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1 Introduction

Ideal quantum key distribution (QKD) with qubits[1] is known to be secure[2, 3, 4, 5, 6],

and the security proofs are based on what are called information-vs.-disturbance results.

The basic QKD protocol involves the following steps: Alice transmits one of four possible

states randomly chosen from |0〉X , |1〉X , |0〉Z , and |1〉Z , i.e., the basis vectors in the X and

Z bases. The basic information-vs.-disturbance result states that if the eavesdropper, Eve,

obtains information about which basis vector was sent in for example, the X basis, then she

must introduce disturbance in the Z basis. By disturbance, it is meant that if Bob made

measurements to distinguish between the two states sent in the Z basis, then he will observe

errors. Thus Alice and Bob can test a random subset of a transmitted block of qubits in the

Z basis and estimate the information that Eve has about those in the X basis. If the error

rate is small enough in the tested qubits (hence, Eve’s information about the qubits in the X

basis is small enough), then Alice and Bob can use classical error correcting and amplification

schemes to distill an informationally secure key from the qubits sent in the X basis.

In this paper, we consider a general setup involvingD dimensional quantum states, instead

of the 2-dimensional systems considered in the QKD literature. The basic setup is as follows:

Alice sends states chosen randomly from among the basis vectors of a particular basis of the

D dimensional Hilbert space. She intends these states to act as the information states, i.e.,

the logD bits per transmitted state will be used to distill a final key. The natural questions

that arise are (i) which set of states should the “test” states come from, and (ii) what is the

corresponding information-vs.-disturbance result for a D-dimensional space.

We first extend some basic distinguishability bounds found for qubits[7] toD-level systems.

That is, if a source S outputs one of n D-dimensional quantum states randomly, then we derive

bounds on the mutual information between S and any measurement output E, only in terms

of the properties of the quantum states generated by S. In other words, we bound the mutual

information between the random variable representing which state was generated by S and

the random variable representing the output from a generalized measurement of the states

output by S. These results are powerful because they only depend on the source and not

on any measurement done. We next apply these bounds on distinguishability to relate the
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amount of information eavesdroppers can obtain to the disturbance they cause in the quantum

state. In particular, we prove a generalized information-vs.-disturbance result: if Eve gets

information about which basis vector (from the chosen basis in D dimensions) was sent by

Alice, then she must introduce disturbance in any basis that is mutually unbiased to the basis

chosen by Alice.

In terms of previous work, our results generalize those in [4, 8]. We would also like to

note that QKD in dimension 3 was studied in [9, 10]. Security bounds for individual cloning

attacks in dimension D have been reported[11]. More recently, qubit QKD techniques[3, 5]

have been generalized to prime dimensions[12]. By contrast, our bounds apply to any attack

in any dimension. Also, this work further illuminates the relationship of mutually unbiased

bases (MUBs)[13] to quantum cryptography. Previously, it was shown that the eigenvectors

of maximally commuting quantum encryption operators form MUBs[14]. Here we show that

when Eve tries to get information in one basis, she disturbs all MUBs. Our result may be

viewed as form of an uncertainty principle: the more Eve knows about one basis, the more

she disturbs all conjugate bases.

In addition to applying the above bounds and techniques to the security of quantum keys,

we also consider functions of messages encrypted with those keys. If Alice and Bob share a

key k, it may be that Eve learns only exponentially little information about k, but she may

be able to learn a lot about some function of a message f(M), given the encrypted version of

that message m+ k. In particular, consider the following setup: Alice sends a random basis

vector |k〉 belonging to a chosen basis to Bob. Alice next publicly announces she sent basis

vector |k ⊕m〉, where ⊕ is the bitwise exclusive or (XOR) operation. Bob could then recover

the encrypted message m. Now, we know that information of Eve about k is bounded by

the error she causes in any basis that is mutually unbiased to the chosen basis. How about a

function f(M) of the message? For example, Eve might be interested in only learning whether

m = 0 or not. In a previous work[8], it was shown that given the encrypted message, m+ k,

the information that Eve gets about any function of an encrypted n-bit message f(m), is

bounded by the square root of the error Eve’s attack causes in the Hadamard transformed

basis. More recently, alternative and more general solutions to this problem have been given

[15, 16]. In this work we extend previous results[8] beyond qubits to d-dimensional systems.

Also, we show that Eve’s information is bounded by the error she causes is any MUB.

This paper is structured as follows: Section 2 gives various new bounds on distinguishabil-

ity and classical information accessible from quantum states; Section 3 applies these results

to obtain “information-vs-disturbance” results for QKD; finally in Section 4 we show these

results also hold for functions of encrypted messages and not just for the keys themselves.

2 Bound On Information For Any Source

In [7], many bounds are given on the distinguishability of two quantum states. In this section

we generalize some of those to the distinguishability of n quantum states. Our setting is the

following: A source outputs one of n quantum states. The random variable representing the

source is S i.e., it is the identifier of the particular quantum state made available at the output

and can be generated by purely classical means, such as flipping coins or spinning wheels. A

general measurement is made on the state, which results in one of several measurement out-

comes represented by the random variable E. We consider bounds on the mutual information
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I(S;E) valid for any measurement, which is to say, the bound will only be a function of the

quantum states emitted by the source.

The bounds here address the same problem as the well known Holevo bound[17], which is:

I(S;E) ≤ H(ρ)−
∑

s

psH(ρs) (1)

whereH(ρ) is the Von-Neumann entropy of the density matrix ρ. The main difference between

the results of this section and the Holevo bound is that these results deal explicitly with a

distance metric, namely the trace norm distance, between two density matrices. Using a

simple distance metric allows a certain ease in proving the results in Section 3∗

In the appendix, we review certain previously published [7, 8] bounds on distinguishability

of quantum states. As we will see later in the paper, this allows us to derive the fundamental

information vs. disturbance results that are at work in quantum security protocols. Addi-

tionally, these results give an important insight into the robustness of the trace norm as a

metric bound for information.

We begin by developing a lower bound on entropy and then applying that bound to the

mutual information.

Lemma 1 For any random variable X ′ with each probability pi
′ ≤ 1/2:

H(X) ≥ H(X ′)−
∑

i

log(
1

pi′
)|pi − pi

′|

Proof.H(X) = −∑i pi log pi, so if we define f(pi) ≡ −pi log pi, we see that H(X) =
∑

i f(pi).

See that f is concave and is zero at pi = 0, 1; thus lemma A.1 applies:

f(pi) ≥ f(pi
′)− f(pi

′)

pi′
|pi − pi

′|

Plugging this into the definition of entropy:

H(X) =
∑

i

f(pi)

≥
∑

i

(f(pi
′)− f(pi

′)

pi′
|pi − pi

′|)

= H(X ′)−
∑

i

log(
1

pi′
)|pi − pi

′|

Lemma 2 For any source S that outputs s with probability ps such that ps ≤ 1/2, the mutual

information is bounded:

I(S;E) ≤
∑

s

ps log(
1

ps
)
∑

e

|p(e|s)− p(e)|

∗We do believe, however, that it is possible to obtain similar results by applying the purification techniques
of Section 3 directly to the Holevo bound.
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Proof.Make use of lemma 1:

I(S;E) = H(S)−H(S|E)

= H(S)−
∑

e

peH(S|E = e)

≤ H(S)−
∑

e

pe

(
H(S)−

∑

s

log(
1

ps
)|p(s|e)− ps|

)

=
∑

e

pe
∑

s

log(
1

ps
)|p(s|e)− ps|

=
∑

e

∑

s

ps log(
1

ps
)|p(e)p(s|e)

ps
− p(e)|

=
∑

e

∑

s

ps log(
1

ps
)|p(e|s)− p(e)|.

Lemma 3 If a source S outputs quantum states ρi with probabilities pi with pi ≤ 1/2, then

mutual information between this source and the output of any measuring device E is bounded:

I(S;E) ≤
∑

s

ps log(
1

ps
)Tr|ρs −

∑

s

psρs|.

Proof.Define the notation ρ =
∑

s psρs. Starting from lemma 2, we use the definition of a

POVM to replace p(e|s) with Tr(Eeρs):

I(S;E) ≤
∑

e

∑

s

ps log(
1

ps
)|p(e|s)− p(e)|

=
∑

e

∑

s

ps log(
1

ps
)|Tr(Eeρs)− Tr(Eeρ)|

=
∑

e

∑

s

ps log(
1

ps
)|Tr(Ee(ρs − ρ))|

Using the same facts about POVMs as in lemma A.3, one can show that

∑

e

|Tr(Ee(ρs − ρ))| ≤ Tr|ρs − ρ|.

Hence, we have:

I(S;E) ≤
∑

s

ps log(
1

ps
)Tr|ρs − ρ|.

Corollary 1 If a source S outputs one of n quantum states ρi with probability 1/n, then

mutual information between this source and the output of any measuring device E is bounded:

I(S;E) ≤ logn
∑

s
1
n
|ρs − ρ|.
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Proof.For all n ≥ 2, then 1/n ≤ 1/2, hence lemma 3 applies:

I(S;E) ≤
∑

s

ps log(
1

ps
)Tr|ρs − ρ|

= logn
∑

s

1

n
Tr|ρs − ρ|

Now we have a basic lemma in hand which gives an upper bound on the information any

measurement device can get from any source, purely in terms of the quantum states emitted

from that source. In the next section, we will model the eavesdropping process as a source

of quantum states for Eve. Eve is free to measure states in any way, but using the previous

lemma, we have an upper bound on how much information she may obtain.

3 Security of Quantum Key Distribution

We now have the tools necessary in order to derive an information theoretic counterpart to the

Heisenberg uncertainty principle. This result is the basis for quantum security results in [4].

Quantum key distribution (QKD) is directly related to the setup we considered in the previous

section. In general, in a QKD setup Alice has the source S that outputs one of n quantum

states; Alice transmits the output state over a quantum channel to Bob. This quantum

channel, however, can belong to the eavesdropper Eve, who can perform any operation that

quantum mechanics allows. Figure 3 gives a schematic of the most general attack that Eve

might perform. From her perspective, she has access to a source, and she can make any

measurement to get information about what was sent. Bob thus receives a state that Eve

has already processed and makes his own measurements using a fixed protocol that is known

to everyone. Alice and Bob complete a block transmission of several output states of the

source S, and then use classical communication over an open channel to distill a secret key.

Eve can listen in as well on the classical channel, but cannot perform a person-in-the-middle

attack on the classical channel, which will make the whole protocol trivially unsecured. Such

a classical channel can be easily implemented by message authentication, e.g., via previously

shared secret bits between Alice and Bob.

Security of the QKD schemes depend on the amount of mutual information between Alice’s

source, S, and Eve’s measurement E (i.e., I(S;E) as considered in the previous section) when

measured as a function of the disturbance that she causes to the state received by Bob. The

intuition from quantum mechanics is that measurements will disturb the system; hence, Alice

and Bob can use a random subset of the transmitted quantum states for testing purposes, and

detect the error rate on this subset, and thereby infer how strongly has Eve attacked the whole

block. The underlying result and assumption here is that if the error she causes is less than

a threshold then so is the mutual information I(S;E). They proceed with key distillation

only if the test errors are below a pre-specified threshold. Next, one can use classical privacy

amplification schemes to show that as long as I(S;E) is small enough (as implied by the

disturbance), then one can make the mutual information between E and a final distilled key

as low as possible. These classical techniques involve the use of error correcting codes.

Thus, the derivation of an appropriate “information vs. disturbance” result lies at the

heart of all security proofs for QKD. While it is clear what we mean by “information,” (as
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|i〉

|0〉

UEve
∑
j |Ei,j〉|j〉

Fig. 3 Most general attack by an eavesdropper.

defined by the quantity I(S;E)), we have not yet quantified and defined what we mean by

“disturbance.” In various security proofs of QKD, researchers have adopted the following

strategy: (i) In the protocol, the source S outputs states chosen from the basis vectors

belonging to two different bases, e.g., the X and Z bases. (ii) The information vs. disturbance

results then refer to the information about which basis vector from one of the bases (e.g., X)

was sent, and the disturbance caused in the second basis (e.g., Z). That is, Eve cannot

simultaneously get significant information about which basis vector was sent in one basis,

without causing errors in Bob’s inference about which basis vector was sent in the other

basis. Thus for testing purposes, one could use the states in one of the bases and the observed

error rate will put a bound on the information that Eve has about which basis vectors were

sent in the other bases.

Specifically, Lo and Chau[3] use an EPR based scheme and show (using the Holevo bound,

equation 1) that if the fidelity between Alice and Bob is greater than 1 − δ for R singlets,

then Eve’s information about the final key is bounded by:

I ≤ −(1− δ) log(1 − δ)− δ log
δ

22R − 1

The above information-vs-disturbance result is used directly by Shor and Preskill in their

quantum code based proof[5]. Rather that deal with the fidelity of singlets, Biham et. al.[4]

use trace-norm techniques to show that Eve’s information on each bit is bounded by the

square root of the probability that she would cause more than v̂/2 errors had Alice sent the

bits in the opposite basis (X replaced with Z and vice-versa), where v̂ is the minimum distance

between the privacy amplification code and the error correction code. The security of QKD

directly depends on the above results: Eve’s information is always bounded once Alice and

Bob verify that their states have not been greatly disturbed.

In this section, we generalize such information vs. disturbance bounds for states in any

dimension D, and also provide a natural choice of the bases to be used in these results. At

this point it is useful to define the concept of Mutually Unbiased Bases:

Definition. Let B1 = {|ϕ1〉, . . . , |ϕD〉} and B2 = {|ψ1〉, . . . , |ψD〉}be two orthonormal bases

in the D dimensional state space. They are said to be mutually unbiased bases (MUB)

if and only if |〈ϕi|ψj〉| = 1√
D
, for every i, j = 1, . . . , d. A set {B1, . . . ,Bm} of orthonormal

bases in CD is called a set of mutually unbiased bases (a set of MUB) if each pair of bases Bi

and Bj are mutually unbiased.
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Thus, given two MUB B1 and B2, we get B1B
†
2 = H , where |Hi,j | = 1/

√
D, and H is

a unitary matrix. Hence, H can be regarded as a generalized Hadamard matrix in dimension

D, and the two bases are related by the transformation B1 = HB2. We next derive a general

theorem which shows that whatever the dimension, if Eve gets information in one basis, she

disturbs all bases which are MUBs of that basis. Since two MUB are related by a generalized

Hadamard transformation, the result in Theorem 1 implies that retrieving information in one

basis causes disturbances in all the conjugate bases.

Finally, it should be emphasized that we only consider a single D-dimensional state. This

is not a limitation: any product of quantum states can be thought of as a state in a larger

dimensional space. Thus, if we consider standard BB84, n 2-dimensional systems (bits) are

sent. In our approach we would consider that as one 2n dimensional system. The same

applies for any product of quantum states. These results generalize those presented in [8],

which proved the following theorem only for dimension 2n and for one pair of bases (the

standard Z and X bases).

Theorem 1 If Alice sends a randomly selected element from a D-dimensional basis (rep-

resented by the random variable A) to Bob, the information Eve’s measurement (represented

by E) has about Alice’s state is bounded by the square root of the probability that Eve would

have caused errors in any MUB with respect to Alice’s basis:

I(A;E) ≤ 4 logD
√
P
ẽ
.

Proof.We will use lemmas A.6 and A.5 and corollary 1. Starting from corollary 1 we see

that: I(A;E) ≤ logD
∑

i
1
D
|ρi − ρ|. Our approach will be to bound this by introducing a

purification†for ρi (the state that Eve holds when Alice sends i). Using the purification and

lemma A.6 we can bound the original trace norm distance.

To attack the state sent to Bob, Eve attaches a probe in a fixed state (say the |0〉 state)
and applies a unitary operator. She then passes Bob his part, and does some generalized

measurement on what she still holds. We can characterize this formally:

|0〉E |i〉A U→
∑

j

|Ei,j〉|j〉

We represent the MUB as:

|̃i〉 ≡
∑

j

Hji|j〉

With H being a generalized Hadamard matrix on these D-dimensional basis: |Hji| = 1√
D
.

Applying this to Eve’s attack, we obtain:

|0〉E |̃i〉A U→
∑

j

|Ẽi,j〉|̃j〉

where |Ẽi,j〉 ≡
∑

i′,j′ Hi′iH
∗
j′j |Ei′,j′〉.

From the axioms of quantum mechanics, we know that if Alice sends |i〉 the probability

that Bob will measure |j〉 is P (j|i) = 〈Ei,j |Ei,j〉. Similarly, if Alice sends |̃i〉 Bob will measure

|̃j〉 with probability P̃ (j|i) = 〈Ẽi,j |Ẽi,j〉.
†see definition A.1
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We are now prepared to compute the probability that there are no errors in the MUB:

P0 ≡
∑

i

p(i)P̃ (i|i)

=
1

D

∑

i

〈Ẽi,i|Ẽi,i〉

=
1

D

∑

i

∑

k,l,k′,l′

H∗
liHkiHl′iH

∗
k′i〈El,k|El′,k′〉

=
1

D

∑

k,l,k′,l′

〈El,k|El′,k′〉
∑

i

H∗
liHkiHl′iH

∗
k′i (2)

When Eve’s states are considered without Bob, her state will look like ρi =
∑

j |Ei,j〉〈Ei,j |.
Now we will define a purification for Eve’s states that will allow us to compute a bound on

P0. We assume that Eve holds

|φi〉 ≡
∑

j

|Ei,j〉1|ψi
j〉2 (3)

where |ψi
j〉 is an orthonormal basis for each choice of i. Due to the orthonormality of |ψi

j〉,
|φi〉 is a purification of ρi because Tr2|φi〉〈φi| = ρi. We also define the generalized Hadamard

transform of these states:

|φ̃j〉 ≡
∑

i

H∗
ij |φi〉 . (4)

The Hadamard transform is unitary, so see that |φi〉 =
∑

jHij |φ̃j〉. It should be noted that

our purification |φi〉 for Eve’s states is not orthonormal or normalized. In fact, this is a

property of which we will make use in order to get a bound. We now calculate the norm of

the |φ̃0〉 and see that with the proper choice of |ψi
j〉 that it is proportional to the probability

that there was no error, P0:

〈φ̃0|φ̃0〉 =
∑

l,l′

Hl0H
∗
l′0〈φl|φl′ 〉

=
∑

l,l′

∑

k,k′

Hl0H
∗
l′0〈El,k|El′,k′〉〈ψl

k|ψl′

k′〉 (5)

At this point we will parameterize |ψl
k〉:

|ψl
k〉 =

∑

i

αlki|i〉

with any choice of αlki so long as 〈ψl
k′ |ψl

k〉 = δk′k. In order to match equation 2 with equation

5, we choose

αlki =
HliH

∗
ki

H∗
l0

. (6)

To see that our choice of αlki is valid, recall that |Hij |2 = 1/D and simply compute

〈ψl
k′ |ψl

k〉 =
∑

i

α∗
lk′iαlki
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=
1

|Hl0|2
∑

i

|Hli|2Hk′iH
∗
ki

=
∑

i

Hk′iH
∗
ki

= δk′k

which is what we need to show to make equation 3 a valid purification. With the above choice,

equation 5 becomes

〈φ̃0|φ̃0〉 =
∑

l,l′

∑

k,k′

H∗
l0Hl′0〈El,k|El′,k′〉〈ψl

k|ψl′

k′〉

=
∑

k,l,k′,l′

〈El,k|El′,k′〉
∑

i

H∗
liHkiHl′iH

∗
k′i

= DP0 .

Thus we have related the norm of |φ̃0〉 to the probability that there are no errors ‡in the

MUB.

Define ρi
′ ≡ |φi〉〈φi| and ρ′ ≡ 1

D

∑
i ρi. Now we compute 〈φ̃0|ρ′|φ̃0〉:

〈φ̃0|ρ′|φ̃0〉 =
∑

i

1

D
|〈φ̃0|φi〉|2

=
∑

i

1

D
|〈φ̃0|

∑

j

Hij |φ̃j〉|2

Since |H∗
ik|2D = 1, we can rewrite the above as:

〈φ̃0|ρ′|φ̃0〉 = D
∑

i

1

D
|H∗

ik〈φ̃0|
∑

j

Hij |φ̃j〉|2

Since f(x) = |x|2 is convex, then |
∑

i pixi|2 ≤
∑

i pi|xi|2.

〈φ̃0|ρ′|φ̃0〉 = D
∑

i

1

D
|H∗

ik〈φ̃0|
∑

j

Hij |φ̃j〉|2

≥ D|
∑

i

1

D
H∗

ik〈φ̃0|
∑

j

Hij |φ̃j〉|2

= D| 1
D
〈φ̃0|

∑

j

∑

i

H∗
ikHij |φ̃j〉|2

= D| 1
D
〈φ̃0|

∑

j

δkj |φ̃j〉|2

= D| 1
D
〈φ̃0|φ̃k〉|2

=
1

D
|〈φ̃0|φ̃k〉|2

‡If the Hadamard transform is isomorphic to a group such that HikHjk = Hi+j,k
1√
D

and HikH
∗
jk

=

Hi−j,k
1√
D

we can show that the probability of an error e in the Hadamard transformed basis (i.e. Alice

sends i but Bob receives i + e averaged over all i), is Pe = 〈φ̃e|φ̃e〉/D. In this case, |ψi
j
〉 = |ĩ− j〉. Indeed,

this is the case for the standard Sylvester type Hadamard matrices.
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We can set k to any value we like, in particular k = 0. We have previously shown that

〈φ̃0|φ̃0〉 = DP0, putting this together:

〈φ̃0|ρ′|φ̃0〉 ≥ 1

D
|〈φ̃0|φ̃0〉|2

= 〈φ̃0|φ̃0〉P0

〈φ̃0|ρ′|φ̃0〉
〈φ̃0|φ̃0〉

≥ P0

We are now ready to prove the theorem. Since Tr2(ρ
′
i) = ρi and Tr2(ρ

′) = ρ we may

apply lemma A.6. We will see that we may introduce an intermediate pure state to make

the bounding of the information easier. The pure state we will use is |φ̃0〉〈φ̃0|
〈φ̃0|φ̃0〉

. Starting with

corollary 1:

I(A;E) ≤ logD
∑

i

1

D
|ρi − ρ|

≤ logD
∑

i

1

D
|ρi′ − ρ′|

= logD
∑

i

1

D
|ρi′ −

|φ̃0〉〈φ̃0|
〈φ̃0|φ̃0〉

+
|φ̃0〉〈φ̃0|
〈φ̃0|φ̃0〉

− ρ′|

≤ logD
∑

i

1

D
(|ρi′ −

|φ̃0〉〈φ̃0|
〈φ̃0|φ̃0〉

|+ | |φ̃0〉〈φ̃0|
〈φ̃0|φ̃0〉

− ρ′|)

≤ logD
∑

i

1

D


2

√√√√1− 〈φ̃0|ρi′|φ̃0〉
〈φ̃0|φ̃0〉

+ 2

√√√√1− 〈φ̃0|ρ′|φ̃0〉
〈φ̃0|φ̃0〉




= 2 logD




√√√√1− 〈φ̃0|ρ′|φ̃0〉
〈φ̃0|φ̃0〉

+
∑

i

1

D

√√√√1− 〈φ̃0|ρi′|φ̃0〉
〈φ̃0|φ̃0〉




≤ 2 logD




√√√√1− 〈φ̃0|ρ′|φ̃0〉
〈φ̃0|φ̃0〉

+

√√√√1− 〈φ̃0|(
∑

i
1
D
ρi′)|φ̃0〉

〈φ̃0|φ̃0〉




= 4 logD

√√√√1− 〈φ̃0|ρ′|φ̃0〉
〈φ̃0|φ̃0〉

≤ 4 logD
√

1− P0

Where 1−P0 = P
ẽ
is the probability that there is an error in the MUB, which proves the

theorem.

The previous theorem is what gives security to quantum key distribution schemes; however,

we have only shown that QKD schemes are secure if the errors caused in any MUB are

extremely small. Using quantum coding based approaches[5], we believe it is possible to use

the above theorem to get a simple unconditional security proof that applies in dimension D.
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In the following section, we will apply these same techniques to show that Eve also cannot

learn functions of messages.

4 Security of Functions of Messages

According to theorem 1, if the fidelity Bob would have had in any MUB is exponentially close

to unity, then Eve’s information is exponentially low about which of the basis vectors in the

chosen basis was sent. We will refer to the identifier of the basis vector sent by Alice as the

key, and Alice can use the key to encrypt a classical message. For example, after sending a

basis vector |k〉 to Bob, Alice could publicly announce she sent basis vector |k ⊕m〉, where ⊕
is the bitwise exclusive or (XOR) operation. Bob could then recover the encrypted message

m.

The above mentioned information vs. disturbance result does not address the question

of what information Eve might get about a function of a message encrypted with that key.

Suppose Eve only wants to know if the message has a particular value, i.e., she wants to

learn the indicator function: f(m) = 1 if m = m1, else f(m) = 0. This function only

has exponentially little information about the message itself. To see this, suppose each of d

messages are equally likely, then

H(M) = log d

H(f(M)) =
1

d
log d− (1− 1

d
) log(1 − 1

d
)

H(f(M)|M) = 0

I(f(M);M) = H(f(M)) .

If d is large, then H(f(M)) ≈ 1
d
log d, but, d = 2H(M), so H(f(M)) ≈ 2−H(M)H(M). Hence,

in this case, Eve only has to learn exponentially little information. Since QKD security

proofs[2, 3, 4, 5, 6] only give exponentially strong security, it is not clear a priori that QKD

will be sufficient to prevent Eve from learning any function of the message.

The next theorem will show that Eve must cause errors to learn any function of the

message, even if it has exponentially little information with the message itself§.

Throughout this section we work with some group operator + and all operations are in

that group. In dimension 2n the + operator will usually be bitwise exclusive or (XOR).

Theorem 2 Alice sends the D dimensional state |k〉 to Bob, with k chosen uniformly at

random, and after Bob has received the state Alice announces a = m+ k (represented by the

random variable A). Denote f(M) as the function f of the random variable M , and f(K) is

the function f of the random variable K. The information Eve can get about any function of

m, f(m), is bounded by the square root of the probability that Eve would have caused errors

in any MUB:

I(f(M);E|A) ≤ H(f(K))4
√
P
ẽ

Proof.This proof will follow closely the proof of theorem 1 and use the same tools. If a = m+k,

§It should be noted that this result is not true for the key itself. If Eve only wants to learn if the key was a
particular value k0, she may do so without disturbing the state very much
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then f(m) = f(a− k). The state consistent with a function value i is:

σi
a ≡ 1

qi

∑

k:f(a−k)=i

pkρk

with qi ≡
∑

k:f(a−k)=i pk. Note that since pk = 1
d
, then the probability of an announcement

a = m+ k is also 1
d
. As such, qi does not depend on m and is only related to the number of

inputs to the function f which have a given output. The averaged state is:

σa ≡
∑

i

qiσi
a

=
∑

i

∑

k:f(a−k)=i

pkρk

Since each input has one and only one output and pk = 1
d
:

σa =
∑

k

1

d
ρk = ρ

The definition of mutual information[18] means that:

I(f(M);E|A) =
∑

a

paI(f(M);E|A = a)

Using lemma 3
∑

a

paI(f(M);E|A = a)

≤ −
∑

a

pa
∑

i

qi log qi|σia − σa|

= −
∑

i

qi log qi
∑

a

pa|σia − ρ|

= −
∑

i

qi log qi
∑

a

pa|σia −
|φ̃0〉〈φ̃0|
〈φ̃0|φ̃0〉

+
|φ̃0〉〈φ̃0|
〈φ̃0|φ̃0〉

− ρ|

≤ −
∑

i

qi log qi
∑

a

pa

(
|σia −

|φ̃0〉〈φ̃0|
〈φ̃0|φ̃0〉

|+ | |φ̃0〉〈φ̃0|
〈φ̃0|φ̃0〉

− ρ|
)

= −
∑

i

qi log qi
∑

a

pa


2

√√√√1− 〈φ̃0|σia|φ̃0〉
〈φ̃0|φ̃0〉

+ 2

√√√√1− 〈φ̃0|ρ|φ̃0〉
〈φ̃0|φ̃0〉




≤ −
∑

i

qi log qi


2

√√√√1− 〈φ̃0|
∑

a paσi
a|φ̃0〉

〈φ̃0|φ̃0〉
+ 2

√√√√1− 〈φ̃0|ρ|φ̃0〉
〈φ̃0|φ̃0〉




We can simplify the quantity
∑

a paσi
a by remembering that pa = 1/d and qi is independent

of a:

∑

a

1

d
σi

a =
∑

a

1

d

∑
k:f(a−k)=i

1
d
ρk

qi
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=
1

qi

∑

a

1

d

∑

m:f(m)=i

1

d
ρa+m

=
1

qi

∑

m:f(m)=i

1

d

∑

a

1

d
ρa+m

In the last sum, we sum over all a with equal weight; hence, the m dependence disappears:

∑

a

1

d
σi

a =
1

qi

∑

m:f(m)=i

1

d

∑

a

1

d
ρa+m

=
1

qi
(
∑

m:f(m)=i

1

d
)ρ

= ρ

Putting this back into the information bound:
∑

a

paI(f(M);E|A = a)

≤ −
∑

i

qi log qi


2

√√√√1− 〈φ̃0|
∑

a paσi
a|φ̃0〉

〈φ̃0|φ̃0〉
+ 2

√√√√1− 〈φ̃0|ρ|φ̃0〉
〈φ̃0|φ̃0〉




= −
∑

i

qi log qi(4

√√√√1− 〈φ̃0|ρ|φ̃0〉
〈φ̃0|φ̃0〉

)

= 4H(Q)

√√√√1− 〈φ̃0|ρ|φ̃0〉
〈φ̃0|φ̃0〉

≤ H(f(K))4
√
P
ẽ

Which proves the result.

5 Concluding Remarks

By developing bounds on entropy, we are able to bound the amount of information that

measurements can get from a quantum source. Modeling eavesdropping in quantum key

distribution as a quantum source, we are able to bound information that an eavesdropper can

get. Since this bound is a function of the errors that would be caused in any MUB, Alice

and Bob can use their measurements to estimate this figure. Therefore, Alice and Bob can

bound information that Eve has about the information they share. In addition to showing

security of such information, we show that any function of messages encrypted with this

secret information is secure. This is a very strong statement about the robustness of quantum

security.
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Appendix A

6 Bound on Mutual Information for 1-bit Sources

Suppose there is a classical source S which sends one of two signals; zero or one. Also suppose

that ps=1 ≤ ps=0. Following [7], we first come up with a linear bound on H(p):

Lemma A.1 For any concave function H(p) with H(0) = H(1) = 0 and any p′ ≤ 1/2,

H(p) ≥ H(p′)− H(p′)
p′

|p− p′|
Proof.Consider two regions, p ≤ p′ and p > p′. H(p) is concave, which means that H(αx +

(1−α)y) ≥ αH(x) + (1−α)H(y). Applying this with x = p′, α = p/p′ and y = 0, we obtain:

H(p) ≥ H(p′)
p′

p, which is exactly what we need for p ≤ p′. In the region p > p′ we want

to show that H(p) ≥ H(p′) − p−p′

p′
H(p′). Again using the concavity, set y = p′, x = 1 and

α = p−p′

1−p′
We see then that

H(p) = H(
p− p′ + p′ − pp′

1− p′
)

= H(
p− p′

1− p′
+

1− p

1− p′
p′)

≥ p− p′

1− p′
H(1) +

1− p

1− p′
H(p′)

=
1− p

1− p′
H(p′)

= H(p′)− p− p′

1− p′
H(p′)

Since p′ ≤ 1/2, this implies that 1
1−p′

≤ 2 ≤ 1
p′

and −1
1−p′

≥ −1
p′
. We know that p > p′ in this

region, so p− p′ is positive, thus:

H(p) ≥ H(p′)− p− p′

1− p′
H(p′)

≥ H(p′)− p− p′

p′
H(p′)

Lemma A.2 The mutual information between the random variable E and the random bit S

(with p(s = 0) ≥ p(s = 1)) is bounded:

I(E;S) ≤ H(S)p(s = 0)
∑

e

|p(e|s = 1)− p(e|s = 0)|

Proof.Using lemma A.1 as a bound on H(S|E) with p′ = p(s = 1), we can obtain the bound

on mutual information:

I(E;S) = H(S)−H(S|E)

= H(S)−
∑

e

peH(S|E = e)
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≤ H(S)−
∑

e

pe(H(p(s = 1))− H(S)

p(s = 1)
|p(s = 1|e)− p(s = 1)|)

= H(S)
∑

e

|p(e|s = 1)− p(e)|

= H(S)
∑

e

|p(e|s = 1)− (p(s = 0)p(e|s = 0) + p(s = 1)p(e|s = 1))|

= H(S)p(s = 0)
∑

e

|p(e|s = 1)− p(e|s = 0)|

Lemma A.3 If a source S outputs quantum states ρ0 and ρ1 with probabilities p0 and p1
with p0 ≥ p1, then mutual information between this source and the output of any measuring

device E is bounded: I(E;S) ≤ H(S)p(s = 0)Tr|ρ0 − ρ1|
Proof.The source sends two states, ρ0 and ρ1. Eve does some POVM[19] on them. The

probability that Eve gets outcome x for her measurement given an input s is: p(e|s) =

Tr(Eeρs). This gives:

I(E;S) ≤ H(S)p(s = 0)
∑

e

|Tr(Ee(ρ0 − ρ1))|

Since ρ0 − ρ1 is Hermitian, we can diagonalize it as
∑

i λi|ψi〉〈ψi|. Taking this and applying

the facts that Ee are positive semi-definite and
∑

e Ee = I, we get:

I(E;S) ≤ H(S)p(s = 0)
∑

e

|Tr(Ee(ρ0 − ρ1))|

= H(S)p(s = 0)
∑

e

|Tr(Ee(
∑

i

λi|ψi〉〈ψi|))|

= H(S)p(s = 0)
∑

e

|
∑

i

λi〈ψi|Ee|ψi〉|

≤ H(S)p(s = 0)
∑

e

∑

i

|λi|〈ψi|Ee|ψi〉

= H(S)p(s = 0)
∑

i

|λi|〈ψi|
∑

e

Ee|ψi〉

= H(S)p(s = 0)
∑

i

|λi|

= H(S)p(s = 0)Tr|ρ0 − ρ1|

Corollary A.1 If a source S outputs quantum states ρ0 and ρ1, then mutual information be-

tween this source and the output of any measuring device E is bounded: I(E;S) ≤ H(S)Tr|ρ0−
ρ1|
Proof.Consider two cases, the first where p0 ≥ p1 and the second where p1 > p0. If p0 ≥ p1,

then using lemma A.3 we have that I(E;S) ≤ H(S)p(s = 0)Tr|ρ0 − ρ1|. Since p(s = 0) ≤ 1,

we get the result. If p1 > p0 then relabel the ρ1 as ρ0 and vice versa. Hence in the original
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labeling, lemma A.3 becomes

I(E;S) ≤ H(S)p(s = 1)Tr|ρ1 − ρ0|

, and since p(s = 0) ≤ 1 we get the result.

7 Bounding the Trace Norm

As we have seen in the previous section, the trace norm distance between quantum states is a

powerful tool for bounding mutual information. Now we look at some bounds on trace norm

distances.

Lemma A.4 The trace norm distance between two pure states is:

||ψ〉〈ψ| − |φ〉〈φ|| = 2
√
1− |〈ψ|φ〉|2

Proof.Define 〈ψ|φ〉 = α. Defining a new orthonormal basis we can write:

|e0〉 ≡ |ψ〉

|e1〉 ≡ 1√
1− |α|2

(|φ〉 − α|ψ〉)

Inverting these equations we have:

|ψ〉 = |e0〉
|φ〉 = α|e0〉+

√
1− |α|2|e1〉

Using this new basis, we find that:

||ψ〉〈ψ| − |φ〉〈φ|| = |(1− |α|2)|e0〉〈e0| − (1 − |α|2)|e1〉〈e1|
−
√
1− |α|2(α∗|e1〉〈e0|+ α|e0〉〈e1|)|

This is just a 2× 2 matrix and we can compute the trace norm by taking the absolute value

of the eigenvalues, which are:

λ =
+
−
√
1− |α|2

Lemma A.5 The trace norm distance between any state and any pure state is bounded:

|ρ− |ψ〉〈ψ|| ≤ 2
√
1− 〈ψ|ρ|ψ〉

Proof.Let ρ =
∑

i pi|φi〉〈φi| and apply
∑

i pixi ≤
√∑

i pixi
2:

|ρ− |ψ〉〈ψ|| = |
∑

i

pi|φi〉〈φi| − |ψ〉〈ψ||

≤
∑

i

pi||φi〉〈φi| − |ψ〉〈ψ||

=
∑

i

pi
√
1− |〈ψ|φi〉|2

≤
√∑

i

pi(1− |〈ψ|φi〉|2)

= 2
√
1− 〈ψ|ρ|ψ〉
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Definition A.1 Purification of ρ: any pure state |ψ〉 in H1 ⊗H2 such that Tr2(|ψ〉〈ψ|) = ρ

Lemma A.6 The trace norm distance is reduced by partial trace:

|ρ′ − σ′| ≤ |ρ− σ|

Where ρ and σ are density matrices over states in H1 ⊗H2 and the partial trace is over one

of the subsystems: ρ′ = Tr2(ρ) and σ
′ = Tr2(σ).

Proof.See [19].
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