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ROBUSTNESS OF SHOR’S ALGORITHM
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Shor’s factorisation algorithm is a combination of claakigre- and post-processing and a quantum
period finding (QPF) subroutine which allows an exponergfsed up over classical factoring algo-
rithms. We consider the stability of this subroutine whepased to a discrete error model that acts
to perturb the computational trajectory of a quantum compuThrough detailed state vector sim-
ulations of an appropriate quantum circuit, we show thateiter locations within the circuit itself
heavily influences the probability of success of the QPFauthre. The results also indicate that the
naive estimate of required component precision is too cuatee.
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1 Introduction

The investigation and implementation of large scale quarglgorithms is arguably of enormous im-
portance to the field of quantum information processing. Jéminal work by Shor in 1994][1] was
the first example of a complex and large scale algorithm tlzatable to efficiently solve a classically
intractable problem. Since Shor’s discovery, the conssn®f a large scale quantum computer (QC)
has been an area of intense research. Currently there arediif@ment proposals for constructing
such a devicel]Z,13], but despite significant progress, sueisf decoherence and imperfect gate de-
sign begs the question of whether such a large and complexithign can be experimentally realized
beyond trivial problem sizes.

The development of quantum error correction (QEC)]4.15, &) &ult-tolerant quantum compu-
tation [4,[8]9] has shown theoretically how large scale dilgms can be implemented on imperfect
devices. However, without a working QC, detailed classsialulations of QEC and quantum algo-
rithms constitute the only method for reliable informatiemgarding the behaviour of such schemes
and the ease in which they can be implemented on physic&mgstThe issue of appropriate use of
QEC and the construction of arbitrary fault-tolerant g§1€} still requires detailed knowledge of the
behaviour of the underlying algorithm in order to tailorskeschemes appropriately.

For large scale quantum algorithms, the general methodaidysis is to assume that all components
within the algorithm have a precision &f 1/n,,, wheren,, = K@ represents the number of locations
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where an error can occur during an algorithm utilistpgjubits andK elementary steps (depth of the
circuit). This estimate implies that a single error anyvehduring calculation will result in failure. For
small quantum circuits, this approximation is not an oldstaccomponent design. However, for more
complex circuits, where qubits may be coupled in highly mavial ways, it is not obvious that such a
naive estimate is sufficient. In fact, our results show thaytare not. In our analysis we examine the
guantum period finding (QPF) subroutine, which lies at therbef Shor’s algorithm, in the presence
of discrete errors. The choice of the QPF subroutine in thayais is due to its importance to the
field of gquantum computing and because it is a good examplewelld&known, non-trivial algorithm.

Quantum circuits to factor large integers, for example a-ti2&umber, require:, of the order
107 — 10'° depending on the specific circuit used. Engineering quargatas with failure rates

of 107 — 1071 is currently far from being experimentally realized in arfytlre numerous archi-
tectures currently proposed. Our simulations show that fhe precision requirement is not strictly
required. We find evidence for a required precisioP¢L) /n,,, whereP (L) is a monotonically in-
creasing function of., the binary length of the composite number, which is at |Ikasar. This slower
scaling increases the error rate at which quantum progeéssopposed to classical randomness) can
be observed.

Several authors have previously examined the effects ofean Shor's algorithni [18, 14, 115]. These
simulations are often limited to specific sections of thererttircuit, or to other sources of error such
as phase drifts on idle qubits, imperfect gate operatiomspects relating to quantum chaos. Chuang
et al [16] was one of the first to look at the error stability of Sisaalgorithm, analytically, under the
effects of environmental coupling. Miqued a! [L7] examined the stability of Shor’s algorithm using
an identical error model to that used in this investigatidawever, the stability of the algorithm was
only investigated for a single problem size and did not itigese how the stability changes as the
problem size increases.

Several architectures, most notably solid state modedsrestricted to a single line of qubits with
nearest neighbour interactions only. The issue of whetieQPF subroutine can be implemented
on such linear nearest neighbour (LNN) architectures iz ialgestigated and compared with circuits
designed for architectures that can interact arbitrargspafi qubits (non-LNN). We find that if LNN
circuits can be designed with comparable values,pthe stability will be similar.

In this paper we examine specific circuits for both LNN and-h&N architectures in the presence of
a discrete error model, in order to determine:

e The degree to which the final required state of the computsfésted by small changes in the
computational trajectory caused by these errors.

e The impact of a LNN architecture on the reliability of the Q&tbroutine.

e Ifthe 1/n, bound for component precision remains absolute for varpoablem sizes.

The paper is organised as follows. Secfibn 2 examines theriyiy theory behind Shor’s algorithm,
the QPF subroutine and how success is defined. Sédtion &db&érror model and issues relating to
simulations. Sectiofll4 present simulation results, examgithe stability of the QPF subroutine near
the1/n,, lower bound for both LNN and non-LNN circuits. Finally we pent a brief analysis that
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examines the consequence of various additional scalingsroponent precision when attempting to
observe quantum processing for small instances of the QBestine.

2 Shor’s algorithm

As several papers detail the major steps of Shor’s algorjfiyiiid,[19], we provide an overview for
the sake of completeness and to introduce notation. We firs$ider a given composite number
N = N; N, which has a binary length = log, (V). To factorise this number, we consider the func-
tion f(k) = z*modV, wherek € Z andz is a randomly chosen integer such that z < N and
gcd N, z) = 1 (gcd= greatest common divisor). The QPF subroutine of Shor'srélgn determines
the period off (k). i.e. to find the integer > 0 such thatf(r) = 1. This QPF subroutine is the
guantum component of Shor’s algorithm. The complete aligaris composed of both the QPF sub-
routine and several pre and post processing operationsahdite performed in polynomial time using
classical techniques. These classical steps, detaileeMeya author<]1,12,.19], can be implemented
in polynomial time and for our purposes we assume that theps san be |mplemented with no error.
Once the period of (k) is found, the factors oV can be calculated a§; = gedf(r/2) —1, N) and

Ny =ged f(r/2) + 1, N), conditional on being even and (r/2) # N — 1.

In general, to factorise a number of binary lendgth3 L qubits are initialised to the sta{@).,|0) ..
For clarity we have broken the8é qubits into2 L qubits to store the valuésandL qubits to store the
function evaluations;*modV . After initialisation, a Hadamard transform is performedsach of the
2L qubits, placing thé register into an equal superposition of all binary numbesid — 225 — 1,

22L 1
0)2210) — 57 Z [k)2L10)L 1

Step three is to apply the functigiik) on theL qubit register, conditional on the valuksThe state
of the computer is transformed to,

22L 1 22L 1

1
2L Z |/€ 2L|O>L —> Z |k ng,T modN> (2)
k=0

The next step is to measure thejubit register. This step can actually be omitted when imgleting
the algorithm, however we introduce it to show how the peripdppears within the procedure. After
measurement the qubit register collapses to,

2L 2L .
295 -1 \/;2 Jr—1
2L Z [K)2rlf ()} — 5p > ko +nr)arlfo)r. 3)
n=0

Wherer is the period off, f, is the measured value arg is the smallest value of such that
fo = f(ko). We now apply a quantum Fourier transform (QFT) to kheegister. The state of the
computer after the application of the QFT becomes,

220 1) (22F /r—1)

(
D IDS exp(§2L3<ko+nr)|J>2L|f0> (4)
7=0

n=0
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If we now measure thé register, we will return a value gfwith probability,

NG e 21T 2
p(j,m, L) = 2oL Z exp <22—ij’> (5)
n=0

Eq.[[ is strongly peaked at certain valuesjofif the periodr perfectly divides2?” then Eq.[b can
be evaluated exactly, with the probability of observjng c22% /r for 0 < ¢ < r being1/r, and0 if

j # 22l /r [Fig. d(a)]. If r is not a perfect divisor 022, then the peaks of E@] 5 become slightly
broader, [Fig[L(b)], and classical methods can be utilisextder to determine from the measured

Prj
0.125

a.

0 32 64 96 128 160 192 224
Prj
0.1

0 26 51 77 102 128 154 179 205 230

Fig. 1. Plot of Eq[P for the cas@2l = 256 with a)r = 8 and b)r = 10.

value ofj. Given several measured integer values around these tegeirpeaks a continued fractions
method can be employed to determinf2l, [L8]. The probability of successfor Shor’s algorithm is
generally defined as,

s(L,r) = Z p(4, L, 7). (6)
{useful j}
{usefulj} is the setj = [c22L/r], j = [¢2?F/r], 0 < ¢ < r, where| | [ ] denote rounding down
and up respectively andj, L, r) is defined via Eq[5. Using this definition efwe determine the
period afterO(1/s) calls to the subroutine.

Many circuits have been proposed in order to implement thE Qkbroutine on a physical quan-
tum computer, as summarised in taldle 1. Some are optimisedficeptual simplicity[[20], some for

speed([2l1] and some for utilising a minimum number of qul2is[4].

This investigation will focus on circuits that require a ini@l number of qubits for two reasons.
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Table 1. Number of qubits require@} and circuit depth K) of different implementations of the QPF subroutine.
Where possible, figures are accurate to leading ordér in

Circuit | Qubits | Depth

Simplicity [20] ~ 5L O(L?)
SpeedI[Z11] O(L?) | O(LlogL)

Qubits [22] ~ 2L ~ 32L3
Tradeoff 1 [28] ~B50L | ~ 219112
Tradeoff 2 [23] ~ 5L ~ 300012

LNN circuit [24] ~ 2L | ~ 32L3

Entanglement is a powerful resource available to quantumpcers, however arbitrary entangled
states cannot be represented efficiently on classical ctarguwith memory requirements scaling
exponentially with the total number of qubits. Hence, miisimg the total number of qubits is a nec-
essary requirement for computationally tractable sintet Also, in the short term, many current
QC architectures face a difficult hurdle in fabricating gg&number of reliable qubits, making mini-
mal qubit circuits desirable.

Beauregard[[22] details an implementation of the QPF subrewppropriate for architectures al-
lowing for the arbitrary coupling of qubits (non-LNN), in vt modular addition and multiplication
circuits are performed in Fourier space. An appropriateudifor Linear Nearest Neighbour (LNN)
architectures used in this investigation, detailed in H2#l], uses the same method in order to re-
duce the total number of qubits required. Both the LNN ciremid a slightly modified version of the
Beauregard circuit requir®L + 4 qubits and have identical depths and gate counts to leaditey in

L.

3 Error models and analysis

In our simulations, errors were simulated using the digcrebdel in which a single qubjy) =
a|0) 4+ B|1) can experience a bit fliX |¢) = «|1) + 5|0), a phase flipZ|¢) = «|0) — 5|1), or both
at the same tim& Z|¢) = «|1) — 3|0). These operators are simply the §et, io,, 0. }.

These discrete error operators are then applied to each gifleir each operational time step with
probability p/3 (i.e each error has identical probability of occurrencehwine total probability of
error given byp). The operational time for all two qubit gates is assumecktabntical and all single
gubit gates combined with neighbouring two qubit gatesiwéadanonical decompositidn 25,1 26] 27].
The discrete error model represents the most common errdelnused within QEC analysis. This
model oversimplifies error effects within a quantum compineeveral ways.

e The error model used is uncorrelated and random. Some ectlriés may be more vulnerable
to dephasing errors/ operations), relaxation error(operations) or loss of qubits (this is
particularly relevant in linear optical systems]|[31]).

e This model does not examine the effect of systematic erroestd inaccurate gate design.
Inaccurate two qubit gates will generally produce coreslagrrors over pairs of interacting
qubits.

e This specific error model treats memory errors and gate ®fdentically, which may not be
realistic given a specific physical architecture.
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Although this model represents a simplification of the mamgde effects that can cause errors within
guantum computers, our interest in LNN architectures aail those adherence to this model make it
appropriate. Furthermore, general continuous errorsqrizaent to a linear combination of discrete
errors. Correction protocols project encoded qubits ordtate that is perturbed from an error free
state by discret& and/orZ gates, digitising continuous errors to a discrete set.

Using this error model, we can analytically describe thedvédur of the QPF subroutine in the pres-
ence of severe errors. Referring to the quantum circuit {B¥ j is obtained bit-by-bit via a series
of measurements on a master control qubit. This master qubitlates the entir@ qubit register
described in sectiofi}(2). The QFT on this single qubit rezfby Eq[ is performed through a series
of Hadamard gates and classically controlled single qoksdtions. In a more general analysis we can
model the entire computer as two registers, a single mastet gnd the rest of the computer.

Consider the state of the computer at a point just beforepibécation of a controlled modular mul-
tiplication gate. At this point the master control qubitisan equal superposition ¢f) and|1) and
the rest of the computer is some unknown superposition,

22L 1
1
|¢> = 7(|0>master+|1>maste9 Z Oém|m>computer (7)
2 m=0

Now apply the modular multiplication gate, which will retua new superposition state for the
|m)computer register (when the master qubit is in thie state). This new superposition is denoted
through the coefficientd,8,, },

1 22k _q 1 22k
o) = ﬁ|0> mX::O aum [m) + EIU mZ::O Bum|m). (8)

Prior to measurement, a classically controlled rotatiyrafid a second Hadamard gate is applied to
the master control qubit. The value is dependent on the result of all previous measurements on
this qubit. Hence the state just before measurement is,

22L_1 22L_1

9) = 510) 3 (e + S 3 (@n =) ©)
With the probability of measuring a 1 or 0 is given by,
22l 1
p(% - %) _ % + % ) (€00t B + e PamB), (10)
using,
22l 1 22—

Z |0‘m|2 = Z |ﬁm|2 =L (11)
m=0 m=0

Errors cause the summation in Egl 10 to asymptote to O reguitian equal probability = (0.5)%"
of eachj being observed.
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The period of the functiony;, dictates the number of non-zero coefficiefits,,,5,,} and the spe-
cific value ofj simply changes the sequence of 1's and 0's measured at egrhSihce errors act
to randomly perturb these sets of coefficients, considetifigrent values of- and/or; will have no
effect on the stability of the QPF subroutine.

The simulated QPF circuit is extremely complex and henceireg a large amount of classical simu-
lation time. Ideally, simulations would proceed by apptyapredetermined number of discrete error
gates to every possible location within the circuit and agarg the probability of success,over all
possible locations. For example, Hig. 2 shows the effectsirigle X error on the QPF success prob-
ability, s, for the first modular multiplication gate in the LNN, = 5, circuit. From this we can see

| |l (1)
T TR AT TR A ™

(I [ I LR | 1” \II .\H 1§l
\I\ I‘I (I I I‘I I‘I

Fig. 2. Map showing how the location of a single bit flip erréays a major role in the final output success of
the LNN circuit. This image is fol. = 5 (14 qubits), and shows the first modular multiplicationties of the
circuit. Each horizontal block represents one of the 14 tgubhile each vertical slice represents a single time
step. Darker areas represent successively lower values for

that the spacio-temporal location of an error plays a majterin the final value of calculated, with
various sections invariant to the bit flip error. In order tabyse the behaviour of the QPF subroutine
we take an ensemble average over all possible error logatiBar example, in figl12, the average
value of s over all possible locations for a single erroris= 0.34. Most circuits are far too large to
map out this topology efficiently: we are limited by compidatl resources to 50 statistical runs to
obtain an approximate average valuesdbr these circuits. However, the results show that there is
still sufficient data to observe trends in the results.

4 Stability under a fixed number of errors

The classical simulation algorithm employed used a stat¢éoveepresentation. Matrix operations
were performed to simulate both quantum gates and erromatipes. In figdB anfll4 we plot the
success of the QPF subroutine as a function of the numbesoffedée errors, we plot the results for
2L+ 4 = 14,16, 18, 20, representing factorisation of composite numbers fféra- 27 to N = 247.
Simulations examined functions that each had a peried6. Table[2 show the functions(k) used
for each value ofL. These simulations aim to investigate the behaviour of tR& Qubroutine for

Table 2. Functions used for various valuesiof Note that for2L + 4 = 14, 16 the functions used are not
products of two primes. With some slight modifications todtassical post-processing, Shor’s algorithm can still
be used to factor such numbers. Since we are only investigétiie reliability of the QPF subroutine, this is not
relevant to our analysis.

2L + 4 f(k) = zFmodN, with r = 6
14 8 mod27

16 31%¥mods3

18 10*modr7

20 27Fmod247
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high component precision, close to th, bound. Simulations were performed in a half-stochastic,
half-deterministic manner: The type and spacio-tempaoiedtion of discrete errors occur at random,
however we specify exactly how many errors can occur wittgivan run of the subroutine.

Simulations examine the probability of obtaining the sfieaiseful value; = |227/6|. Figs[3

and@ show the results for the non-LNIN[22] and LNNI[24] citsuiespectively. For clarity, we have
suppressed the statistical errors on these log plots. Timplebe data sets are given in Appendix A.
The definition of success for the QPF subroutine, given itieeB takes into account that many

non—LNN QPF subroutine under fixed number of errors for various values of L.
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Fig. 3. Plot showing the relative probability of measuring= |22 /6] as a function of the specific number of
errors for the non-LNN circuit. The curves represént= 5 to L = 8. The horizontal lines show the point of
random output for each successive valud.of

different values ofi may be used to determine However, for the sake of this analysis, we are only
concerned if the QPF subroutine returns with high probigtélivalue ofj that is theoretically pre-
dicted. Therefore in Figdl 3 afidl 4 we normalise the plots si@han error free calculation returns
§ = [2%F/6] with probability one and Shor’s algorithm succeeds withrayk call to the QPF sub-
routine. As the number of errors increase the probabilitjefisuringi = |22 /6| decreases until it
reaches the point of random output, at this stage the QPBiithe performs no better than randomly
choosing a value of in the ranggj = 0 — j = 22F,

Figs. [3 and¥ clearly shows how the quantum speed up of the QB®wine, and hence Shor’s
algorithm, diminishes to a point where it is no different mdomly choosing a value from the
register, as the number of errors increases (representételyorizontal lines). At this point, any
guantum processing can no longer be identified from the fidtysspectrum for;.

Accurate curve fits are extremely difficult to obtain from fmited amount of data available due
to long computation times. Each point represents 50 sepanaulations where the total number of
errors occur randomly within the QPF circuits. In order to gfficient data to extract meaningful
fits for each of these curves, one would expect the numbeat$ttal runs should be the same order
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LNN QPF subroutine under fixed number of errors for various values of L.
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Fig. 4. Error stability for the LNN circuit. Equivalent to fifd

as the number of possible error locations (or error comlmng). For example, in thé = 5 circuit,

for one error, the number of possible error locations andgyip~ 18000. Hence, it is quite surpris-
ing that even 50 statistical runs provides enough data tairbt qualitative picture of how the QPF
subroutine behaves for various valuesiofthe plots for each circuit, including statistical errcase
detailed in Appendix A). To reduce the statistical errord ahtain accurate curve fits for these plots,
further simulations are required, preferably using thes@tgmmatrix formalism. However, from this
data we can still draw qualitative conclusions about theaye robustness of the QPF routine as a
function of increasing number of errors.

To verify that a quantum computer implementing the QPF & processing in the quantum regime,
it would be sufficient to observe peaks within the probapapectrum forj. The sharper the peaks,
the fewer repetitions of QPF required and the more pradtieatomputation. For very low visibility
peaks, the number of repetitions of QPF scales exponegntigh L, nullifying the advantages of the
guantum algorithm over its classical version.

These simulations show that a maximum error raté fof,, for all problem sizes is not required to
obtain better performance than classically searchingutiitche; values. By inspection of figg 3
and[4, an estimate can be made regarding the number of eaoesf(inction ofL) before quantum
processing in the QPF cannot be identified [Hif). 5]. Fih. Sesents only a preliminary estimate
from figs.[3 and}4, additional data is required to perform asueate curve fit. The purpose of figl 5
is simply to demonstrate that when attempting to observatynaprocessing, experimentally, more
than one error can be tolerated, and the number of errorsases withl.

When attempting to realise the full potential of the QPF imtthe probability of useful output
should be kept as high as possible. It can be seen from[igsd @ #mat even a single error signif-
icantly reduces this probability. Therefore, our simwas support the view that for large scale im-
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plementation of the QPF routine, ideally no errors shoultloin the circuit. This would, of course,

be achieved though quantum error correction, with work @a8e[[1P2. 29, 11] already examining ef-
fectivelogical qubit error rates, given a specifibysical error rate, for various error correcting codes.

Maximum number of errars producing non—random output as a function of L.

T e e ]

40 -

20F e

Maximum number of errors
[m]

Bit size, L

Fig. 5. Estimate on the maximum number of errors possibledgh value of. before the LNN circuit becomes
equivalent to a classical random seargh= non-LNN circuit,[ ] = LNN circuit.

The error behaviour for the LNN and non-LNN circuits are &ygndistinguishable from each other.
However, there is a slight difference in the error sengitief the two circuits. We attribute this to a
minor increase in the LNN circuit depth. As expected, theralarea f:,,) of the circuit is the domi-
nating factor in its sensitivity. The mesh circlnt[24] réepd in the LNN design is the major difference
between the LNN and non-LNN circuits. This section of the LbiNuit acts to slightly increase the
overall depth, fron32L° 4+ 66 L% — 2L — 1 for the non-LNN circuit to32L3 + 80L? — 4L — 2 for the
LNN design [Table[B]. Hence the sensitivity of the LNN ciitdacreases slightly compared with the
non-LNN circuit.

Table 3. Total circuit depthsi() for the LNN and non-LNN circuits, fol. = 5t0 L = 8
L | LNN Circuit | non-LNN Circuit

5 5978 5639
6 9766 9275
7 14866 14195
8 21470 20591

The scaling in the QPF subroutine shown by our simulatiomsbeautilised when testing such a
complex quantum circuit for evidence of quantum processiisgmentioned previously, peaks within
the probability spectrum gf are indicative of quantum processing and our simulatioms Baow that
such peaks will be present even when component precisiast isaunded byl /n,.

Although we are unable fit a specific curve to the data showmya[B andl4, we can consider several
different cases for the scaling of the tolerable number afrer Sincen, ~ O(L*) for the quantum
circuit used in the simulations, and restricting our anal{sinteger powers aof, we can safely bound
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the tolerable error scaling as at mextZ?). If this scaling wereD(L*) then the required component
precision would scale a8(L*)/n, ~ constant, implying that as the quantum circuit increases size,
the required component precision remains constant. Thimaent also is valid for scaling faster than
O(L*). If such a fast scaling occurred, increasing the circui sipuld lead to a decrease in required
component precision. Fi§l 6 examines the required physaraponent precision required to observe
quantum processing in the QPF, for potential scalings/ef, (x), L/n,, (¢), L?/n, (A) andL?/n,,

(D). As a probability spectrum of is needed in all cases, the number of total QPF routine itersit
needed is approximately of ord2t”. Therefore, onlyL. = 5to L = 10 is shown, since for higher
L the total number of circuit iterations become prohibitwklrge. Tabld¥4 examines the minimum
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Fig. 6. Required component precision in order to observetyna processing for small values b6fin the QPF
subroutine. Each curve represents a separate type ofamditicaling demonstrated by simulations= 1/n,,
o= L/np, A =L%/npand[] = L3/np

physical component precision required to observe quantwmegsing forl, = 5to L = 10 for a
component precision af/n, and for linear, quadratic and cubic scaling. Depending enetkact

Table 4. Minimum component precision required to apply tHeF@ubroutine to at leadt = 10 for various
scalings in component precision.

required component scalind; component precision required

1/np 1.3x 1076
L/np 1.3 x 1075
L2?/ny 1.3 x 10~
L3/ny 1.3 x 1073

nature of this scaling, quantum processing can be obseorefl = 5 to L = 10 with a physical
component precision between one and three orders of magridwer than the /n,, bound.

Even though the computational resources required to efédgtidentify the functional form of this
scaling are unavailable, we can conclude that some nortargresaling of component precision with
L is present leading to a reduction in the physical componesdigion required to observe quantum
processing for small values &f This result would reduce the pressure on experimentaktfation, in
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the short term, by potentially removing the need to impleneemplicated error correction protocols
to simply observe quantum processing in small instancdseo®@PF subroutine.

5 Conclusion

We have simulated the quantum part of Shor’s algorithm, th@ntum period finding subroutine
(QPF). Our simulations have shown that the structure ofdbesntum circuit leads to a robustness
above the naivé /n, approximation for component precision, if one only wishesl¢monstrate the
existence of quantum processing. Depending on the furaltform of this scaling, quantum process-
ing can still be observed for error rates significantly higthat thel/», bound for small instances
of the QPF subroutine. This additional robustness is adggus in the short term since introducing
complicated QEC protocols to simply observe quantum paegsvill be difficult. However, the re-
sults of our simulations suggest that for large practicabfgm sizes, extensive use of error correction
will be required to ensure error free calculations.

The restriction to a linear nearest neighbour design doesigoificantly alter the sensitivity of the
subroutine, provided that appropriate LNN circuits can bsighed roughly equivalent in depth and
qubit numbers as non-LNN circuits.

Further work includes performing a detailed density madimulations in order to determine an ap-
proximate functional form for this additional scaling, mgian appropriate simulator such as QuID-
DPro [30].
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Appendix A
LNN QPF subroutine under fixed number of errors for L=5. non—LNN QPF subroutine under fixed number of errors for L=5.
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Fig. A.1. Plot showing the stability of the non-LNN (rightgt) and LNN (left plot) QPF circuit for, = 5,
included on this plot are errors associated with the stdithaature of simulations, representing the variance on
the 50 run data set used in simulations.
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Relative probability of success.

Relative probability of success.

Relative probability of success.

Title Robustness of Shor’s algorithm.

LNN QPF subroutine under fixed number of errors for L=6. non—LNN QPF subroutine under fixed number of errors for L=6.
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Fig. A.2. Plot showing the stability of the non-LNN (rightgd) and LNN (left plot) QPF circuit forl, = 6,
included on this plot are errors associated with the stdithaature of simulations, representing the variance on
the 50 run data set used in simulations.

LNN QPF subroutine under fixed number of errors for L=7. non—LNN QPF subroutine under fixed number of errors for L=7.
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Fig. A.3. Plot showing the stability of the non-LNN (rightgd) and LNN (left plot) QPF circuit forl, = 7,
included on this plot are errors associated with the stdichaature of simulations, representing the variance on
the 50 run data set used in simulations.

LNN QPF subroutine under fixed number of errors for L=8. non—LNN QPF subroutine under fixed number of errors for L=8.
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Fig. A.4. Plot showing the stability of the non-LNN (rightgd) and LNN (left plot) QPF circuit forl, = 8,
included on this plot are errors associated with the stdichaature of simulations, representing the variance on
the 50 run data set used in simulations.
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