 
slant. 

No  

 3EC The greater the clustering around an individual, the closer the 
political slant in their own tweets is to the political slant in the 
tweets they receive from the people they follow. 

Yes  

Polarization (P)  

 1P The mean political slant of news sources in tweets by individuals 
is more extreme than the mean political slant of the tweets that 
they receive from the people they follow. 

No No 

 2P The larger the standard deviation of political slant an account 
receives, the more extreme outgoing slant is relative to incoming 
slant. 

Yes  

 4P The stricter the definition of what constitutes the news-centric 
core, the more extreme outgoing slant is, relative to incoming 
slant. 

Yes  

Mainstreaming (M)  

 1M The mean political slant of news sources linked to in an 
individual’s own tweets is more politically centrist than the mean 
political slant in the tweets they receive from the people they 
follow. 

Yes Yes 

 5Ma Outgoing political slant is not a good description of the community 
structure of the network core. 

Yes  

 5Mb Incoming political slant is not a good description of the community 
structure of the network core. 

No  

 5Mc Outgoing political slant is not a good description of the community 
structure of the network periphery. 

Yes  

 5Md Incoming political slant is not a good description of the community 
structure of the network periphery. 

Yes  
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5. DISCUSSION 

5.1 Summary of empirical findings 

Overall, our results are only partially consistent with theories of echo chambers, 

polarization and mainstreaming.  A summary of hypothesis tests is presented in Table 10.  

Although small echo chambers may exist, we do not see clear evidence for them in the 

aggregate, and incoming slant only predicts outgoing slant with a lot of error.  We do find 

evidence of homophily (outgoing slant is correlated with incoming slant), but also an average 

tendency to moderation and many points of contact among different points on the political 

spectrum (see slant-permuted matrices in Figures 2 and 3).  We do see a polarized and active 

core in which network structure closely corresponds to political slant, but we also see a much 

larger (albeit much less active) generally moderating majority for which network structure is 

more weakly related to slant.  A diagrammatic summary of the overall communication structure 

is in Figure 4. The widespread concern over polarization may be due to the over-representation 

of tweets originating in the core, constituting a sort of network paradox (Feld, 1991).   As for 

mainstreaming, we do not find an absolute, but rather a relative tendency to political centrism. 

We also note that accounts outside of the core are tweeting across the political spectrum, which 

undermines a literal theory of a spiral of silence (Noelle-Neumann, 1974).  
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Figure 4.: Summary diagram of connectivity patterns, distinguishing core from periphery. Overall, there is 
a tendency to centrism, but a majority of tweets received originate in the network core, which has a 
tendency to polarization. Grey circles represent accounts in the network core and periphery.  Circle size is 
proportionate to number of accounts. Arrows indicate percentage of total connectivity within and between 
core and periphery.  A: arrow size is proportional to total number of follower-followee relationships in the 
full data set and labeled with a percentage (e.g. 79.8% of all links are within the periphery). B: arrow size 
is proportional to (an upper bound on) the number of tweets received in the full data set, calculated as 
number of tweets sent multiplied by the number of news-active followers (accounts that sent at least one 
link to a news site) that those tweets were sent to (e.g. only 33.5% of all tweets received were both sent 
and received by accounts in the periphery).  

 

5.2 Broader implications 

5.2.1 What is read versus what is said 

In cross section, we find that communication patterns look very different when one looks 

at what is read (incoming information) instead of what is said (outgoing information).  This may 

have substantial consequences for our understanding of influence in social networks, which 

typically only looks at expressed behavior (analogous to what is said in the context of this study).  

For example, in a network study of influence in the spread of a product, an individual’s social 

media posts about that product could be interpreted as an expression of interest in the product or 

as the outward expression of desire to conform without any true interest in the product.   

Additionally, we find that the relationship between what is read and what is said is 

strikingly different in the network core from outside of it: core accounts tend to position 

themselves in a more extreme position than what they are exposed to, while the typical account 
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positions itself in a more moderate position. In the setting of influence in networks, it could well 

turn out that there is a similar regularity such that those within a core systematically express their 

preferences in an extreme or polarized manner, while those outside of the core systematically 

express their preferences in a moderate and dampened manner. 

Because of this marked heterogeneity between core and periphery, it is necessary to study 

communicating systems as a whole as we seek to understand the technologically mediated crowd 

that is of increasing importance in our evolving economy and society.   

 

5.2.2 The core versus the periphery in online communities: the “multiplex public” 

Like other social networks, online communities have a core-periphery structure 

(Dahlander and Fredriksen, 2012; Collier and Kraut, 2012; Wasko, Teigland and Faraj, 2009) 

and are composed of individuals with shared goals and interests that communicate over the 

internet (Preece, 2000), in a self-organized manner consisting of voluntary participation and 

without formal organization (Dahlander and O’Mahoney, 2011). Our data could therefore be 

considered an online community of political discussion with liberal and conservative sub-

communities, or alternatively, two overlapping communities in conflict with each other.  

In general, prior research has treated membership in the core versus the periphery as 

essentially an issue of the level of engagement in the community.  Some attention has been paid 

to how individuals end up in the core (Collier and Kraut, 2012; Dahlander and O’Mahoney, 

2011; Johnson, Safadi and Faraj, 2015), and the sources of motivation for “heavy weight” 

participants in the core compared to “light weight” participants in the periphery of an online 

community (Haythornthwaite, 2009).  Our results, however, reveal that those in the periphery are 

not only different from those in the core in terms of the amount of participation or reason for 
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participation in the community, but indeed also in terms of the very nature of their information 

sharing behavior.  Again, we find that on average, core members share links to more politically 

extreme news sources than the links they receive in their own timelines.  Periphery members, on 

the other hand, are the opposite.   

People tend to express themselves freely to the extent that the topic of conversation is 

consistent with their public or professional identity, and that their audience is homogenous 

(Marwick and boyd, 2010).  For most people these conditions do not apply, since they use a 

personal (rather than professional or other narrowly constructed public identity) social media 

account to connect to multiple contexts and identities (Rainie and Wellman, 2012; Hampton, Lee 

and Her, 2011; Marwick and boyd, 2010). In other words, most people cannot assume that their 

followers also follow each other, which accords with the fact that the periphery of a social 

network is not highly interconnected within itself by definition (Borgatti and Everett, 2000).  For 

people who both have a clear public identity and surround themselves with others with shared 

interests and goals – in other words, for members of the core – Marwick and boyd’s (2010) 

conditions for free expression are met.  This free expression could then be amplified by social 

influence (Centola and Macy, 2007; Shore, Bernstein and Lazer, 2015) and made more extreme 

by group polarization processes (Sunstein, 2002). 

If individuals in the core and the periphery have different characteristic behaviors and 

social environments, then lumping them together under the single term “community” is 

insufficient.  Instead, a new term is needed to describe this social structure that is most pervasive 

in our data.  We offer the term “multiplex public” to describe the social structure that such 

typical users of social networking services inhabit.  “Multiplex” refers to the multiple network 

layers (a work network, a school network, a friend network and so on) that come together to 
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form the overall follower-followee network, and “public” emphasizes the environment that is 

neither a single cohesive community nor a disconnected crowd, but in which individuals are still 

visible to sparsely-connected others. 

We suggest that this multiplex public has received less attention in the past in part 

because it has not been an obvious source of peer production.  Because of their economic 

consequence, online communities and crowds have been obvious and important to researchers in 

and around the disciplines of management.  Now, as data science uses digital traces for all 

manner of social scientific and business intelligence purposes, we should also acknowledge the 

significance of this prominent social structure and identify the ways it diverges from cohesive 

groups and network cores in future research. 

5.2.3 Research methods 

Network research nearly always faces a boundary definition problem (Laumann, Marsden 

and Prensky, 1989): the researcher must define who is in and who is out of the research data.  As 

a matter of convenience, this often means selecting nodes on the basis of their activity; in the 

case of political slant, prior work has sampled people to study on the basis of their obvious 

political partisanship (Adamic and Glance, 2005; Conover, et al, 2011; Bakshy, Messing and 

Adamic, 2015; Barbera et al.,2015).  While all of these studies go to some lengths to account for 

their data collection strategy, at a certain level they cannot fully escape the fundamental 

limitations that come with sampling on clearly political activity or affiliation.  That partisans are 

polarized does not imply that social media users in general are polarized.   

 The implications for future research on social media are clear: the behavior of members 

of the core is not representative of people outside of the core.  Networks constructed by choosing 

obviously relevant individuals (because they post a lot about the research topic, for example) are 
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likely to consist only of the network core and leave out the more representative (in terms of 

ordinary users) periphery.  

 

5.3 Limitations 

 Although our data is broadly representative in terms of its inclusion of typical Twitter 

users, our coverage consists of a cross-section in a non-election year.  This means that we cannot 

speak to issues of influence or other dynamic processes on or of networks – only the cross-

sectional organization of Twitter. More importantly, however, is the fact that our data was 

collected from a relatively “typical” period of time: 2009 was not an election year and September 

10th-23rd (the data collection window) did not contain any major news stories9 that might spark 

an increase in partisan conflict.  If the data were collected at an atypically polarized time, we 

may have observed different results.   Finally, Twitter was 3 years old when the data were 

collected, so while it no longer was only the home of early adopters, it had not yet gained the 

reach and user base that it has today. It is impossible to say for certain how this might affect 

results if this study could be exactly replicated with current data.  To at least partially address 

these concerns we conducted robustness checks with current (2017) data that do agree with our 

main results and are presented in Appendix A. 

 A second set of limitations comes with our use of Gentzkow and Shapiro’s slant scores.  

Although they cover over 95% of all direct news browsing and an even higher percentage of 

exposure to news on social media, we do not cover all sources of news.  We cannot rule out the 

possibility that there are echo chambers built around the sharing of news from sites representing 

a tiny minority of news exposures, including those from hate sites.  Indeed, if there were a total 

                                                      
9See  http://www.infoplease.com/year/2009.html#us 
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absence of such phenomena at the fringe, it would be surprising. However, this doesn’t affect our 

results, which characterize the vast majority of news exposures on Twitter.  Our robustness 

checks in Appendix A use a broader set of news sources than Gentzkow and Shapiro, and are 

intended to at least partially allay these concerns as well.   

 Our calculation of incoming slant is limited to those tweets that each account received 

from their followees in their timelines.  We do not account for information received off of 

Twitter, or for any tweets than a user is exposed to through other means, such as searching for 

hashtags, reading “trending” topics, reading the tweets from users that one does not already 

follow (more recently, this list includes “promoted” tweets, that is, advertisements).  We cannot 

say for certain how this might affect our results, but one possibility is that if people 

systematically searched for information from the opposite side of the political spectrum, it could 

result in undetected polarization, because their true incoming slant would be more centrist than 

we have measured it. 

A relative strength of our study is the inclusion of nearly every account that shared a 

news link during the collection period and thus had a measurable behavior.  But what about those 

accounts without any measurable behavior with respect to our slant measure?  A rough estimate 

is that our population of ~208,000 accounts that tweeted and received a news link represents only 

about 2.5% of monthly active users10. It is hard to say how our results would relate to the 97.5% 

of accounts that did not tweet any news links whatsoever during our data collection window.  

Given the diversity of interests – especially popular culture – represented on Twitter, it is likely 

that for quite a number of these excluded individuals, their twitter behavior is simply orthogonal 

                                                      
10 We are not aware of a reliable estimate for the number of monthly active users for the data collection period.  

Extrapolating backwards from information in Twitter’s filing of form S-1 with the United States Securities and 

Exchange Commission on October 3, 2011, it would appear that there were approximately 8 million monthly active 

users in the United States at the time of our data collection 
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to the issues we are studying.  However, other individuals may have participated in political 

communication through other means than sharing a news article; what can we say about these 

accounts? We found that the fewer news links an account sent out, the more centrist they tended 

to tweet relative to the information they received. Extrapolating from this, one might conclude 

that those who sent no news links would be even more mainstream (if that were measurable).  On 

the other hand, there could well exist very political individuals who simply to not share links to 

news stories, and instead write their own opinions in their own words.  If these users are 

somehow systematically different from our study population, then we may be missing some 

important part of the broader phenomenon of information diversity on Twitter. 

Finally, we study incoming versus outgoing political slant for Twitter accounts. It is not 

warranted to extrapolate our results without major caveats to conclusions about the true ideology 

of individual people.   There is also the possibility that some subset of users share articles they 

disagree with, which would complicate interpretation of our results.  We conducted exploratory 

analyses of this issue, and could not find much evidence of this effect in our data set.  A 

complete answer to this question, however, would require a separate full research project and is 

outside of the scope of this article.  Accounts also do not necessarily correspond to individuals; 

rather, they can also be run by organizations or algorithms.  Apart from some very obvious cases, 

it is hard to distinguish organizations from individuals on Twitter.  Individuals whose 

professional work involves participating in public discussion of news (reporters, academics, 

authors, public figures and so on) can have accounts that promote those individuals’ “personal 

brands” and in some cases may even be run by a private social media team. The line between 

individuals and organizations is blurry in the public forum of Twitter.  If we consider, for 

convenience, the network core to have a higher density of organizational accounts, then it could 
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be slightly reassuring that repeating our analyses with only accounts in the periphery produced 

almost identical estimated parameters for the effect of outgoing slant on incoming slant as those 

in Table 4.  As for algorithms, robustness checks in Appendix A on a small set of accounts are 

suggestive that our main results hold after excluding bots. 

 

5.4 Conclusion 

By using data representative of the whole population of Twitter users, we were able to 

reconcile apparently contradictory theories of diversity of information sharing on Twitter.  The 

aggregate picture cannot be described as just a collection of echo chambers on the one hand, or a 

clear pattern of mainstreaming on the other.  Rather, with elements of both tendencies, we 

instead see a whole system comprising a vast moderating majority – a multiplex public – with a 

polarized two-part community at its core.  Predicted behavior depends on which part of the 

system you are looking at, but on average, Twitter accounts post more centrist information than 

they receive in their own timelines, undercutting the prevailing narrative of the social media echo 

chamber (e.g. Schmidt, et al, 2017).  Instead, the widespread perception of such polarization may 

be the result of a network paradox, in which the behavior of nodes with a high degree is mistaken 

to be typical (Feld, 1991). 
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APPENDIX A: Robustness check on recent data 

SUMMARY 

We conducted an extensive robustness check on recent (Feb-March, 2017) data.  We calculated 

our own measure of slant by analyzing patterns of co-following among people who follow news 

sources directly.  We then assembled a sample of Twitter users and analyzed incoming versus 

outgoing slant.  To the extent that we were able to conduct analogous analyses, our main result 

stands with current data.   

  

A1: CALCULATION OF SLANT SCORE 

In our main analysis we had an externally validated measure of slant that corresponded to 

the same period in time that our data was from.  We felt that the measures from 2009 were much 

too old to rely on for current data, and that many important news sources (for example, 

Wikileaks and fivethirtyeight.com) had arisen in the intervening years. We thus devised our own 

measure that was closely related in principle to the measure from Gentzkow and Shapiro for the 

2009 data.  In particular, we use their notion that bias is captured by audience segregation. In 

their methods, a news site was deemed conservative (i.e. having a positive slant) if it was 

relatively heavily-read by conservative people and had relatively few liberal people among its 

audience.  News sites with centrist scores (near zero) were read by both conservative and liberal 

people.  We adapt this idea to Twitter data as detailed here.  

We began by identifying news sources to include in our slant calculations.  We created a 

list of 186 different sources, including most of the sources from the 2009 data (we excluded 

sources without at least 10,000 followers on Twitter, as well as blogtalkradio.com, because it is a 

platform for others to share their content and at this point in time does not have a predictable 



53 

 

slant). We then extended the original list by searching for curated lists of political news sources 

and added all of those as well (limiting our sources to those that had at least 10000 followers on 

Twitter).  We also separated CNN politics from the rest of CNN, the Wall Street Journal opinion 

section from the rest of the Wall Street Journal, and the Politics and Black Voices sections from 

the rest of the Huffington Post, as those divisions are thought to have a different slant from the 

rest of the reporting on those sites, according to multiple comments we read. 

We then identified the main twitter handle of each of these news sources and used the 

Twitter API to download the lists of direct followers of these news sources.  This step took 

approximately 7 weeks of continuous querying of the API in order to collect 330,000,000 

follower relationships to our list of 186 news sources (these 7 weeks were divided across 

multiple developer accounts so the actual time spent collecting data was closer to two weeks).   

Collecting data at this scale necessitated building a collection script that was robust to 

undocumented behaviors of the API.   

Having collected the lists of followers, we then calculated a 186x186 affinity matrix, the 

entries of which represent how much each pair of news sources overlapped in terms of followers.   

For example, at the time of data collection, the New York Times had approximately 33,000,000 

followers on Twitter, and the Blaze (Glenn Beck) had approximately 616,000 followers; about 

165,700 people followed both sites, which is 26.9% of the size of the smaller audience.  We thus 

use 0.269 as the entry in our affinity matrix for the strength of the connection between the New 

York Times and the Blaze.  In general, denoting our affinity matrix as A, 

   Aij = 
|Followersi∩Followersj|

min(|Followersi|,|Followersj|)
 

where |X| denotes the cardinality of set X. 
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Ultimately, our slant scores are calculated from this raw affinity matrix. However, 

analogous to Gentzkow and Shapiro’s method, we needed to first identify subsets of news 

sources that were clearly embedded in a partisan cluster such that we had a basis for 

approximating partisan audiences. The intention behind this is to use co-following of sites in the 

conservative cluster as an indicator of conservatism, and co-following of sites in the liberal 

cluster as an indicator of liberalism.  

However, as others have recently pointed out (e.g. Benkler et al.’s preliminary report on 

their research here: http://www.cjr.org/analysis/breitbart-media-trump-harvard-study.php), the 

conservative news cluster is clearly distinct, while the liberal news cluster is more integrated 

with the mainstream news cluster (that is, people who follow news sources with a liberal slant 

also follow mainstream news sources more than people who follow news sources with a 

conservative slant do), as Figure A1 illustrates. Because of this overlap, community detection 

algorithms run on the raw affinity matrix tend to divide the news site co-following network into 

only two, rather than three communities.  However, in order to calculate an analogous measure 

of slant to the one in our main analysis, we needed to identify which sites were in the less distinct 

smaller cluster of clearly liberal-leaning sites.   

As an intermediate step, we analyzed a scaled version of the matrix rather than the raw 

matrix to emphasize the community structure and provide a clearer signal of partisan separation. 

In particular, we reasoned that some co-following is to be expected if only based on random 

chance.  For example, for a very small niche news site, it wouldn’t be terribly surprising if a 

substantial fraction of its audience also followed CNN or the New York Times.  Intuitively, the 

smaller the first site, the less surprising it would be if a large fraction of its audience also 

followed larger news sites as well.  Thus, we scale the entries in the affinity matrix by the ratio 

http://www.cjr.org/analysis/breitbart-media-trump-harvard-study.php
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of the natural logs of the number of followers for each news site.  This penalizes co-following 

with sites that are much larger and emphasizes co-following that is more unexpected with respect 

to relative audience size.   After thus scaling the matrix, we removed all edges with scaled 

weight less than 0.3 and trimmed nodes with resulting degree less than 5.  These latter steps 

emphasize stronger connections and greater embeddedness in communities. We then ran the spin 

glass-based community detection algorithm (J. Reichardt and S. Bornholdt: Statistical Mechanics 

of Community Detection, Phys. Rev. E, 74, 016110 (2006)) on this pre-processed network to 

find three clear communities. 

   

  

Figure A1: Visualization of raw affinity matrix (note that for the purposes of this 
visualization only, weak ties (those less than 0.25) are omitted).   

 

Conservative 

Liberal 

Mainstream 
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Having thus identified nodes belonging to a liberal and a conservative cluster, we return 

to the raw affinity matrix to calculate slant scores (that is, the pre-processed version of the matrix 

was only used to detect membership in the three clusters).  For each news site, we calculated the 

mean co-following between that site and sites in the liberal cluster divided by the mean co-

following with all sites in the network and multiplied that by negative one to represent the 

liberal-leaning tendency.  We then added that to the mean co-following between that site and 

sites in the conservative cluster divided by the mean co-following with all sites in the network to 

represent the conservative leaning slant.  This sum represents the estimated slant for each site 

about which we collected data. 

 

𝑆𝑙𝑎𝑛𝑡𝑖 = −1 ∗

(

 
 

1
|𝑙𝑖𝑏𝑒𝑟𝑎𝑙|
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1
𝑛
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)

 
 

 

 

Our resulting estimated slant scores correspond fairly well to other published measures of 

slant, such as Pew Research Center’s 2014 report on political polarization 

(http://www.journalism.org/2014/10/21/political-polarization-media-habits/pj_14-10-

21_mediapolarization-08/).   The correlation between our slant scores and Gentzkow and 

Shapiro’s 2009 scores is 0.79; the two news sources with difference between our score and 

Gentzkow and Shapiro’s scores are the hotairblog.com and breitbart.com.  Both were relatively 

new at the time of Gentzkow and Shapiro’s data collection, and Breitbart has been documented 

to have evolved substantially since 200911.     

                                                      
11 see, for example, “From agitator to enforcer: The evolution of Breitbart” at 

https://www.washingtonpost.com/video/politics/from-agitator-to-enforcer-the-evolution-of-

breitbart/2017/02/19/9714b4ce-f3b8-11e6-9fb1-2d8f3fc9c0ed_video.html 

http://www.journalism.org/2014/10/21/political-polarization-media-habits/pj_14-10-21_mediapolarization-08/
http://www.journalism.org/2014/10/21/political-polarization-media-habits/pj_14-10-21_mediapolarization-08/


57 

 

Because liberals are more likely to be exposed to mainstream news sources, a truly 

unbiased source would not necessarily have a slant score of zero.  Note, for example, that C-

SPAN, a source that largely presents footage of congress without commentary, has an estimated 

slant score of approximately -0.29 on the scale for our 2017 data (which is on a different scale 

than Gentzkow and Shapiro’s slant scores).  Estimated slant scores are plotted in Figure A2 and 

reported in full in Table A2, below. 

 

 

 

 
Figure A2: estimated slant scores for robustness check. The logarithm of the number of 
followers is on the vertical axis. 

 
 

A2: COLLECTION OF DATA ON INDIVIDUAL ACCOUNTS 

 

As indicated above, only a minority of Twitter accounts actually tweet links to news 

articles; sampling accounts at random (to the extent that is possible) to find those that both 

received and sent tweets containing links to news articles would be prohibitively expensive in 
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terms of time.  In order to find accounts more efficiently, we instead began by searching for 

tweets containing links to news stories, find the accounts that sent these tweets, and then 

searching among the followers of these accounts until we found those that also tweeted at least 

one link.  Using this method, we obtain the full recent timeline (up to 3200 tweets, including 

only those less than or equal to two weeks old) for both the upstream followee and the 

downstream follower. We use the mean slant of the followee’s tweets as a predictor variable and 

the mean slant of the follower as the dependent variable in regressions that we use as a 

robustness check of our main result. 

Because of the extremely slow process of finding accounts that fit our criteria, our largest 

set of data contains only the slant of this single followee, rather than the entire incoming timeline 

of a given follower to predict that follower’s outgoing slant.  This obviously introduces 

substantial error (including attenuation bias) that was not present in our initial analysis, in which 

we had the entire incoming timeline for every account in our dataset.  We have two reasons to 

believe that the error introduced by this method may not be as problematic as it sounds.  First, 

the followees that we find by sampling on tweets (i.e. searching for tweets with the search API) 

are likely to be more representative of the timeline than a followee picked at random; this is 

because sampling on tweets is more likely to find especially active tweeters, whose tweets make 

up a majority of follower’s incoming timelines.  Second, for a subset of data, we also collected 

expanded incoming timelines and found generally consistent regression results. 

Our full algorithm for collecting individual-level data is below, but before detailing that, 

we begin by defining a subroutine – “PROCESS URLS” -- used repeatedly throughout our data 

collection.  For example, we frequently needed to determine the slant of the most recent 3200 

tweets sent by a given account.  URLs in tweets are always shortened links – that is, the original 
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full URL is converted into a shorter version by Twitter (using the t.co domain) and possibly 

other shortening services such as bit.ly.  This means that the links in any tweet data we collected 

are totally opaque with respect to where they point.     

PROCESS URLS:  Given a set of tweets containing URLS, we begin by discarding any 

that are more than two weeks old.  We then follow each link until there are no further redirects 

and collect the URL at the final destination.  We then strip away protocol and server names 

(“http://” or “https://” and “www” or other leading information) and match to the list of news 

domains we created above, discarding any tweets without links to a news source on our list. 

 

Collection Algorithm 

We query the search API for Tweets containing hyperlinks.  We then PROCESS URLS (as 

above) for these tweets and call remaining tweets “seed tweets”.  For each seed tweet, we look 

up the account that sent the tweet, designating this account as “followee.”  If the followee has 

greater than 10,000 followers, stop and move on to the next tweet without recording data  Query 

the REST API for the most recent 3200 tweets sent by the followee and then PROCESS URLS 

and calculate the average slant of news tweets sent by the followee. We then query the API for 

the list of accounts that follow the followee.  Until we find a follower that sent a news link, loop 

over the following steps: {randomly select one follower, query the API for the most recent 3200 

tweets sent by that follower, PROCESS URLS} (if no followers tweeted a news link, stop and 

move on to the next seed tweet). Calculate the average slant of the follower.  Store data and 

move on to the next seed tweet. 
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Further robustness checks 

The above collection algorithm allows us to regress a follower’s outgoing slant on the outgoing 

slant of an account that they follow.  Two substantial concerns with this approach are as follows: 

(1) in 2017, the number of “bots” (accounts that are not run by a human, but rather by a piece of 

computer code) has reportedly increased on Twitter and (2) it is unclear how representative one 

followee account would be of the whole incoming timeline (notwithstanding our note that 

because the followee is sampled on tweet activity, they are likely to be more representative than 

the average followee).  To check the magnitude of any effects caused by these issues, we 

conducted further robustness checks on a subset of data. 

 

Bot check: the Truthy team at Indiana University recently released an API to their “Bot or not” 

service (http://truthy.indiana.edu/botornot/).  Essentially, this is a machine-learning based 

classifier of twitter accounts that produces a score, ranging from zero to one, with one being 

highest certainty that the account in question is a bot.  We took a subset of followers from our 

main collection algorithm and used the botornot API to provide a bot score.  We then kept only 

those accounts that scored less than 0.4.  

 

Expanded timeline: with the subset of accounts unlikely to contain many bots, we then 

expanded the number of followees in the “incoming slant” calculation.  We did not attempt to 

include all followees, because of feasibility constraints imposed by Twitter’s rate limits and the 

requirement to PROCESS URLS. Instead, using the insight from the main analysis of 2009 data 

that heavier tweeters tend to tweet less centrist material we obtained timelines from only the top 

20 heaviest tweeters from among each follower’s followees.  This also has the advantage that the 



61 

 

more an account tweets, the more representative of the whole incoming slant they are, all else 

equal. 

 

A3: RESULTS 

Results from these robustness checks are presented in Table A1.  Our main result, that on 

average outgoing slant is more moderate than incoming slant stands with these current data.  

These new data are much less complete than our main analysis and necessarily introduce some 

sampling bias of unknown magnitude.  However, they were collected at a time of greater 

maturity of the Twitter platform and a time of much greater apparent political polarization – 

during the first months of the Trump administration – than the data for the main analysis.  

 Because of the different approaches to data collection, a detailed interpretation of 

differences between parameter estimates from 2009 to 2017 is generally not warranted.  

However, one substantial difference is attributable to the sampling approach and we note it here.  

The parameter for the interaction between incoming slant and number of followers was large and 

significant in our main analysis, but insignificant here.  This is almost certainly because we only 

collected data for accounts with fewer than 10,000 followers for this robustness check; thus there 

is much less variation in this variable by construction. 
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Table A1 Relationship between incoming and outgoing political slant 

 DV: Mean slant of sites in outgoing tweets 

 I II‡ 

Mean slant, sites in  incoming tweets† 0.586 *** 0.751 *** 
0.010  0.032  

ln(Count of outgoing tweets)  0.064 *** 0.007  
0.010  0.034  

ln(# followers) 0.048 *** 0.094  
0.014  0.048  

ln(# followers) ÷ ln(#followees) -0.027  -0.016  
0.014  0.048  

Incoming slant x  
  ln(Count outgoing tweets)  

0.154 *** 0.093 ** 
0.010  0.033  

Incoming slant x  
  ln(# followers) 

0.009  0.038  
0.014  0.048  

Inc. slant x ln(#followers) ÷ ln(#followees) 0.036 * 0.011  
0.017  0.057  

Intercept -0.049 *** -0.009  
0.010  0.033  

# of Twitter accounts  5966  445  

Adjusted R2 0.419  0.589  

Notes:  standard errors are printed below parameter estimates. 
***: p< 0.001; **: p< 0.01;  *: p < 0.05 
Except for mean incoming slant and mean outgoing slant, all variables are centered and scaled 
to unit variance 
† For model I, incoming tweets originate from one sampled followee.  For Model II, incoming 
tweets originate from the top 20 most-frequent tweeters among that account’s followees 
‡Model II includes a subset of accounts that have a low probability of being bots and have fuller 
incoming slant information 
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Table A2: estimated slant scores for 2017 data 

Twitter handle URL 
estimated 
slant 

ABC http://ABCNews.com -0.241 

AboveTopSecret http://www.abovetopsecret.com 0.916 

abscbndotcom http://www.ABS-CBN.com 0.048 

ACLJ http://www.ACLJ.org 3.232 

ACLU http://www.aclu.org -1.861 

AJEnglish http://aljazeera.com -0.823 

AllenWest http://www.allenbwest.com 3.229 

AlterNet http://www.AlterNet.org -2.238 

amprog http://www.americanprogress.org -2.267 

AmericanThinker http://www.americanthinker.com 3.384 

AOL http://www.aol.com -0.317 

AP http://www.ap.org -0.245 

azcentral http://www.azcentral.com 0.306 

BBC http://www.bbc.co.uk -0.355 

billmaher http://www.billmaher.com/ -1.415 

oreillyfactor http://www.billoreilly.com 2.591 

BlackAmericaWeb http://www.blackamericaweb.com -1.227 

Blklivesmatter http://www.blacklivesmatter.com -1.971 

Blogcritics http://blogcritics.org/ -0.144 

business http://www.bloomberg.com -0.158 

BoingBoing http://www.boingboing.net -1.310 

BostonGlobe http://bostonglobe.com -0.517 

bostonherald http://www.bostonherald.com 0.617 

BreitbartNews http://breitbart.com 2.978 

businessinsider http://businessinsider.com/ -0.083 

BW http://www.businessweek.com -0.130 

BuzzFeedNews http://www.buzzfeed.com/news -0.657 

cspan http://www.c-span.org -0.294 

CanadaDotCom http://www.canada.com -0.456 

CatoInstitute http://www.cato.org/ 2.053 

CBCNews http://www.cbc.ca/news/ -0.313 

CBSNews http://CBSNews.com -0.169 

chicagotribune http://chicagotribune.com -0.446 

chicksonright http://chicksontheright.com 3.452 

CTmagazine http://christianitytoday.com 1.910 

HoustonChron http://www.chron.com 0.250 

CNBC http://cnbc.com -0.057 

CNET http://www.cnet.com -0.108 

CNN http://www.cnn.com -0.273 

CNNPolitics http://cnn.com/politics -0.648 
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cnsnews http://facebook.com/cnsnewscom 3.137 

NatCounterPunch http://counterpunch.org -1.575 

crooksandliars http://www.crooksandliars.com/ -2.409 

csmonitor http://www.CSMonitor.com -0.372 

CTVNews http://www.ctvnews.ca -0.079 

DailyCaller http://www.dailycaller.com 2.728 

dailykos http://www.dailykos.com -2.176 

demunderground http://www.democraticunderground.com -2.227 

DNC https://democrats.org/ -1.990 

DRUDGE_REPORT http://www.DRUDGEREPORT.com 2.312 

Earthfiles http://www.earthfiles.com 0.390 

TheEconomist http://www.economist.com -0.390 

EFF https://www.eff.org -0.884 

esquire http://www.esquire.com -0.891 

MichaelSalla http://exopolitics.org/ 0.179 

Daily_Express http://www.express.co.uk 0.630 

YahooFinance http://finance.yahoo.com 0.138 

firstdraftnews http://firstdraftnews.com -0.865 

FiveThirtyEight http://www.fivethirtyeight.com -1.017 

Forbes http://forbes.com -0.028 

ForeignPolicy http://www.foreignpolicy.com -0.444 

FOXLA http://www.foxla.com 0.556 

FoxNews http://www.foxnews.com 1.157 

CanoeNouvelles http://fr.canoe.ca/ -0.239 

FreeBeacon http://FreeBeacon.com 2.960 

Snowden https://freedom.press -0.355 

FreeRepublicTXT http://www.freerepublic.com 0.176 

fpmag http://frontpagemag.com 3.287 

FT http://www.ft.com/ -0.127 

GallupNews http://www.gallup.com 0.613 

glennbeck http://www.glennbeck.com 2.754 

globeandmail http://www.globeandmail.com -0.336 

GOP http://gop.com 2.011 

haaretzcom http://www.haaretz.com 0.168 

seanhannity http://hannity.com 2.781 

HarvardBiz http://hbr.org -0.494 

HeraldTribune http://www.heraldtribune.com 0.182 

Heritage http://heritage.org 2.705 

hotairblog http://hotair.com 3.352 

HuffingtonPost http://www.huffingtonpost.com -0.730 

blackvoices http://www.huffingtonpost.com/black-voices/ -1.425 

HuffPostPol http://www.huffingtonpost.com/politics -1.291 

HumanEvents http://www.HumanEvents.com 3.228 
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TheIJR http://ijr.com 2.036 

infowars http://www.infowars.com 2.430 

zittrain http://www.jz.org -0.930 

latimes http://latimes.com/ -0.454 

lessig http://lessig.org -1.347 

LifeNewsHQ http://www.LifeNews.com 3.075 

LifeSite http://www.lifesitenews.com 3.060 

MarketWatch http://www.marketwatch.com/ 0.119 

mashable http://mashable.com -0.614 

Mediaite http://www.Mediaite.com 0.788 

mmfa http://mediamatters.org/ -1.929 

PolitiFact http://membership.politifact.com -0.963 

michellemalkin http://www.michellemalkin.com 2.732 

MotherJones http://www.motherjones.com -1.906 

MoveOn http://MoveOn.org/ -2.365 

MSNBC http://msnbc.com -0.803 

nationaljournal http://www.nationaljournal.com/ 0.271 

NRO http://www.NationalReview.com 2.615 

NatureNews http://www.nature.com/news -0.654 

NBCNews http://NBCNews.com -0.210 

NewRepublic http://www.newrepublic.com -1.316 

MSNNews http://news.msn.com -0.944 

YahooNews http://news.yahoo.com 0.118 

newsbusters http://www.newsbusters.org/ 3.185 

Newser http://www.newser.com -0.243 

newsmax http://www.newsmax.com 2.834 

newsobserver http://www.newsobserver.com -0.188 

Newsweek http://www.newsweek.com -0.512 

NewYorker http://www.newyorker.com -0.908 

NPR http://www.npr.org -0.924 

nypost http://www.nypost.com 0.773 

nytimes https://www.nytimes.com/ -0.543 

OccupyDemocrats http://www.OccupyDemocrats.com -2.962 

OurFuture http://www.ourfuture.org -2.687 

NewsHour http://pbs.org/newshour -0.959 

FactTank http://www.pewresearch.org/fact-tank -0.612 

phillydotcom http://www.philly.com -0.270 

instapundit https://pjmedia.com/instapundit/ 3.248 

politico http://www.politico.com -0.460 

powerlineUS http://www.powerlineblog.com 3.429 

theprogressive http://www.progressive.org -2.662 

ProPublica http://www.propublica.org/ -1.467 

theprospect http://prospect.org/ -2.306 
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PsychToday http://www.psychologytoday.com -0.697 

RawStory http://www.rawstory.com -1.856 

RealClearNews http://www.realclearpolitics.com 1.775 

reddit http://reddit.com -0.281 

RedState http://www.redstate.com 3.027 

Reuters http://www.reuters.com -0.175 

RollingStone http://www.rollingstone.com -0.915 

RSPolitics http://www.rollingstone.com/politics -2.026 

rushlimbaugh http://www.rushlimbaugh.com 3.406 

Salon http://www.Salon.com -1.686 

SELFmagazine http://www.self.com -0.268 

SFGate http://sfgate.com -0.889 

shadowproofcom http://shadowproof.com/ -1.744 

Slate http://www.slate.com/ -1.249 

TPM http://www.talkingpointsmemo.com/ -1.406 

technorati http://technorati.com -0.461 

amconmag http://www.theamericanconservative.com 1.745 

TheAtlantic http://www.theatlantic.com -1.190 

theblaze http://www.TheBlaze.com 2.883 

thecrimson http://thecrimson.com -0.700 

thedailybeast http://thedailybeast.com -0.668 

TheDailyShow http://thedailyshow.com -1.363 

gatewaypundit http://www.thegatewaypundit.com/ 3.360 

guardian https://www.theguardian.com -0.528 

thehill http://www.thehill.com -0.119 

MattWalshBlog http://themattwalshblog.com/ 3.284 

thenation http://thenation.com -1.938 

theolympian http://www.theolympian.com -0.554 

TPCblog http://thepoliticalcarnival.net -3.346 

trscoop http://therightscoop.com 3.469 

thestate http://www.thestate.com 0.452 

TheWeek http://www.TheWeek.com -0.576 

thinkprogress http://www.thinkprogress.org -2.112 

ThisAmerLife http://www.thisamericanlife.org -1.610 

TIME http://www.time.com -0.434 

TODAYshow http://TODAY.com -0.274 

Topix http://topix.com 0.573 

townhallcom https://townhall.com/ 3.262 

TreeHugger http://www.treehugger.com -1.616 

TwitchyTeam http://www.twitchy.com 3.395 

UPI http://www.upi.com 0.201 

USATODAY http://www.usatoday.com -0.016 

usnews http://www.usnews.com 0.107 
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VanityFair http://www.vanityfair.com -0.808 

vicenews http://www.vicenews.com -0.866 

villagevoice http://www.villagevoice.com -1.202 

VOANews http://voanews.com/ -0.001 

voxdotcom http://vox.com -1.276 

dcexaminer http://www.washingtonexaminer.com 2.543 

washingtonpost http://washingtonpost.com -0.435 

WashTimes http://www.washingtontimes.com 1.632 

weaselzippers http://www.weaselzippers.us 3.564 

weeklystandard http://www.weeklystandard.com 2.555 

WestJournalism http://www.westernjournalism.com 3.341 

wikileaks http://wikileaks.org 0.428 

worldnewsdotcom http://wn.com/ 0.671 

worldnetdaily http://www.wnd.com 3.099 

WSJ http://wsj.com -0.023 

WSJopinion http://wsj.com/opinion 2.256 

YoungCons http://youngcons.com/ 3.602 
 

 

 


