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Abstract

We study the advantage of pure-state quantum computation without entanglement
over classical computation. For the Deutsch-Jozsa algorithm we present the maximal

subproblem that can be solved without entanglement, and show that the algorithm
still has an advantage over the classical ones. We further show that this subproblem
is of greater significance, by proving that it contains all the Boolean functions whose
quantum phase-oracle is non-entangling. For Simon’s and Grover’s algorithms we provide
simple proofs that no non-trivial subproblems can be solved by these algorithms without
entanglement.

1 Introduction

The fusion of quantum theory and computer science has introduced new capabilities
to the world of computation and communication. Utilizing these capabilities led to
some spectacular results: Shor’s factorization algorithm [1], Grover’s quantum search
algorithm [2], Bennett-Brassard’s quantum key distribution [3] and quantum teleporta-
tion [4], all extend beyond well-believed bounds.

The source of quantum computation power is still debated. Some argue that this
power arises because unlike classical systems, the state of a multipartite quantum sys-
tem cannot always be considered as a mere correlated combination of its subsystems.
Such states are said to be entangled, as opposed to separable states. Entanglement ap-
pears in most of the great achievements of quantum information theory, from Shor’s
factorization algorithm [1] and other algorithms [2, 5, 6] to quantum teleportation [4],
superdense coding [7], quantum error correction [8], and some quantum key distribution
schemes [9, 10, 11]. It is uncontested that entanglement is a key resource of quantum
computation, or in the words of Micha l Horodecki [12], entanglement is “the corner-stone
of the quantum information theory”. When no entanglement exists in a pure-state quan-
tum algorithm, the computation can be simulated efficiently and exactly using classical
means [13]. Furthermore, when entanglement exists but its amount is bounded, Jozsa
and Linden showed [14] that the computation can still be efficiently simulated classically
by a coin-tossing algorithm. However, their work does not rule out significant advan-
tage of quantum computation without entanglement (QCWE) in an oracle-based setting
(e.g. for the Deutsch-Jozsa algorithm). It also does not rule out exponential advantage
of mixed-state QCWE over probabilistic classical computation.

Some cases have been found where even without entanglement, quantum computa-
tion outperforms classical computation. Collins, Kim and Holton [15] solve the Deutsch-
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Jozsa (DJ) [5] problem without entanglement, but only for n = 2 bits, and prove that
entanglement is required for any larger n; Braunstein and Pati [16] show that using
pseudo-pure states, Grover’s search problem can be solved without entanglement for
n ≤ 3 bits more efficiently than classically; Lloyd [17] suggests an entanglement-free
implementation of Grover’s algorithm, but with exponential spatial complexity; Biham,
Brassard, Kenigsberg and Mor [18] use a non-standard computation model, with a lim-
itation on the number of allowed queries, to prove a tiny separation for any n in the
context of Deutsch-Jozsa’s and Simon’s [6] problems (with mixed states); Meyer [19]
notes that Bernstein-Vazirani algorithm [20, 21] requires no entanglement, yet uses only
one oracle call, while the best classical algorithm requires n oracle calls.

In this paper we investigate the advantage of pure-state QCWE in several quantum
algorithms. We introduce a restricted version of the Deutsch-Jozsa problem for which
the algorithm generates no entanglement∗. We show that the algorithm still has a signifi-
cant advantage over the corresponding classical complexity, and prove that this restricted
problem is maximal, in the sense that any extension of it will generate entanglement.
This gives some evidence that for the Deutsch-Jozsa problem there is no ‘real’ expo-
nential gap between QCWE and exact classical algorithms†. Furthermore, we show the
significance of this subproblem, and prove that it contains any separability-conserving
phase-oracle. We then move on to Simon’s problem and Grover’s algorithm, and show
that no non-trivial instance of these problems can be solved without entanglement.

We use the following conventions: the quantum oracle of a Boolean function f :
{0, 1}n → {0, 1}, is the black-box unitary operation Uf , which for an (n+ 1)-qubit input
state |x〉|y〉, outputs |x〉|y ⊕ f(x)〉. The quantum phase-oracle of f , is the black-box
unitary operation Vf , which for an n-qubit input state |x〉, outputs (−1)f(x)|x〉. Note
that when |y〉 = |−〉, Uf functions as a phase-oracle.

2 Entanglement in the Deutsch-Jozsa Algorithm

In this section we analyze the occurrence of entanglement in the execution of the Deutsch-
Jozsa Algorithm. We present a restricted version of the problem, which is entanglement-
free, maximal, and yet advantageous over the best exact classical algorithm.

2.1 The Deutsch-Jozsa Algorithm

Let f be a Boolean function f : {0, 1}n → {0, 1}, with a promise that f is either con-

stant or balanced, namely, the value of f is either the same for all the members in its
domain, or it is 1 for exactly half of it and 0 for the other half. The function f is given
as an oracle, and our goal is to discover whether it is constant or balanced. Note that a
deterministic classical algorithm that solves this problem must perform 2n/2 + 1 oracle
queries. The Deutsch-Jozsa algorithm [5], represented by the quantum circuit in Fig-
ure 1, distinguishes between the two possible types of f using only one quantum query.

The quantum register is changed by the algorithm steps as follows:

1. The initial state is |ψ0〉 = |0〉⊗n|1〉.
2. After applying n+ 1 Hadamard gates:

|ψ1〉 =
∑

x∈{0,1}n

|x〉√
2n

[ |0〉 − |1〉√
2

]

.

∗A restricted problem is referred to as a subproblem, i.e., a subset of the legal inputs. In this case, the

subproblem is a subset of the legal oracles.
†However, see open questions in Section 5.
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Figure 1: The Deutsch-Jozsa algorithm (which is a quantum subroutine common to Simon,
Grover, Bernstein-Vazirani and other algorithms)

3. Applying the f quantum query yields:

|ψ2〉 =
∑

x∈{0,1}n

(−1)f(x)|x〉√
2n

[ |0〉 − |1〉√
2

]

.

4. Finally, after applying the last n Hadamard gates:

|ψ3〉 =
∑

z∈{0,1}n

∑

x∈{0,1}n

(−1)x·z+f(x)|z〉
2n

[ |0〉 − |1〉√
2

]

.

The amplitude of |z〉 = |0〉⊗n in |ψ3〉 is
∑

x(−1)f(x)/2n. Thus, if f is constant we obtain
this state with certainty when measuring |ψ3〉, and if f is balanced it is certain that some
other state is measured. It follows that after just one query to the oracle, we are able to
determine with certainty whether f is constant or balanced.

2.2 The Deutsch-Jozsa Algorithm without Entanglement

Bernstein and Vazirani defined a promise problem [20] that can be solved by the Deutsch-
Jozsa subroutine using a single oracle call. Classically, this problem requires n oracle
calls. Later, Meyer [19] noted that entanglement is not generated during the execution
of the algorithm on their problem. Since the BV promise set is a subset of the DJ
promise set, a corollary from these results is that a subclass of the DJ problem requires
no entanglement.

We follow a different route, aiming to find the maximal entanglement-free set. Look-
ing at the Deutsch-Jozsa algorithm, we note that the only step in which entanglement
can be generated is the third step, where the f oracle is applied to the quantum reg-
ister. We define the following restricted DJ promise problem: the function f is again
either balanced or constant, but it is also promised to be non-entangling for the DJ
algorithm, i.e., applying the oracle to |ψ1〉 yields a separable state (the state |ψ2〉). In
order to solve this promise problem we execute the original algorithm. Since this is a
sub-problem of the original one, the algorithm’s correctness is assured and one quantum
query is enough to determine whether the function is balanced or constant. Note also
that if there exist such non-entangling balanced functions (i.e., the constant functions
are not the only possible non-entangling functions), classical algorithms cannot solve the
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problem with only one query, and so are inferior compared with the quantum one.

Definition 2.1 Let F⊗
DJ be the set of all Boolean functions f : {0, 1}n → {0, 1} of the

following form:

f(x) = (a · x) ⊕ c, (1)

where a ∈ {0, 1}n, c ∈ {0, 1} and ‘·’ is the inner product modulo 2. For a given c and a,
we denote the corresponding f by fc,a.

Proposition 2.2 Any fc,a ∈ F⊗
DJ is either constant or balanced.

Proof. First note that if a = 00 · · · 0, fc,a is constant. For non-zero a the function
fa,c(x) is balanced. This is clear since the inhomogeneous linear equation system

a · x⊕ c = 0

implies one linear constraint over an n-dimensional x, and therefore the solution space
is (n− 1)-dimensional. This means that out of 2n possible x’s, 2n−1 (half) are solutions.
�

Denote by DJ⊗ the “entanglement-free”‡ Deutsch-Jozsa problem, defined for the set
F⊗
DJ instead for any constant/balanced function.

Proposition 2.3 Entanglement is never generated when executing the Deutsch-Jozsa

algorithm for DJ⊗.

Proof. For an input x = x1x2 · · ·xn, we denote by Jx the support of x, i.e., the set of
indexes of nonzero elements in x. Applying the oracle fc,a on |ψ1〉 yields:

|ψ2〉 =
∑

z∈{0,1}n

(−1)fc,a(z)|z〉√
2n

[ |0〉 − |1〉√
2

]

=
∑

z∈{0,1}n

(−1)c(−1)z·a|z〉√
2n

[ |0〉 − |1〉√
2

]

=
(−1)c√

2n

∑

z∈{0,1}n
(−1)

∑

Jz
ai |z〉

[ |0〉 − |1〉√
2

]

=
(−1)c√

2n
(|0〉 + (−1)a1 |1〉) · · · (|0〉 + (−1)an |1〉)

[ |0〉 − |1〉√
2

]

, (2)

thus for any fc,a, |ψ2〉 is not entangled. �

Having established these properties of DJ⊗, we would like to show that it is maximal,
in the sense that it includes any case of separable computation for the Deutsch-Jozsa
algorithm.

Proposition 2.4 Any non-entangling balanced function f equals fc,a for some c ∈ {0, 1}
and a ∈ {0, 1}n.

Proof. Let |ψ2〉 be as defined for the Deutsch-Jozsa algorithm. If f is non-entangling,
then:

|ψ2〉 =
∑

x∈{0,1}n

(−1)f(x)|x〉√
2n

[ |0〉 − |1〉√
2

]

(3)

= eiϕ0

n
⊗

k=1

(cos θk|0〉 + eiϕk sin θk|1〉)
[ |0〉 − |1〉√

2

]

. (4)

‡Proposition 2.3 provides the justification for this name.
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We compare the coefficients of Eqs. (3) and (4). First note that ϕ0 must be 0 or π since the
phase of the state |00 · · · 0〉 is ±1. Suppose that for some 1 ≤ k ≤ n, | cos θk| 6= | sin θk|.
Then the coefficients of the states |00 · · · 000 · · · 0〉 and |00 · · · 010 · · · 0〉 where the 1 is
on the k’th position, are not of the same magnitude, in contradiction. Similarly, if for
some 1 ≤ k ≤ n, ϕk /∈ {0, π}, then the state |00 · · · 010 · · · 0〉 where the 1 is on the k’th
position, has a complex coefficient, in contradiction. It follows that |ψ2〉 is a product
state of exactly the form of Eq. (2), which corresponds to a function fc,a as claimed. �

We now show that solving DJ⊗ on an exact classical computer is not a trivial task.

Proposition 2.5 The classical computational complexity of DJ⊗ is Θ(n).

Proof. For a function of the form f(x) = (a · x) ⊕ c, one must know all the bits of a in
order to check whether f is constant or balanced. Even one missing bit can determine
the function’s type either way. An oracle query of f yields an equation of the form
(a ·x)⊕ c = b for b ∈ {0, 1}, which is a linear Boolean equation in n variables: the n bits
composing a. Therefore, in order to find a out, one must consider at least n equations.
This means that any classical algorithm will require at least n evaluations of f in order
to exactly find a. Note also that n evaluations are enough, since the evaluation of f(2k)
yields the kth bit of a, so evaluating f on the n powers of 2 will determine it uniquely.
�

Note that much like DJ , DJ⊗ can be solved with a constant number of oracle queries
if errors are permitted.

2.3 General Phase Oracles and DJ
⊗

We now show that the DJ⊗ problem is related to the whole set of separability-conserving
quantum phase-oracles.

Definition 2.6 An operation U is separability-conserving, if for any separable state |ψ〉,
U |ψ〉 is separable.

Proposition 2.7 Let f : {0, 1}n → {0, 1} be a Boolean function and Vf the correspond-

ing quantum phase-oracle. If Vf is separability-conserving, then f ∈ F⊗
DJ .

Proof. A separable state |Ψ〉 can be written as

|Ψ〉 = eiϕ0

n
⊗

k=1

(cos θk|0〉 + eiϕk sin θk|1〉) (5)

=

2n−1
∑

x=0

αx|x〉 (6)

for some 0 ≤ ϕk, θk ≤ π and αx ∈ C. Note that when cos θk = 0 or sin θk = 0, we choose
ϕk = 0 without loss of generality. Since Vf |Ψ〉 is separable too, it holds that:

Vf |Ψ〉 =

2n−1
∑

x=0

α̃x|x〉 =

2n−1
∑

x=0

(−1)f(x)αx|x〉 (7)

= eiϕ̃0

n
⊗

k=1

(cos θ̃k|0〉 + eiϕ̃k sin θ̃k|1〉) (8)

for some 0 ≤ ϕ̃k, θ̃k ≤ π. Let ek denote the binary string with 1 in the kth bit and 0 in
all the rest. First observe that αx = ±α̃x for all x and that there must be at least one x
such that αx 6= 0. For any y, including y = x⊕ ek, αy = ±α̃y , we may write

αy

αx
= ± α̃y

α̃x

5



which means that | tan θk| = | tan θ̃k| or in other words:

cos θk = ± cos θ̃k, sin θk = ± sin θ̃k. (9)

Let J = {k : cos θk = 0} be the set of qubits whose cos θk is zero, and choose a string y
so that yk = 1 ⇔ k ∈ J . Note that

α̃y = ±eiϕ̃0

∏

k/∈J

cos θ̃k = (−1)f(y)eiϕ0

∏

k/∈J

cos θk = αy(−1)f(y) 6= 0.

From
∏

k/∈J cos θk = ±∏

k/∈J cos θ̃k 6= 0 we obtain eiϕ̃0 = ±eiϕ0 . For j /∈ J , looking at
α̃y⊕ej :

α̃y⊕ej = eiϕ̃0eiϕ̃j sin θ̃j
∏

k/∈J,k 6=j

cos θ̃k

= (−1)f(x)eiϕ0eiϕj sin θj
∏

k/∈J,k 6=j

cos θk = αy⊕ej (−1)f(x)

similarly leads to eiϕ̃j = ±eiϕj . For j ∈ J we have cos θj = cos θ̃j = 0 and by definition
ϕj = 0 = ϕ̃j .

Having established that cos θk = ± cos θ̃k, sin θk = ± sin θ̃k and eiϕ̃k = ±eiϕk for any
k, it follows that there exist c, ak ∈ {0, 1} such that

Vf |Ψ〉 = eiϕ0(−1)c
n

⊗

k=1

(cos θk|0〉 + (−1)akeiϕk sin θk|1〉)

which is exactly Vfc,a |Ψ〉.
Now, it is enough to look at the separable state |ΨH〉 = 1√

2n

∑

x∈{0,1}n |x〉. Since

the above result applies to any separable state, it also applies to |ΨH〉, therefore, there
exist c and a such that Vf |ΨH〉 = Vfc,a |ΨH〉. We note that the xth coefficient of Vf |ΨH〉
determines f(x) to be (−1)fc,a(x) since this is exactly the phase added by fc,a to the state
|x〉. Since this is true for all the 2n coefficients, it follows that f ≡ fc,a, thus f ∈ F⊗

DJ .
�

In conclusion, we identified the maximal subset of the Deutsch-Jozsa problem, which
is solved with one quantum query by the Deutsch-Jozsa algorithm without entanglement,
while the best exact classical algorithm requires a linear number of calls. We showed
that the significance of this subset reaches beyond the scope of DJ problem: any non-
entangling phase oracle is an oracle of a function from this subset. Note also that here
the quantum-to-classical gap in the exact case diminishes from O(2n):O(1) to O(n):O(1).
This is the price we pay for not using entanglement.

We remark that it can now be seen that the function set of [20, 19] contains exactly

half of the possible non-entangling functions.

2.4 Separable Implementation of the Oracle

It may be claimed that even though there is no entanglement after any step in the
algorithm, the oracle must use entanglement during the computation of the function. We
show here that there is an entanglement-free implementation for the oracle. Consider
the following transformation:

|x〉 → (−1)c+1
n

⊗

i=1

(−1)ai·xi |xi〉

6



It is easy to see that the tensor product on the right-hand side gives exactly the requested
result of applying fc,a on input |x〉, i.e., (−1)fc,a |x〉. The oracle operation can be done
locally, using n single-qubit transformations such as

(

1 0

0 eiaiξi(t)

)

,

where ξ(t) ascends from 0 to 2π, maintaining separability even in continuous time.

3 Simon’s Problem

Simon presented [6] the following oracle problem:
Let f : {0, 1}n → {0, 1}n be a 2-to-1 function§, such that

∀x 6= y : f(x) = f(y) ⇔ y = x⊕ a,

where a is a fixed n-bit string called the function’s period, and ⊕ is the bitwise XOR
operation. The goal is to determine the value of a.

In order to solve this problem classically with high probability, the oracle must be
queried an exponential number of times. However, the following quantum procedure
solves it with high probability using a polynomial number of queries.

1. The initial state is |ψ0〉 = |0〉⊗n|0〉⊗n.

2. After applying n Hadamard gates on the first n qubits:

|ψ1〉 =
1√
2n

∑

x∈{0,1}n
|x〉|0〉⊗n.

3. Applying the quantum oracle f yields:

|ψ2〉 =
1√
2n

∑

x∈{0,1}n
|x〉|f(x)〉.

4. We now measure the last n qubits and obtain a certain f(x0) ∈ {0, 1}n, resulting
in the (n-qubit) state:

|ψ3〉 =
1√
2

(|x0〉 + |x0 ⊕ a〉).

5. Applying n Hadamard gates on the n qubits yields:

|ψ4〉 =
1

2(n+1)/2

∑

y∈{0,1}n

[

(−1)x0·y + (−1)(x0⊕a)·y
]

|y〉

=
1

2(n−1)/2

∑

a·y=0

(−1)x0·y |y〉.

6. Measure |ψ4〉 to get a y such that a · y = 0.

Repeating steps 1-6 a polynomial number of times will, with high probability, result
in n linearly-independent values {y1, y2, . . . , yn} such that yi · a = 0, which determines
a.

Proposition 3.1 Any instance of the Simon problem generates entanglement in Simon’s

algorithm.

§In some versions it is also allowed to be constant.
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Proof. To see this, it suffices to examine |ψ2〉. We show that if it is separable, f(x)
must be constant, and therefore it is a trivial case of the problem. Observe that in |ψ2〉,
the first n qubits assume any of their possible values exactly once in the sum. In order
to achieve this state from a tensor product of 2n qubits, each of the first n qubits must
be of the form α|0〉 + β|1〉 with α, β 6= 0. It can therefore be written as:

|ψ2〉 =
(

∑

x∈{0,1}n
γx|x〉

)

⊗
(

∑

y∈{0,1}n
δy|y〉

)

.

However, the state of the first n qubits already contributes 2n different elements to the
final sum, no matter in what state the last n qubits are. This means that in order to have
exactly 2n elements in the final sum, the last n qubits must be in a single computational
basis element. Thus, the value of f(x) is the same for any input, i.e. it is constant. �

We thus conclude that the usage of the Simon algorithm for any subproblem of the
Simon problem requires entanglement. However, an interesting open question in this
context, is whether there is a restricted version of the problem solvable by some other

quantum algorithm without entanglement, and achieves an advantage over the classical
case.

4 Grover’s Search Algorithm

Grover presented an algorithm [2], which for a binary function f : {0, 1}n → {0, 1}, finds
an x such that f(x) = 1 with only O(

√
2n) oracle calls.

The first step of the algorithm is identical to the Deutsch-Jozsa subroutine:

1√
N

∑

|x〉 → 1√
N

∑

(−1)f(x)|x〉.

We require that the resulting state (|ψ2〉) will be separable. In the following we show
that this may be true only for trivial instances of the search problems and therefore we
do not need to follow additional steps of the algorithm. From the separability of |ψ2〉
it follows that if the n − 1 most significant bits are measured, the state of the least
significant bit is independent of the measurement outcome. Writing x = w0 or x = w1

depending on the value of the LSB, |ψ2〉 = 1/
√
N

∑

w

[

(−1)f(w0)|w0〉 + (−1)f(w1)|w1〉
]

and performing the measurement, we are left with the state

(−1)f(w0)|0〉 + (−1)f(w1)|1〉√
2

.

Up to a global phase, the state is

|0〉 + (−1)f(w0)⊕f(w1)|1〉√
2

and has to be independent of the measured w. That means that ∀x : (−1)f(x)⊕f(x⊕1) = k,
or more conveniently put as ∀x : f(x)⊕ f(x⊕ 1) = y · e1. Similarly, entanglement should
also be avoided when regarding the jth qubit for 1 ≤ j ≤ n, which leads to

∀x, j : f(x) ⊕ f(x⊕ ej) = y · ej .

This means that it is true for a couple of j’s combined

f(x⊕ ej) + f(x⊕ ej ⊕ ei) = y · ei =⇒ f(x) ⊕ f(x⊕ ej ⊕ ei) = y · ei ⊕ y · ej

8



In the same manner, we can see that for every J it holds that

∀x : f(x) ⊕ f(x⊕ J) = y · J

even for x = 0. From this follows that functions that do not generate entanglement must
satisfy

f(J) = y · J ⊕ f(0),

which is the exact definition of the set F⊗
DJ . These functions correspond to trivial search

problems where none, all, or half of the elements are to be found. Hence, any interesting
instance of Grover’s search problem would generate entanglement in Grover’s algorithm.

One may confirm that this is true even for n = 2 bits, regardless of the fact that only
a single oracle call is required in that case, and unlike what is commented by [16]. With
two bits, |ψ1〉 = 1

2
[|00〉 + |01〉 + |10〉 + |11〉]. If only one of {00, 01, 10, 11} is “marked”,

then |ψ2〉 has 3 positive coefficients and a single negative coefficient. This means that
|ψ2〉 = A|00〉 + B|01〉 + C|10〉 +D|11〉 is entangled, as it cannot satisfy the separability
constraint AD = BC.

5 Summary and Open Questions

We investigated the advantage of quantum algorithms without entanglement over clas-
sical algorithms, and showed a maximal entanglement-free subproblem of the Deutsch-
Jozsa problem, which yields an O(1) to O(n) quantum advantage over the best exact
classical algorithm. Due to this ban on entanglement, the exponential advantage of
exact-quantum versus exact-classical is lost. For the Simon problem we showed that any
non-trivial subproblem requires entanglement during the computation. Using a some-
what different approach, we showed that this also holds for Grover’s algorithm.

Further research on the role of entanglement in quantum information processing may
illuminate some of the following questions: is there a restricted form of the Simon problem
(or more generally of the hidden subgroup problem [22]), and a corresponding quantum
algorithm that presents a quantum advantage without entanglement? Is there a subprob-
lem larger than DJ⊗ and a corresponding algorithm (not the DJ algorithm) that solves
it without entanglement, and yet has an advantage over any classical algorithm? Can
there be a non-negligible advantage of QCWE over classical computation when separable
mixed states are used? Can it be proved that exponential advantage of exact QCWE
over classical-exact computation is impossible in oracle-based settings? Note that this
is not known yet, even for the Deutsch-Jozsa problem, since there may be some other
quantum procedure for which the QCWE advantage holds, and the subset is larger than
F⊗
DJ .

This work is supported in parts by the Israel MOD Research and Technology Unit,
by the Institute for Future Defense Research, and by the Israel Science Foundation —
FIRST (grant#4088103).
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