Editorial Board
Guidelines for Authors
QIC Online

Subscribers: to view the full text of a paper, click on the title of the paper. If you have any problem to access the full text, please check with your librarian or contact qic@rintonpress.com   To subscribe to QIC, please click Here.

Quantum Information and Computation     ISSN: 1533-7146      published since 2001
Vol.6 No.6 September 2006

A new algorithm for fixed point quantum search (pp483-494)
         Tathagat Tulsi, Lov K. Grover, and Apoorva Patel 
         
doi: https://doi.org/10.26421/QIC6.6-2

Abstracts: The standard quantum search lacks a feature, enjoyed by many classical algorithms, of having a fixed point, i.e. monotonic convergence towards the solution. Recently a fixed point quantum search algorithm has been discovered, referred to as the Phase-\pi/3 search algorithm, which gets around this limitation. While searching a database for a target state, this algorithm reduces the error probability from \epsilon to \epsilon^{2q+1} using q oracle queries, which has since been proved to be asymptotically optimal. A different algorithm is presented here, which has the same worst-case behavior as the Phase-\pi/3 search algorithm but much better average-case behavior. Furthermore the new algorithm gives \epsilon^{2q+1} convergence for all integral q, whereas the Phase-\pi/3 search algorithm requires q to be (3^{n}-1)/2 with n a positive integer. In the new algorithm, the operations are controlled by two ancilla qubits, and fixed point behavior is achieved by irreversible measurement operations applied to these ancillas. It is an example of how measurement can allow us to bypass some restrictions imposed by unitarity on quantum computing.
Key words: ancilla, fixed point, limit cycle, measurement, quantum search algorithm

 

กก