Editorial Board
Guidelines for Authors
QIC Online

Subscribers: to view the full text of a paper, click on the title of the paper. If you have any problem to access the full text, please check with your librarian or contact qic@rintonpress.com   To subscribe to QIC, please click Here.

Quantum Information and Computation     ISSN: 1533-7146      published since 2001
Vol.5 No.1 January 2005

Notes on super-operator norms induced by Schatten norms (pp058-068)
         John Watrous
         
doi: https://doi.org/10.26421/QIC5.1-6

Abstracts: Let $\Phi$ be a super-operator, i.e., a linear mapping of the form $\Phi:\mathrm{L}(\mathcal{F})\rightarrow\mathrm{L}(\mathcal{G})$ for finite dimensional Hilbert spaces $\mathcal{F}$ and $\mathcal{G}$. This paper considers basic properties of the super-operator norms defined by $\|\Phi\|_{q\rightarrow p}= \sup\{\|\Phi(X)\|_p/\|X\|_q\,:\,X\not=0\}$, induced by Schatten norms for $1\leq p,q\leq\infty$. These super-operator norms arise in various contexts in the study of quantum information. In this paper it is proved that if $\Phi$ is completely positive, the value of the supremum in the definition of $\|\Phi\|_{q\rightarrow p}$ is achieved by a positive semidefinite operator $X$, answering a question recently posed by King and Ruskai~\cite{KingR04}. However, for any choice of $p\in [1,\infty]$, there exists a super-operator $\Phi$ that is the {\em difference} of two completely positive, trace-preserving super-operators such that all Hermitian $X$ fail to achieve the supremum in the definition of $\|\Phi\|_{1\rightarrow p}$. Also considered are the properties of the above norms for super-operators tensored with the identity super-operator. In particular, it is proved that for all $p\geq 2$, $q\leq 2$, and arbitrary $\Phi$, the norm $\|\Phi \|_{q\rightarrow p}$ is stable under tensoring $\Phi$ with the identity super-operator, meaning that $\|\Phi \|_{q\rightarrow p} = \|\Phi \otimes I\|_{q\rightarrow p}$. For $1\leq p < 2$, the norm $\|\Phi\|_{1\rightarrow p}$ may fail to be stable with respect to tensoring $\Phi$ with the identity super-operator as just described, but $\|\Phi\otimes I\|_{1\rightarrow p}$ is stable in this sense for $I$ the identity super-operator on $\mathrm{L}(\mathcal{H})$ for $\op{dim}(\mathcal{H}) = \op{dim}(\mathcal{F})$. This generalizes and simplifies a proof due to Kitaev \cite{Kitaev97} that established this fact for the case $p=1$.
Key words:  Schatten norms, super-operator norms, quantum information

 

กก