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A unitary interaction coupling two parties enables quantum or classical communication
in both the forward and backward directions. Each communication capacity can be
thought of as a tradeoff between the achievable rates of specific types of forward and
backward communication. Our first result shows that for any bipartite unitary gate,
bidirectional coherent classical communication is no more difficult than bidirectional
classical communication — they have the same achievable rate regions. Previously this
result was known only for the unidirectional capacities (i.e., the boundaries of the trade-
off). We then relate the tradeoff for two-way coherent communication to the tradeoff for
two-way quantum communication and the tradeoff for coherent communication in one
direction and quantum communication in the other.
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1. Introduction

Quantum communication theory typically studies channels which take an input quantum
system from one party (call her Alice), act on it possibly with some noise (a trace preserving
completely positive map[l]) and pass the system onto another party (call him Bob). A
quantum channel can generate quantum or classical communication or entanglement at some
rate. The maximum rate at which each task can be done with arbitrary precision and with
an asymptotically large number of channel uses is called the capacity.

A bipartite unitary gate coupling Alice and Bob can achieve similar tasks, with either party
(or both) in the role of sender or receiver. Early studies can be found in [2, 3, 4, 5], focusing on
more specific systems and protocols. For example, a CNOT can send a classical bit from Alice
to Bob, or from Bob to Alice or generate one EPR pair. Asymptotic capacities of a general
bipartite unitary evolution to communicate and to generate entanglement were formalized in
Ref. [6]. A general expression for the entanglement capacity was found in Refs. [7, 6] and
that for entanglement-assisted one-way classical capacity was found in Ref. [6]. Expressions
for various one-way quantum capacities were subsequently found in Ref. [8], by introducing
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the concepts of coherent classical communication and entanglement recycling. (Their precise
definitions, as well as concepts throughout the rest of this paragraph, will be clarified in Sec.
2). In particular, Ref. [8] showed that for any gate, the one-way classical capacity is equal to
its one-way coherent capacity. This further provides an expression for the one-way classical
capacity assisted by any linear amount of free entanglement, and allows the one-way quantum
capacity and the remote state preparation capacity to be expressed in terms of this one-way
classical capacity.

However, the core result for bipartite unitary evolution in Ref. [8], the equality of the one-way
classical capacity and the coherent capacity, is left open for simultaneous two-way communi-
cation. Our main result is a proof of this equality in Sec. 3. For completeness, we also compare
two-way classical communication and coherent classical communication in the regime of neg-
ative communication rates (i.e., consuming communication to help produce other resources).
Following similar arguments as in Ref. [8], we list some corollaries. These are the two-way
remote state preparation capacity and quantum capacity in terms of the classical capacity.
Our main result is proved by using a coherent version of a one-time pad (analogous to that in
Ref. [9]). The reason why a more direct extension of the proof from Ref. [8] fails is given in
an appendix. A second appendix discusses the implications our results have on the definition
of coherent classical communication.

2. Framework, definitions, and notations

Throughout the paper, we consider communication between two parties, Alice and Bob. Sys-
tems in their possession are denoted by respective subscripts A, Ag ;... and B, Bo 1,.... System
labels are omitted when they are clear from the context. We also use superscripts (A) and (B)
for different (but analogous) objects related to Alice and Bob (for example, their respective
local operations). Exp and log are always base 2. We will primarily use the trace distance
3llp — o1 to quantify the proximity of any two states p and o, where || X||; := Tr vVX1TX.
For two pure states |a), |3), L | a)(a|—|8)(8]]1 =€ & [(Bla)> =1 — €. We use |a) ~ |3)
as a shorthand for 1 || |a){c|—|B)(8][l1 <e.

We now review some definitions and background results, mostly from Refs. [6, 8, 10]. Let
{|z)}z=0,1 be a basis for C>. We first define various resources. Let an ebit denote a unit
of shared quantum correlation, as quantified by an EPR pair |®),5 = % Zi:o EINES
Throughout the paper, we omit the tensor product symbol, ®, if no confusion may arise.
Following Ref. [8], we denote the ability to communicate a qubit in the forward direc-
tion (from Alice to Bob) as qubit(—), and mathematically, it corresponds to the isometry
\z), — |z)g. Qubit communication in the opposite direction, the isometry |z)p — |z),, is
denoted qubit(+—). Nonunitary evolution can be viewed as a unitary evolution between all
participating parties, together with an inaccessible one called the environment denoted by E.
Then, the ability to communicate a classical bit in the forward direction, denoted as cbit(—),
is given by the linear map |z), — |z)g|z)r. In contrast, a cobit(—) is given by the map
lz), — |z)plz)g. A cbit(«) and a cobit(«) are defined similarly. We call cobits coher-
ent classical communication, and cbits incoherent classical communication or simply classical
communication. One can view cobits as cbits in which Alice is given the environment E as
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quantum feedback. The results of this paper imply that cobits may be equivalently defined
as the ability to send cbits through unitary means. In Appendix B we will make this idea
precise.

Communication theory is primarily concerned with converting available resources into desired
ones. Roughly speaking, given two communication resources X and Y, we say that X > rY
if X can be transformed into Y asymptotically and approximately at rate r, i.e., V§ >0, AN
such that Vn > N, n copies (or uses) of X can be transformed into > n(r —§) copies (or uses)
of Y, in an approximate manner to be defined. For example, Shannon’s noisy coding theorem
[11] for a classical channel (i.e. a stochastic map) T could be stated as T' > C(T") cbits, where
C(T) := maxpg) [H(E)+H(T(E))—H(E,T(E))] is the classical capacity of the channel T,
H(-) is the entropy of a random variable, and the maximization is over all distribution P(E)
of the input alphabet Z. If X > Y and Y > X, then we write that X = Y. For example, the
reverse Shannon theorem [12] states that C(T) cbits > T, so that T} = gg;g
classical channels Ty, T» (in the presence of unlimited shared randomness). Another result
[8] of this type, 2 cobits(—) = 1ebit +1 qubit(—), will be used in Sec. 4 to relate the classical
and quantum capacities of unitary gates.

T, for any two

The definition for X > rY is only complete given an error definition, and a good one should
ensure transitivity of resource inequalities: X > rY and Y > sZ implies X > rsZ. Op-
erationally, the two corresponding resource transformations should be sufficiently accurate
to be composable. Mathematically, we say that X > rY if there exist vanishing sequences
of nonnegative numbers, {€,},{d.}, and protocols P, each using X at most n times (and
other allowed resources), such that P, 2 Y®(r—dn)n Here the notion of approximation T is
extended from states to operations as

V) 3 I Z0Pa(l¥) —Z@Y S (y) L < e, (1)

where Z denotes the identity operation on a reference system of dimension given by the input
to P,. Including a reference system in Eq. (1) ensures that P, and Y®( =) transform
correlations similarly. Here, we use the symbol Y to denote the associated state transformation
enabled by the resource (see Sec. 1 for examples). We will see examples of what the above
means in the next section.

We can now define the achievable classical rate region of a unitary gate U as the set of
points (Cq,C3, E) such that U > Cj cbits(—) 4+ C cbits(«+) + E ebits. When Cy, Cs, or
E is negative, it means that the resource is being consumed; for example, if £ < 0 and
Ci,C2 > 0, then U+ (—FE) ebits > C1 cbits(—)+Cx cbits(«) represents entanglement-assisted
communication. This paper is mostly concerned with C;,Cs > 0 and arbitrary E. Part of
the (C1,Ca, E) achievable region has been characterized, for the special cases of C;,C < 0
(entanglement capacity [6, 7] which is not increased by free classical communication), Cy =
0,E = —oo (one-way classical communication with unlimited entanglement assistance [6],
though the actual protocol requires only finite entanglement assistance) and Co = 0 (one-
way classical communication with arbitrary entanglement assistance [8]). We can define the
achievable coherent classical rate region of U analogously as the triples (C1,Cs, E) so that
U > C; cobits(—) + C2 cobits(+) + E ebits.

Reference [8] showed that U > C cbits(—) + E ebits if and only if U > C cobits(—) + E ebits,
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i.e., the coherent and incoherent classical rate regions coincide on the planes C; = 0 and
C5 = 0. In the next section we prove that the coherent and incoherent rate regions are identical
in the entire C1,C2 > 0 quadrant. Other quadrants will be considered for completeness —
this amounts to understanding how to best use back classical communication. We will see
that assistance by cobits only generates entanglement and that cbits are useless. We then
apply the result to relate the capacity regions of different types of forward and backward
communication.

3. Bidirectional coherent classical communication

Theorem 1 For any bipartite unitary or isometry U and Cp,Cy > 0,

U > C(Ccbits(—)+ Cycbits(+) + Eebits iff (2)
U > Ccobits(—) + O cobits(+) + E ebits (3)
Proof: Since 1cobit > 1cbit, it suffices to prove the forward implication. In other words,
given the existence of protocols achieving the resource transformation in Eq. (2), we will con-
struct protocols that achieve the resource transformation in Eq. (3). We delay the discussion
for E # 0 until the end of this section. For now, suppose F = 0.

e The definition of P,

Formally, Eq. (2) indicates the existence of sequences of nonnegative real numbers {e,}, {0, }
satisfying €,,d, — 0 as n — 0o; a sequence of protocols P,, = (V,@W,,)U --- U (V1@W71) U X
(Vo®W)y), where V;, W; are local isometries that may also act on extra local ancilla systems,
and sequences of integers C§"Z C’z(")satisfying nCi > Cin)Zn(Cl—én), nCqy > Cé")Zn(CQ—(sn),
such that the following success criterion holds.

Let a € {0, 1}C£n) and b € {0,1}C§n) be the respective messages of Alice and Bob. Let
(@ab) = Pn(la)y, [b)g,). Note that [p.p) generally occupies a space of larger dimension than
A; ® B; since P,, may add local ancillas. To say that P,, can transmit classical messages, we
require that local measurements on |¢,p) can generate messages b’ for Alice and o' for Bob
according to a distribution Pr(a’d’|ab) such that

Vap D 3 |Pr(a'bab) — Ga,udpp| < €n (4)

a’ b

where a’,b' are summed over {0, 1}C£n) and {0,1}05") respectively. Eq. (4) follows from
applying Eq. (1) to classical communication, taking the final state to be the distribution of
the output classical messages. Since any measurement can be implemented as a joint unitary
on the system and an added ancilla, up to a redefinition of V,,, W,,, we can assume

|Pab) = Palla)a, 1b)p,) = D 16)as 10"}, 1Yot ) As B (5)
a’,b’

where the dimensions of A; and B; are interchanged by P,, and \'yg,’fl’),> are subnormalized

states with Pr(a't'|ab) := (v%%, |y%5,) satisfying Eq. (4). Thus, for each a,b most of the
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weight of |pgp) is contained in the |’ij£ ) term, corresponding to error-free transmission of the
messages. See Fig. I(a).

e The three main ideas for turning classical communication into coherent classical communi-
cation

We first give an informal overview of the construction and the intuition behind it. For simplic-
ity, consider the error-free term with |'yg:£ ) in A, By. To see why classical communication via
unitary means should be equivalent to coherent classical communication, consider the special
case when \'y;’,’ll: A, B, is independent of a,b. In this case, copying a,b to local ancilla systems

Ag,Bg before P, and discarding A, B, after P, leaves a state ~ b, la)a,l0)B, |b)g,—the
desired coherent classical communication. See Fig. I(b). In general |«y§;§j )A, B, Will carry infor-
mation about a,b, so tracing As By will break the coherence of the classical communication.
Moreover, if the Schmidt coefficients of |’yZ,’g> A, B, depend on a,b, then knowing a,b is not
sufficient to coherently eliminate |'yg:£> A, B, Without some additional communication. The
remainder of our proof is built around the need to coherently eliminate this ancilla.

Our first strategy is to encrypt the classical messages a,b by a shared key, in a manner that
preserves coherence (similar to that in Ref. [9]). The coherent version of a shared key is a
maximally entangled state. Thus Alice and Bob (1) again copy their messages to Ag,Bo,
then (2) encrypt, (3) apply Pn, and (4) decrypt. Encrypting the message makes it possible
to (5) almost decouple the message from the combined “key-and-ancilla” system, which is
approximately in a state |T'go) independent of a,b (exact definitions will follow later). (6)
Tracing out |T'gg) gives the desired coherent communication. Let P/, denote steps (1)-(5) (see

Fig. 1(c)).

(a)

Ay |a) |bl>
} i)
By [b) la’)

Mabeben) 7Tt Tuear er)

o'}

Fig. 1. Schematic diagrams for P, and P/,. (a) A given protocol P, for two-way classical com-
munication. The output is a superposition (over all a’,b’) of the depicted states, with most of the
weight in the (a/,b')=(a,b) term. The unlabeled output systems in the state |'y:,’l;),) are A, Bs.

(b) The same protocol with the inputs copied to local ancillas Ag,Bg before Pn. If |'ij§> is
independent of a,b, two-way coherent classical communication is achieved. (c) The five steps of
P,,. Steps (1)-(4) are shown in solid lines. Again, the inputs are copied to local ancillas, but Py
is used on messages encrypted by a coherent one-time-pad (the input |a)a, is encrypted by the
coherent version of the key |z)a, and the output |a’ @ z)B, is decrypted by |z)B,; similarly, |b)B,
is encrypted by |y)B, and |0’ ® y)a, decrypted by |y)a,. The intermediate state is shown in the
diagram. Step (5), shown in dotted lines, decouples the messages in Ag 1, Bo,1 from Az 34,B2 3 4,
which is in the joint state very close to |I'go).

If entanglement were free, then our proof of Theorem 1 would be finished. However, we have
borrowed Cln)+C2(") ebits as the encryption key and replaced it with [Top). Though the
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entropy of entanglement has not decreased (by any significant amount), [T'go) is not directly
usable in subsequent runs of P!,. To address this problem, we use a second strategy of running
k copies of P/, in parallel and performing entanglement concentration of [[go)®* using the
techniques of [13]. For sufficiently large k, with high probability, we recover most of the
starting ebits. The regenerated ebits can be used for more iterations of P, ®* to offset the
cost of making the initial k (Cf")—f—Cé") ) ebits, without the need of borrowing from anywhere.

However, a technical problem arises with simple repetition of P}, which is that errors accu-
mulate. In particular, a naive application of the triangle inequality gives an error ke, but k, n
are not independent. In fact, the entanglement concentration procedure of Ref. [13] requires
k > Sch(|T'p0)) = exp(O(n)) and we cannot guarantee that ke, — 0 as k,n — oo. Our third
strategy is to treat the k uses of P/, as k uses of a slightly noisy channel, and encode only [
messages (each having C’{"), 02(") bits in the two directions) using classical error correcting
codes. The error rate then vanishes with a negligible reduction in the communication rate and
now making no assumption about how quickly €, approaches zero. We will see how related
errors in decoupling and entanglement concentration are suppressed.

We now describe the construction and analyze the error in detail.
e The definition of P,

o™
0. Alice and Bob begin with inputs |a), [b)g, and the entangled states |<§>A3 B, and

1
E) A4 B, (Systems 3 and 4 hold the two separate keys for the two messages a and
b.) The initial state can then be written as

Z |zz) A3 B3 Z lyy) A4B4 A1|b> (6)

where z and y are summed over {0, 1}C£n) and {0, 1}C§n), and N = exp (Cl(")—i—Cé")).
1. They coherently copy the messages to Ag, Byp.

2. They encrypt the messages using the one-time-pad [a), |z),
b)g, 1Y), — 10O Y)s,|y)p, coherently to obtain

, 7 la®z), |z),, and

@) 5, 10)8, %%Iwmlymlx)ggly)m la®z),, b®Y)p, - (7)

3. Using U n times, they apply P, to registers A; and B, obtaining an output state

Dz, bd
la >A0 Bo \/— Z |) A3|y A4 B3|y Bs Z '® y)a,la'® >B1|7Z’€B:b’®z>A2 B.- (8)

a’,b’

4. Alice decrypts her message in A; using her key A; and Bob decrypts B; using Bj
coherently as [b' @ y)a, [y)as = [V')a,[y)a, and |a’ © z)B, |7)8, — |a’)B, |2}, producing
a state

O, bd
a >A0|b Bo \/— Z |) A3|?J A4 B3‘y B Z o' A1|a B1|7¢(i’®§,b’@z>A2 B; - (9)
/bl
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5. Further CNOTs A1 — A4, AO — A3, B1 — B3 and BO — B4 will leave A27374 and B27374
almost decoupled from the classical messages. To see this, the state has become

1 a®z,b
|a>A0 |b>1§;0 Zagb' |bl>A1 ‘0‘I>B1 ﬁ Z a® m>A3 la'® $>]33 '@ y>A4 b® y>B4 \%&jbgz>Az B:
zy

= Ja)ayB)my 3 10)a,10) 5, Tasarbotr)ay s 4 s (10)

a’,b’

where

1 b
Cusattin o= g 3082, 0], H 1), b1, W28 a5, (11
zy

The fact [Tyga/pepr) depends only on a @ o' and b @ b/, without any other dependence
on a and b, can be easily seen by replacing =,y with a ® z,b ® y in Zwy in the RHS
of the above. Note that (Tuga e Tagaper) = = Y Prd ezt ®yladz,bdy),
so in particular for the state corresponding to the error-free term, we have (I'go|Too) =
+ Yoy Pr(zylzy) =18 >1—¢, [14]

Suppose that Alice and Bob could project onto the space where a’ = a and b’ = b, and
tell each other they have succeeded (by using a little extra communication); then the

resulting ancilla state \/11_—€|F00> has at least C{n)—i— C’z(n)—i-log(l—en) ebits, since its
—1/2

largest Schmidt coefficient is < | exp(0§")+0§"))(1—5n) ]
state was studied in Ref. [6] in the proof that the entanglement capacity of a unitary

and €, < €,. (A similar

gate was at least as large as its classical communication capacity.) Furthermore, |T'go) is
manifestly independent of a,b. We will see how to improve the probability of successful
projection onto the error free subspace by using block codes for error correction, and
how correct copies of |T'gg) can be identified if Alice and Bob can exchange a small
amount of information.

e Main idea on how to perform error correction

As discussed before, [T'gp) cannot be used directly as an encryption key — our use of entan-
glement in P}, is not catalytic. Entanglement concentration of many copies of [T'gg) obtained
from many runs of P, will make the entanglement overhead for the one-time-pad negligible,
but errors will accumulate. The idea is to suppress the errors in many uses of P/, by error
correction. This has to be done with care, since we need to simultaneously ensure low enough
error rates in both the classical message and the state to be concentrated, as well as sufficient
decoupling of the classical messages from other systems.

Our error-corrected scheme will have k parallel uses of P),, but the k inputs are chosen to
be a valid codeword of an error correcting code. Furthermore, for each use of P/, the state
in As 3.4 B3 34 will only be collected for entanglement concentration if the error syndrome is
trivial for that use of P). We use the fact that errors occur rarely (at a rate of €,, which
goes to zero as n — 00) to show that (1) most states are still used for concentration, and (2)
communicating the indices of the states with non trivial error syndrome requires a negligible
amount of communication.
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e Definition of P!,.: error corrected version of (P.,)®* with entanglement concentration

We construct two codes, one used by Alice to signal to Bob and one from Bob to Alice. We
consider high distance codes. The distance of a code is the minimum Hamming distance
between any two codewords, i.e. the number of positions in which they are different.

First consider the code used by Alice. Let N; = 2017 Alice is coding for a channel that
takes input symbols from [N;] := {1,..., N;} and has probability < €, of error on any input
(the error rate depends on both a and b). We would like to encode [N;]' in [N;]* using a
code with distance 2ka,,, where a,, is a parameter that will be chosen later. Such a code
can correct up to any \_kan—%J errors (without causing much problem, we just say that the
code corrects ka,, errors). Using standard arguments [18], we can construct such a code
with I > k | 1—2an—H2(2an)/Cl(n) |, where Hy(p) = —plogp — (1—p)log(1—p) is the binary
entropy. The code used by Bob is chosen similarly, with Ny = 903" input symbols to each
use of P],. For simplicity, Alice’s and Bob’s codes share the same values of [, k and a,. We
choose a,, > max(1/C\™ 1/C{™) so that I > k(1—3as,).

Furthermore, we want the probability of having > ko, errors to be vanishingly small. This
probability is < exp(—kD(anllen)) < exp(k + kanloge,) (using arguments from [19]) <
exp(—k) if a, > —2/loge,.

Using these codes, Alice and Bob construct P/, as follows (with steps 1-3 performed coher-
ently).
0. Let (ag,---,ap) be a vector of | messages each of C’f") bits, and (b9, - - - ,bY) be [ messages
each of C’én) bits.

1. Using her error correcting code, Alice encodes (ag,---,af) in a valid codeword @ =
(a1, - -+, ar) which is a k-vector. Similarly, Bob generates a valid codeword b = (by, - - -, bg)
using his code.

2. Let Ay := A?k denote a tensor product of k input spaces each of Cl(") qubits. Similarly,
I§1 = B?k. (We will also denote k copies of Ag 234, and By 234 by adding the vector
symbol.) Alice and Bob apply (P.)®* to @) &, |g>]§1; that is, in parallel, they apply P,
to each pair of inputs (a;,b;). The resulting state is a tensor product of states of the
form given by Eq. (10):

k
® |: |a.7 A0|b Bo Z ‘b‘lj>A1|a;>Bl |]‘_‘aj®a;-ybj®b;->A2,3,4 B2,3,4 :| . (12)
Jj=1 af,b
k
Define \1"#@6, béBb’>Azs4Bza4 = ®j:1 |Fajeea;.,bjeab;.>A2,3,4 Bsss- Lhen, Eq. (12) can be
written more succinctly as
N =
|a>1§0 ‘b>§0 Z |b >1§1| |F-’€95’ b®b’>A234Bza4 : (13)
a' b

3. Alice performs the error correction step on A; and Bob does the same on Bj. According
to our code constructions, this (joint) step fails with probability ps.y < 2-27%. (We will
see below why pg.;; is independent of @ and b.)
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In order to describe the residual state, we now introduce Ga = {ZF € [N1]* : |Z| <kay,}
and Gg = {T€[Ny)* : |#| <ka,}, where || := |{j : ; #0}| denotes the Hamming
weight of &. Thus Ga p are sets of correctable (good) errors, in the sense that there
exist local decoding isometries Dp, Dp such that for any code word @ € [N;]* we have
Va' € d @ QA,DA| " = \ >|a69 @) (and similarly, if b € [N]* is a codeword, then
Vb ebo gB,DB\b’) |)|b @ b')). For concreteness, let the decoding maps take A; to
A1A5 and B1 to B B5

Conditioned on success, Alice and Bob are left with
]. - - - —,
m |CL b>X0 |a b>Bo 1 Z Z |b® bl>1§5| > |Fﬂ€9ff’ b®b’>A234B234 (14)
a'€ADIA b'cbd Gy

=14 b>g (_i b Bo 1 Z Z |b” |_W |FE,’VEI’>KZ34§234, (15)

a’ega blle (eI

where we have defined @ := @ ® @ and b := b@® b. Note that 2=l > ppy =
Z(ﬁ,, 5")2Ga x O <Fa~,5~‘raﬂ,8~>’ which is manifestly independent of @, b. The ancilla is
now completely decoupled from the message, resulting in coherent classical communica-
tion. The only remaining issue is recovering entanglement from the ancilla, so for the
remainder of the protocol we ignore the now decoupled states |, b) Kou |, 5>]§0 )

For any Z, define S(Z) := {j : z; #0} to be set of positions where & is nonzero. If
Z € Ga (or Gg), then |S(Z)| < kay,. Thus, S(Z) can be written using < log ngkan(?) <

log (5, ) +log(kaw) < kHa(an) + log(kas,) bits.

The next step is for Alice to compute |S(5")) from |6”) and communicate it to Bob using
(kH:(an)-+log(kay) ) cbits(—). Similarly, Bob sends |S(a”)) to Alice using (kHz(ow, )+
log(ka,) ) cbits(+). Here we need to assume that some (possibly inefficient) protocol
to send O(k) bits in either direction with error exp(—k—1) (chosen for convenience) and
with Rk uses of U for some constant R. Such a protocol was shown in Ref. [6] and the
bound on the error can be obtained from the HSW theorem [16].

Alice and Bob now have the state

1 i g - . .
Topen Yo D 18@)SE") 5, 155, 1S@)SE")) g, 13" )5, T g ) fagaBaga- (16)

a'’ega guegB

Conditioning on their knowledge of S(a@”), S(b"), Alice and Bob can now identify &' >

k(1 — 2a;,) positions where aj = b = 0, and extract k' copies of W\Fgg) Note

that leaking S(a@”), S(6") to the environment will not affect the extraction procedure,
therefore, coherent computation and communication of $(@"), S(b") is unnecessary. (We
have not explicitly included the environment’s copy of [S(@”)S(b”)) in the equations to
minimize clutter.) After extracting k' copies of W|FOO> we can safely discard the

k’
remainder of the state, which is now completely decoupled from both [ﬁ |Too) ] ®

and the message |@)a,|b), |b)B,|@)s, -
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5. Alice and Bob perform entanglement concentration Econe (using the techniques of [13])

n [\/ﬁﬂ‘m)]@k . Note that since ﬁ\ﬂ)o) can be created using U n times
and then using classical communication and postselection, it must have Schmidt rank
< Sch(U)™, where Sch(U) is the Schmidt number of the gate U [20]. Also recall that
E [ﬁu‘oo” > Cl(") + C’én) + log(1—ey). According to Ref. [13], Econc requires no
communication and with probability > 1—exp [ —Sch(U)" vk’ —log(k'+1)) ] produces
at least k' [ Cin)JrCz(")—i—log(l—en) | = Sch(U)"™ [ V&' —log(k'+1) | ebits.

e Error and resource accounting
P!, consumes a total of

(0) nk uses of U (in the k executions of P),)
(1) Rk uses of U (for communicating S(a"), S(b"))

(2) k [ —I—C’én)] ebits (for the encryption of classical messages).
P!, produces, with probability and fidelity > 1 2.2~ (=1 — exp [ Sch(U)" (V&' log(k'+1))],
at least

(1)1 Cl(")cobits(—>) +1 CQ(n)cobits(<—)

(2) K (O™ +C5M +10g(1—¢€,) ) — Sch(U)™ (VE — log(k'+1) ) ebits.

We restate the constraints on the above parameters: €,,d, — 0 as n — oo; Ci") > n(C1—46,),
C{™ > n(Cy=6,); an > max(1/C™,1/CS™  —2/log €,); k' > k(1—200); 1 > k(1—3ay).

We define “error” to include both infidelity and the probability of failure. To leading orders
of k,n, this is equal to 2=(~2) 4 exp [—\/E Sch(U)"]. We define “inefficiency” to include
extra uses of U, net consumption of entanglement, and the amount by which the coherent
classical communication rates fall short of the classical capacities. To leading order of k,n,
these are respectively Rk, 2ank(0§n)+(]§n)) + VESch(U)" ~ 2a,kn(Cy+C3) + vk Sch(U)™,
and nk(C1+Cs) — 1(C™+C{™) < nk(3a,(C1+Cs) +26,). We would like the error to vanish,
as well as the fractional inefficiency, defined as the inefficiency divided by kn, the number of
uses of U. Equivalently, we can define f(k,n) to be the sum of the error and the fractional
inefficiency, and require that f(k,n) — 0 as nk — co. By the above arguments,

F(k,n) < 2-5=2) 1 exp(—v/E Sch(U ))+2an(01+02)+n+/ESch(U)"+§

+ 3an(01+02) + 20, . (17)

Note that for any fixed value of n, limy_, f(k,n) = 5, (C1+C2) 425, + R/n. (This requires
k to be sufficiently large and also k >> Sch(U)?".) Now, allowing n to grow, we have

lim lim f(k,n)=0. (18)

n—00 k—oo
The order of limits in this equation is crucial due to the dependence of k£ on n.

The only remaining problem is our catalytic use of O(nk) ebits. In order to construct a
protocol that uses only U, we need to first use U O(nk) times to generate the starting
entanglement. Then we repeat P!/ m times, reusing the same entanglement. The catalyst
results in an additional fractional inefficiency of ¢/m (for some constant ¢ depending only



390 Bidirectional coherent classical communication

on U) and the errors and inefficiencies of P,/ add up to no more than mf(k,n). Choosing
m = |1/4/f(k,n)| will cause all of these errors and inefficiencies to simultaneously vanish.
More generally,

lim lim lim mf(k,n)+— = 0. (19)
m

m—00 Nn—00 k— 00

This proves the resource inequality
U > C1 cobits(—) + C3 cobits(«+). (20)

e The E <0 and E > 0 cases

If E < 0 then entanglement is consumed in P,, so there exists a sequence of integers E(™) <
n(E + d,,) such that

E™) a,b
Po(1a)a, 1006, 190, 3, ) = D 1¥) a0}, 15 e s (21)
a’ b’
In this case, the analysis for E(™) = 0 goes through, only with additional entanglement

consumed. Almost all equations are the same, except now the Schmidt rank for |T'go) is
upper-bounded by [Sch(U)2%+%]" instead of Sch(U)". In particular, previous arguments
still give Eq. (18) from the modified Eq. (17).

If instead E > 0, entanglement is created, so for some E(™ > n(E — §,,) we have

Pu(la)a, 10)p,) = D 0')asla")m, ety ) Az Bs - (22)

a’,b’

for E (hg:i’ Ya,B,) > E(™. Again, the previous construction and analysis go through, with an

extra E(™ ebits of entanglement of entropy in |Tgo), and thus an extra fractional efficiency
of < 2w, FE in Eq. (17). The Schmidt rank of |T'go) is still upper bounded by Sch(U)™ in this
case. o

So far, we have focused on the Ci,C3 > 0 quadrant. The following theorem will relate
the achievable regions for coherent and incoherent classical communication when C; < 0 or
Cy <0.

Theorem 2 For any bipartite unitary or isometry U and Cp,Cy > 0,

Cycbits(«)+U > Ccbits(—) + E ebits iff (23)
U > Ccbits(—) + E ebits iff (24)
U > C;cobits(—) + E ebits iff (25)
Cycobits(+)+U > Ccobits(—) + (E+C>) ebits (26)
and
C; cbits(—) + Cy cbits(«+-) + U > Febits iff (27)
U > FEebits iff (28)
C cobits(—) + Ca cobits(+-) + U > (E+C;1+C>)ebits (29)
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In essence, the rates of unidirectional classical communication with arbitrary amount of entan-
glement assistance (or generation) are not increased by (in)coherent classical communication
in the opposite direction, except for a trivial gain of entanglement when the assisting classical
communication is coherent.

Proof: Using superdense coding to send 2cobits and supplying the required 1 qubit of
quantum communication by teleportation (using 2 cbits +1 ebit), we have

1cbit +1ebit > 1 cobit . (30)

The above resource transformation is exact and does not require large blocks. Thus, compos-
ing it with other protocols poses no extra problem.

For the first part of the theorem, Eq. (23) = Eq. (24) follows from how Ref. [8] characterizes
the set of (C1,FE) that satisfies Eq. (23). Although the proof in Ref. [8] did not mention back
communication, it can be easily modified to show that free classical communication from Bob
to Alice does not change the capacity. In essence, the optimal tradeoff curve between C; and
FE has an upper bound that remains valid in the presence of back classical communication,
and the same bound is achieved by a protocol that uses no back classical communication. A
complete proof of this fact will also appear in Ref. [22].

Ref. [8] also proved that Eq. (24) < Eq. (25), and it is trivial that Eq. (25) = Eq. (26).
Finally, Eq. (26) = Eq. (23) because of Eq. (30).

For the second part of the theorem, Ref. [6] proved that Eq. (27) = Eq. (28). It is trivial
that Eq. (28) = Eq. (29). Using Eq. (30), Eq. (29) = Eq. (27). O

4. Achievable regions for bidirectional communication

Bipartite unitary gates can be used for several inequivalent purposes simultaneously, including
some (possibly different) forms of forward and backward communications and entanglement
generation. It is thus natural to define their capacities in terms of achievable rate regions (in
3-dimensional space) and trade-off surfaces.

For example, let CCE be the achievable rate region {(Cy,C2,E) : U > C; cbits(—) + C»
cbits(+—)+FE ebits}, and CGE be the achievable rate region {(C1,C2, E) : U > C4 cobits(—)+
C cobits(+—) + E ebits}. Theorems 1 and 2 provide a mapping between CCC and GGE :

(01,02,E) € CCE <«<— (Cl,C2,E— min(Cl,O)—min(Cg,O)) e GGE. (31)

Finding relations between different capacity regions will simplify our study of capacities of
bipartite unitary gates and elicit their nonlocal properties.

As a second example of relation of achievable regions, consider remote state preparation,
which is the ability to prepare a quantum state |¢) in the laboratory of the receiver, assuming
that the sender has a classical description of |¢)) (assuming pure states for simplicity). We
claim that the achievable region RRE for two-way (but independent forward and backward)
remote state preparation is the same as CCE. To prove this, first note that oo cbits >
n remote qubits > n cbits, where n remote qubits denotes the ability to remotely prepare an
n-qubit state. Combining this with the fact that even unlimited back-communication does not
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improve classical capacity implies that RRE C CCE. On the other hand, Ref. [8] showed that
n coherent bits > n remote qubits. Thus the first quadrants (C1,C2 > 0) of RRE and GGE
(and thus CCE) are the same, and the other quadrants of RRE are related to GCE the same
way that CCE is: backwards cobits can be used to generate entanglement, but free backwards
remote qubits do not improve the forward capacity. This means that RRE = CCE.

Similarly, define QQE to be the region {(Q1,Q2,E) : U > Q1 qubits(—) + Q2 qubits(+)+
E ebits}, corresponding to two-way quantum communication. We can also consider coher-
ent classical communication in one direction and quantum communication in the other; let
QGCE be the region {(Q1,C2, F) : U > Q1 qubits(—) + C2 cobits(+) + E ebits} and define
GQE similarly.

Ref. [8] related the one-way tradeoff curves GE and QE, defined as GE = {(C, E) : (C,0,E) €
GCGE} and QE = {(Q, E) : (Q,0, E) € QQE}. There it was claimed that

(Q,E) € QE & (2Q,E - Q) € GE. (32)

We now rephrase the proof of Eq. (32) in a form that readily extends to a relation between
entire achievable rate regions (for different types of bidirectional communication). Eq. (32)
is due to the equivalence 2 cobits = 1 qubit +1ebit. Note that this equivalence involves re-
source transformations that are exact and do not require large blocks. Thus, composing these
transformations with other protocols poses no extra problem, and the equivalence can be
used “freely.” To prove Eq. (32), choose any (Q,E) € QE. Then U > @ qubits +FE ebits =
2Q) cobits +(E — Q) ebits, so (2Q,E — Q) € GE. Conversely, if (2Q,E — Q) € GE, then
U > 2Q cobits +(E — Q) ebits = @ qubits +F ebits, so (Q, F) € QE.

Note that the above argument still works if we replace U with a different resource, such as
U — Q2 qubits(+). Therefore, the same argument that proved Eq. (32) also establishes the
following equivalences for bidirectional rate regions:

(Q1,Q2,E) € QQE — (2Q1,Q2, £ — Q1) € GQE
) ) : (33)
(Q1,2Q2,E— Q2) € QGE <= (2Q1,2Q2,FE - Q1 - Q2) € GGE
Finally, Eq. (31) further relates QQE, QCE, CQE, CCE, where QCE and CQE are defined

similarly to QGE and GQE but with incoherent classical communication instead.

Thus once one of the capacity region (say GGGE) is determined, all other capacity regions
discussed above are determined.
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Appendix A Why we cannot use the techniques in Ref. [8]

In this appendix, we review the proof of Prop. 1 in Ref. [8] (the unidirectional communication
analogue of Theorem 1) and show how it breaks down when applied to two-way communica-
tion.

We first review HSW coding [16], since the proof of Prop. 1 in [8] is based on it. Given a
channel which maps a classical input 7 to a quantum state p;, the HSW theorem states that its
classical capacity is C' := max, S(>_, pipi) — Y_; PiS(p;), where the maximization is over prob-
ability distributions p and S(p) := — Tr plog p is the von Neumann entropy. The HSW theo-
rem can be proved by random coding followed by expurgation. That is, we choose 27(€—%n)
length n codewords according to the product distribution p™ (31, ... ,i,) = p(i1) - - - p(in) (with
0, — 0 as n — 00). Then with high probability the codewords will on average be almost
perfectly distinguishable from one another. We then discard (or “expurgate”) the worst half
of the codewords in order to signal with asymptotically vanishing maximum error at a rate
approaching C.

Instead of choosing codewords according to p™, we could instead randomly choose typical
sequences (meaning that the frequency of a letter ¢ is np; = O(y/n)). In fact, since there are
only poly(n) different type classes, we can choose all our codewords to be the same type and
still achieve capacity C asymptotically. (The “type” of a string denotes the number of times
each letter appears in the string.)

Now we review the application of the HSW theorem to coherent communication in Prop. 1 of
[8]. Given a gate U such that U > C cbits(—), we know (similar to Eq. (5)) that there exists
a sequence of unitary protocols P, each can communicate a bit string of length ~ n(C — §,)
bits up to an error of ¢, for 4, — 0, €, — 0. P, can be viewed as a channel with HSW
capacity ~ nC, i.e., by HSW coding, P, can be used k times, sending ~ nkC bits with
overall error rate vanishing as k — oco. (This idea was used in [17] to bound the size of the
ancilla systems used in unitary gate communication.)

Let p be the distribution that almost achieve the HSW capacity. Let @ = (a1, - ,ax) be any
HSW codeword. Running P, k times produces the state |p) = ®f:1 Punlai) - Alice could
have copied the input before the protocol, and by the construction of the HSW code, Bob can
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extract @ with negligible error and disturbance to |¢), and Alice and Bob will have possession
of a state which is ke, close to |@)a,|a@)s, ®f=1(Pn|ai>)A2 B,. The state |@) in Ay and B; will
allow Alice and Bob to coherently reorder the k copies of P, |a;) (with preagreed total order of
the set of all nC-bit words). The reordered state has no information on @ except for the letter
frequency. Thus, when all @ = (ay,--- ,ax) are of the same type, the reordered state becomes
independent of @ and can be discarded without breaking coherence of the communication of
|@d). Or when all @ are typical sequences, the small information on @ can be removed with
O(Vk) qubits of communication. Here, k and n are independent, so that indeed ke, — 0.

(The original form of the HSW theorem in which we simply choose random codewords ac-
cording to p™ and expurgate causes a problem in this application. With high probability,
the codewords are typical, but some codewords can be highly nontypical, with corresponding
ancilla that cannot be made identical to a “typical ancilla” using negligible resources.)

The same-type HSW coding technique cannot be easily applied in the two-way case. Even

-

if Alice only uses HSW codewords |@) of the same type and similarly for codewords |b) of
Bob, the joint string (@,b) := ((a1,b1),... (ak, b)) need not have the same type. With
high probability (d, E) will be typical, but some are far from typical. Worst still, these are
composite codewords that depend jointly on @ and b and cannot be expurgated by independent

expurgation of individual codewords used by Alice and Bob.

Thus we obtain the strange situation where the average error is small, but we cannot make
the maximum error small because expurgation requires a linear amount of communication. A
similar problem was found in bidirectional classical channels, where the achievable capacity
regions are different depending on whether average or maximum error is considered [23].
Classically, this separation between achievable average and maximum error occurs only when
we restrict to deterministic encodings; Ref. [15] points out that the capacity regions for
maximum and average error are the same when we let randomness be introduced into the
encodings. The main result of our paper can thus be thought of as a coherent version of
Ref. [15].

Appendix B Implications on the definition of coherent classical communication

There are two ways to define a cbit. One is in terms of an abstract operation |z), — |z)g|z)g
for z € {0,1}. Another is more operational, that some sequence of operations P,, can send n
cbits with error €, — 0if P, (|z) ) = |z)g, for z an n-bit string. The fact that the operational
and abstract definitions are equivalent allows us to think about classical communication in
both ways interchangeably.

Similarly we can define a cobit either as an abstract operation |z), — |z),|z)g for z € {0,1},
or by saying that P,, can send n cobits with error €, — 0 if P,, can send n cbits with error
€n and P, is an isometry. By Prop 1 of [8], these definitions are equivalent for one-way
communication. Thm 1 of this paper shows that these definitions are now equivalent for
two-way communication. This justifies the name “coherent classical communication”; a cobit
really is no more and no less than a cbit sent through coherent means (i.e. a unitary gate or
isometry).



