Editorial Board
Guidelines for Authors
QIC Online

Subscribers: to view the full text of a paper, click on the title of the paper. If you have any problem to access the full text, please check with your librarian or contact qic@rintonpress.com   To subscribe to QIC, please click Here.

Quantum Information and Computation     ISSN: 1533-7146      published since 2001
Vol.4 No.4 July 2004

Cluster states, algorithms and graphs (pp287-324)
       
D. Schlingemann
         
doi: https://doi.org/10.26421/QIC4.4-4

Abstracts: The present paper is concerned with the concept of the one-way quantum computer, beyond binary-systems, and its relation to the concept of stabilizer quantum codes. This relation is exploited to analyze a particular class of quantum algorithms, called graph algorithms, which correspond in the binary case to the Clifford group part of a network and which can efficiently be implemented on a one-way quantum computer. These algorithms can ``completely be solved" in the sense that the manipulation of quantum states in each step can be computed explicitly. Graph algorithms are precisely those which implement encoding schemes for graph codes. Starting from a given initial graph, which represents the underlying resource of multipartite entanglement, each step of the algorithm is related to a explicit transformation on the graph.
Key words:  cluster states, graph states, quantum error correction, algorithms, one-way quantum computing

 

กก