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ROBUSTNESS OF SHOR’S ALGORITHM

Simon J. Devitt, Austin G. Fowler and Lloyd C.L. Hollenberg
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Melbourne, Victoria 3010, Australia

Shor’s factorisation algorithm is a combination of classical pre- and post-processing and a quantum
period finding (QPF) subroutine which allows an exponentialspeed up over classical factoring algo-
rithms. We consider the stability of this subroutine when exposed to a discrete error model that acts
to perturb the computational trajectory of a quantum computer. Through detailed state vector sim-
ulations of an appropriate quantum circuit, we show that theerror locations within the circuit itself
heavily influences the probability of success of the QPF subroutine. The results also indicate that the
naive estimate of required component precision is too conservative.
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1 Introduction

The investigation and implementation of large scale quantum algorithms is arguably of enormous im-
portance to the field of quantum information processing. Theseminal work by Shor in 1994 [1] was
the first example of a complex and large scale algorithm that was able to efficiently solve a classically
intractable problem. Since Shor’s discovery, the construction of a large scale quantum computer (QC)
has been an area of intense research. Currently there are many different proposals for constructing
such a device [2, 3], but despite significant progress, the issue of decoherence and imperfect gate de-
sign begs the question of whether such a large and complex algorithm can be experimentally realized
beyond trivial problem sizes.

The development of quantum error correction (QEC) [4, 5, 6] and fault-tolerant quantum compu-
tation [7, 8, 9] has shown theoretically how large scale algorithms can be implemented on imperfect
devices. However, without a working QC, detailed classicalsimulations of QEC and quantum algo-
rithms constitute the only method for reliable informationregarding the behaviour of such schemes
and the ease in which they can be implemented on physical systems. The issue of appropriate use of
QEC and the construction of arbitrary fault-tolerant gates[10] still requires detailed knowledge of the
behaviour of the underlying algorithm in order to tailor these schemes appropriately.

For large scale quantum algorithms, the general method of analysis is to assume that all components
within the algorithm have a precision of≈ 1/np, wherenp = KQ represents the number of locations
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2 Title Robustness of Shor’s algorithm.

where an error can occur during an algorithm utilisingQ qubits andK elementary steps (depth of the
circuit). This estimate implies that a single error anywhere during calculation will result in failure. For
small quantum circuits, this approximation is not an obstacle in component design. However, for more
complex circuits, where qubits may be coupled in highly non-trivial ways, it is not obvious that such a
naive estimate is sufficient. In fact, our results show that they are not. In our analysis we examine the
quantum period finding (QPF) subroutine, which lies at the heart of Shor’s algorithm, in the presence
of discrete errors. The choice of the QPF subroutine in this analysis is due to its importance to the
field of quantum computing and because it is a good example of awell known, non-trivial algorithm.

Quantum circuits to factor large integers, for example a 128-bit number, requirenp of the order
107 − 1010 depending on the specific circuit used. Engineering quantumgates with failure rates
of 10−7 − 10−10 is currently far from being experimentally realized in any of the numerous archi-
tectures currently proposed. Our simulations show that the1/np precision requirement is not strictly
required. We find evidence for a required precision ofP (L)/np, whereP (L) is a monotonically in-
creasing function ofL, the binary length of the composite number, which is at leastlinear. This slower
scaling increases the error rate at which quantum processing (as opposed to classical randomness) can
be observed.

Several authors have previously examined the effects of errors on Shor’s algorithm [13, 14, 15]. These
simulations are often limited to specific sections of the entire circuit, or to other sources of error such
as phase drifts on idle qubits, imperfect gate operations oraspects relating to quantum chaos. Chuang
et al [16] was one of the first to look at the error stability of Shor’s algorithm, analytically, under the
effects of environmental coupling. Miquelet al [17] examined the stability of Shor’s algorithm using
an identical error model to that used in this investigation.However, the stability of the algorithm was
only investigated for a single problem size and did not investigate how the stability changes as the
problem size increases.

Several architectures, most notably solid state models, are restricted to a single line of qubits with
nearest neighbour interactions only. The issue of whether the QPF subroutine can be implemented
on such linear nearest neighbour (LNN) architectures is also investigated and compared with circuits
designed for architectures that can interact arbitrary pairs of qubits (non-LNN). We find that if LNN
circuits can be designed with comparable values ofnp, the stability will be similar.

In this paper we examine specific circuits for both LNN and non-LNN architectures in the presence of
a discrete error model, in order to determine:

• The degree to which the final required state of the computer isaffected by small changes in the
computational trajectory caused by these errors.

• The impact of a LNN architecture on the reliability of the QPFsubroutine.
• If the 1/np bound for component precision remains absolute for variousproblem sizes.

The paper is organised as follows. Section 2 examines the underlying theory behind Shor’s algorithm,
the QPF subroutine and how success is defined. Section 3 details the error model and issues relating to
simulations. Section 4 present simulation results, examining the stability of the QPF subroutine near
the1/np lower bound for both LNN and non-LNN circuits. Finally we present a brief analysis that
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examines the consequence of various additional scalings ofcomponent precision when attempting to
observe quantum processing for small instances of the QPF subroutine.

2 Shor’s algorithm

As several papers detail the major steps of Shor’s algorithm[1, 18, 19], we provide an overview for
the sake of completeness and to introduce notation. We first consider a given composite number
N = N1N2 which has a binary lengthL = log2(N). To factorise this number, we consider the func-
tion f(k) = xkmodN , wherek ∈ Z andx is a randomly chosen integer such that1 < x < N and
gcd(N, x) = 1 (gcd≡ greatest common divisor). The QPF subroutine of Shor’s algorithm determines
the period off(k). i.e. to find the integerr > 0 such thatf(r) = 1. This QPF subroutine is the
quantum component of Shor’s algorithm. The complete algorithm is composed of both the QPF sub-
routine and several pre and post processing operations thatcan be performed in polynomial time using
classical techniques. These classical steps, detailed by several authors [1, 2, 19], can be implemented
in polynomial time and for our purposes we assume that these steps can be implemented with no error.
Once the period off(k) is found, the factors ofN can be calculated asN1 = gcd(f(r/2)− 1, N) and
N2 = gcd(f(r/2) + 1, N), conditional onr being even andf(r/2) 6= N − 1.

In general, to factorise a number of binary lengthL, 3L qubits are initialised to the state|0〉2L|0〉L.
For clarity we have broken these3L qubits into2L qubits to store the valuesk andL qubits to store the
function evaluations,xkmodN . After initialisation, a Hadamard transform is performed on each of the
2L qubits, placing thek register into an equal superposition of all binary numbers from0 → 22L − 1,

|0〉2L|0〉L −→ 1

2L

22L−1
∑

k=0

|k〉2L|0〉L. (1)

Step three is to apply the functionf(k) on theL qubit register, conditional on the valuesk. The state
of the computer is transformed to,

1

2L

22L−1
∑

k=0

|k〉2L|0〉L −→ 1

2L

22L−1
∑

k=0

|k〉2L|xkmodN〉L. (2)

The next step is to measure theL qubit register. This step can actually be omitted when implementing
the algorithm, however we introduce it to show how the period, r, appears within the procedure. After
measurement the qubit register collapses to,

1

2L

22L−1
∑

k=0

|k〉2L|f(k)〉L −→
√
r

2L

22L/r−1
∑

n=0

|k0 + nr〉2L|f0〉L. (3)

Wherer is the period off , f0 is the measured value andk0 is the smallest value ofk such that
f0 = f(k0). We now apply a quantum Fourier transform (QFT) to thek register. The state of the
computer after the application of the QFT becomes,

√
r

22L

(22L−1)
∑

j=0

(22L/r−1)
∑

n=0

exp

(

2iπ

22L
j(k0 + nr)

)

|j〉2L|f0〉L. (4)
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If we now measure thek register, we will return a value ofj with probability,

p(j, r, L) =

∣

∣

∣

∣

√
r

22L

22L/r−1
∑

n=0

exp

(

2iπ

22L
jnr

)∣

∣

∣

∣

2

. (5)

Eq. 5 is strongly peaked at certain values ofj. If the periodr perfectly divides22L then Eq. 5 can
be evaluated exactly, with the probability of observingj = c22L/r for 0 ≤ c < r being1/r, and0 if
j 6= c22L/r [Fig. 1(a)]. If r is not a perfect divisor of22L, then the peaks of Eq. 5 become slightly
broader, [Fig. 1(b)], and classical methods can be utilisedin order to determiner from the measured

0 32 64 96 128 160 192 224
j

0.125

Pr j

0 26 51 77 102 128 154 179 205 230
j

0.1

Pr j

a.

b.

Fig. 1. Plot of Eq. 5 for the case,22L = 256 with a)r = 8 and b)r = 10.

value ofj. Given several measured integer values around these non-integer peaks a continued fractions
method can be employed to determiner [2, 19]. The probability of successs for Shor’s algorithm is
generally defined as,

s(L, r) =
∑

{useful j}

p(j, L, r). (6)

{usefulj} is the set,j = ⌊c22L/r⌋, j = ⌈c22L/r⌉, 0 < c < r, where⌊ ⌋ ⌈ ⌉ denote rounding down
and up respectively andp(j, L, r) is defined via Eq. 5. Using this definition ofs we determine the
period afterO(1/s) calls to the subroutine.

Many circuits have been proposed in order to implement the QPF subroutine on a physical quan-
tum computer, as summarised in table 1. Some are optimised for conceptual simplicity [20], some for
speed [21] and some for utilising a minimum number of qubits [22, 24].

This investigation will focus on circuits that require a minimal number of qubits for two reasons.
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Table 1. Number of qubits required (Q) and circuit depth (K) of different implementations of the QPF subroutine.
Where possible, figures are accurate to leading order inL.

Circuit Qubits Depth
Simplicity [20] ∼ 5L O(L3)

Speed [21] O(L2) O(L logL)
Qubits [22] ∼ 2L ∼ 32L3

Tradeoff 1 [23] ∼ 50L ∼ 219L1.2

Tradeoff 2 [23] ∼ 5L ∼ 3000L2

LNN circuit [24] ∼ 2L ∼ 32L3

Entanglement is a powerful resource available to quantum computers, however arbitrary entangled
states cannot be represented efficiently on classical computers, with memory requirements scaling
exponentially with the total number of qubits. Hence, minimising the total number of qubits is a nec-
essary requirement for computationally tractable simulations. Also, in the short term, many current
QC architectures face a difficult hurdle in fabricating a large number of reliable qubits, making mini-
mal qubit circuits desirable.

Beauregard [22] details an implementation of the QPF subroutine appropriate for architectures al-
lowing for the arbitrary coupling of qubits (non-LNN), in which modular addition and multiplication
circuits are performed in Fourier space. An appropriate circuit for Linear Nearest Neighbour (LNN)
architectures used in this investigation, detailed in Ref.[24], uses the same method in order to re-
duce the total number of qubits required. Both the LNN circuit and a slightly modified version of the
Beauregard circuit require2L+4 qubits and have identical depths and gate counts to leading order in
L.

3 Error models and analysis

In our simulations, errors were simulated using the discrete model in which a single qubit|φ〉 =

α|0〉 + β|1〉 can experience a bit flipX |φ〉 = α|1〉+ β|0〉, a phase flipZ|φ〉 = α|0〉 − β|1〉, or both
at the same timeXZ|φ〉 = α|1〉 − β|0〉. These operators are simply the set{σx, iσy, σz}.

These discrete error operators are then applied to each qubit, after each operational time step with
probabilityp/3 (i.e each error has identical probability of occurrence, with the total probability of
error given byp). The operational time for all two qubit gates is assumed to be identical and all single
qubit gates combined with neighbouring two qubit gates via the canonical decomposition [25, 26, 27].
The discrete error model represents the most common error model used within QEC analysis. This
model oversimplifies error effects within a quantum computer in several ways.

• The error model used is uncorrelated and random. Some architectures may be more vulnerable
to dephasing errors (Z operations), relaxation errors (X operations) or loss of qubits (this is
particularly relevant in linear optical systems [31]).

• This model does not examine the effect of systematic errors due to inaccurate gate design.
Inaccurate two qubit gates will generally produce correlated errors over pairs of interacting
qubits.

• This specific error model treats memory errors and gate errors identically, which may not be
realistic given a specific physical architecture.
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Although this model represents a simplification of the many diverse effects that can cause errors within
quantum computers, our interest in LNN architectures and their close adherence to this model make it
appropriate. Furthermore, general continuous errors are equivalent to a linear combination of discrete
errors. Correction protocols project encoded qubits onto astate that is perturbed from an error free
state by discreteX and/orZ gates, digitising continuous errors to a discrete set.

Using this error model, we can analytically describe the behaviour of the QPF subroutine in the pres-
ence of severe errors. Referring to the quantum circuit used[24], j is obtained bit-by-bit via a series
of measurements on a master control qubit. This master qubitsimulates the entire2L qubit register
described in section (2). The QFT on this single qubit required by Eq. 4 is performed through a series
of Hadamard gates and classically controlled single qubit rotations. In a more general analysis we can
model the entire computer as two registers, a single master qubit and the rest of the computer.

Consider the state of the computer at a point just before the application of a controlled modular mul-
tiplication gate. At this point the master control qubit is in an equal superposition of|0〉 and|1〉 and
the rest of the computer is some unknown superposition,

|φ〉 = 1√
2
(|0〉master+ |1〉master)

22L−1
∑

m=0

αm|m〉computer. (7)

Now apply the modular multiplication gate, which will return a new superposition state for the
|m〉computer register (when the master qubit is in the|1〉 state). This new superposition is denoted
through the coefficients,{βm},

|φ〉 = 1√
2
|0〉

22L−1
∑

m=0

αm|m〉+ 1√
2
|1〉

22L−1
∑

m=0

βm|m〉. (8)

Prior to measurement, a classically controlled rotation (θ) and a second Hadamard gate is applied to
the master control qubit. The value ofθ is dependent on the result of all previous measurements on
this qubit. Hence the state just before measurement is,

|φ〉 = 1

2
|0〉

22L−1
∑

m=0

(αm + eiθβm)|m〉+ 1

2
|1〉

22L−1
∑

m=0

(αm − eiθβm)|m〉. (9)

With the probability of measuring a 1 or 0 is given by,

p(
1

2
∓ 1

2
) =

1

2
± 1

4

22L−1
∑

m=0

(eiθα∗
mβm + e−iθαmβ∗

m), (10)

using,

22L−1
∑

m=0

|αm|2 =

22L−1
∑

m=0

|βm|2 = 1. (11)

Errors cause the summation in Eq. 10 to asymptote to 0 resulting in an equal probabilityp = (0.5)2L

of eachj being observed.
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The period of the function,r, dictates the number of non-zero coefficients{αm,βm} and the spe-
cific value ofj simply changes the sequence of 1’s and 0’s measured at each step. Since errors act
to randomly perturb these sets of coefficients, consideringdifferent values ofr and/orj will have no
effect on the stability of the QPF subroutine.

The simulated QPF circuit is extremely complex and hence requires a large amount of classical simu-
lation time. Ideally, simulations would proceed by applying a predetermined number of discrete error
gates to every possible location within the circuit and averaging the probability of success,s, over all
possible locations. For example, Fig. 2 shows the effect of asingleX error on the QPF success prob-
ability, s, for the first modular multiplication gate in the LNN,L = 5, circuit. From this we can see

Fig. 2. Map showing how the location of a single bit flip error plays a major role in the final output success of
the LNN circuit. This image is forL = 5 (14 qubits), and shows the first modular multiplication section of the
circuit. Each horizontal block represents one of the 14 qubits while each vertical slice represents a single time
step. Darker areas represent successively lower values fors.

that the spacio-temporal location of an error plays a major role in the final value ofs calculated, with
various sections invariant to the bit flip error. In order to analyse the behaviour of the QPF subroutine
we take an ensemble average over all possible error locations. For example, in fig. 2, the average
value ofs over all possible locations for a single error iss = 0.34. Most circuits are far too large to
map out this topology efficiently: we are limited by computational resources to 50 statistical runs to
obtain an approximate average value ofs for these circuits. However, the results show that there is
still sufficient data to observe trends in the results.

4 Stability under a fixed number of errors

The classical simulation algorithm employed used a state vector representation. Matrix operations
were performed to simulate both quantum gates and error operations. In figs 3 and 4 we plot the
success of the QPF subroutine as a function of the number of discrete errors, we plot the results for
2L+ 4 = 14, 16, 18, 20, representing factorisation of composite numbers fromN = 27 toN = 247.
Simulations examined functions that each had a periodr = 6. Table 2 show the functionsf(k) used
for each value ofL. These simulations aim to investigate the behaviour of the QPF subroutine for

Table 2. Functions used for various values ofL. Note that for2L + 4 = 14, 16 the functions used are not
products of two primes. With some slight modifications to theclassical post-processing, Shor’s algorithm can still
be used to factor such numbers. Since we are only investigating the reliability of the QPF subroutine, this is not
relevant to our analysis.

2L+ 4 f(k) = xkmodN , with r = 6

14 8kmod27
16 31kmod63
18 10kmod77
20 27kmod247
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high component precision, close to the1/np bound. Simulations were performed in a half-stochastic,
half-deterministic manner: The type and spacio-temporal location of discrete errors occur at random,
however we specify exactly how many errors can occur within agiven run of the subroutine.

Simulations examine the probability of obtaining the specific useful valuej = ⌊22L/6⌋. Figs 3
and 4 show the results for the non-LNN [22] and LNN [24] circuits respectively. For clarity, we have
suppressed the statistical errors on these log plots. The complete data sets are given in Appendix A.
The definition of success for the QPF subroutine, given in section 2 takes into account that many

L = 5

L = 6

L = 7

L = 8

Fig. 3. Plot showing the relative probability of measuringj = ⌊22L/6⌋ as a function of the specific number of
errors for the non-LNN circuit. The curves representL = 5 to L = 8. The horizontal lines show the point of
random output for each successive value ofL.

different values ofj may be used to determiner. However, for the sake of this analysis, we are only
concerned if the QPF subroutine returns with high probability a value ofj that is theoretically pre-
dicted. Therefore in Figs. 3 and 4 we normalise the plots suchthat an error free calculation returns
j = ⌊22L/6⌋ with probability one and Shor’s algorithm succeeds with a single call to the QPF sub-
routine. As the number of errors increase the probability ofmeasuringj = ⌊22L/6⌋ decreases until it
reaches the point of random output, at this stage the QPF subroutine performs no better than randomly
choosing a value ofj in the rangej = 0 → j = 22L.

Figs. 3 and 4 clearly shows how the quantum speed up of the QPF subroutine, and hence Shor’s
algorithm, diminishes to a point where it is no different to randomly choosing a value from thej
register, as the number of errors increases (represented bythe horizontal lines). At this point, any
quantum processing can no longer be identified from the probability spectrum forj.

Accurate curve fits are extremely difficult to obtain from thelimited amount of data available due
to long computation times. Each point represents 50 separate simulations where the total number of
errors occur randomly within the QPF circuits. In order to get sufficient data to extract meaningful
fits for each of these curves, one would expect the number of statistical runs should be the same order
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L = 5

L = 6

L = 7

L = 8

Fig. 4. Error stability for the LNN circuit. Equivalent to fig. 3

as the number of possible error locations (or error combinations). For example, in theL = 5 circuit,
for one error, the number of possible error locations and types is≈ 18000. Hence, it is quite surpris-
ing that even 50 statistical runs provides enough data to obtain a qualitative picture of how the QPF
subroutine behaves for various values ofL (the plots for each circuit, including statistical errors,are
detailed in Appendix A). To reduce the statistical errors and obtain accurate curve fits for these plots,
further simulations are required, preferably using the density matrix formalism. However, from this
data we can still draw qualitative conclusions about the average robustness of the QPF routine as a
function of increasing number of errors.

To verify that a quantum computer implementing the QPF routine is processing in the quantum regime,
it would be sufficient to observe peaks within the probability spectrum forj. The sharper the peaks,
the fewer repetitions of QPF required and the more practicalthe computation. For very low visibility
peaks, the number of repetitions of QPF scales exponentially with L, nullifying the advantages of the
quantum algorithm over its classical version.

These simulations show that a maximum error rate of1/np for all problem sizes is not required to
obtain better performance than classically searching through thej values. By inspection of figs 3
and 4, an estimate can be made regarding the number of errors (as a function ofL) before quantum
processing in the QPF cannot be identified [Fig. 5]. Fig. 5 represents only a preliminary estimate
from figs. 3 and 4, additional data is required to perform an accurate curve fit. The purpose of fig. 5
is simply to demonstrate that when attempting to observe quantum processing, experimentally, more
than one error can be tolerated, and the number of errors increases withL.

When attempting to realise the full potential of the QPF routine, the probability of useful output
should be kept as high as possible. It can be seen from figs. 3 and 4 that even a single error signif-
icantly reduces this probability. Therefore, our simulations support the view that for large scale im-
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plementation of the QPF routine, ideally no errors should occur in the circuit. This would, of course,
be achieved though quantum error correction, with work by Steane [12, 29, 11] already examining ef-
fectivelogical qubit error rates, given a specificphysical error rate, for various error correcting codes.

Fig. 5. Estimate on the maximum number of errors possible foreach value ofL before the LNN circuit becomes
equivalent to a classical random search.× ≡ non-LNN circuit, ≡ LNN circuit.

The error behaviour for the LNN and non-LNN circuits are largely indistinguishable from each other.
However, there is a slight difference in the error sensitivity of the two circuits. We attribute this to a
minor increase in the LNN circuit depth. As expected, the overall area (np) of the circuit is the domi-
nating factor in its sensitivity. The mesh circuit [24] required in the LNN design is the major difference
between the LNN and non-LNN circuits. This section of the LNNcircuit acts to slightly increase the
overall depth, from32L3 +66L2 − 2L− 1 for the non-LNN circuit to32L3 +80L2 − 4L− 2 for the
LNN design [Table. 3]. Hence the sensitivity of the LNN circuit increases slightly compared with the
non-LNN circuit.

Table 3. Total circuit depths (K) for the LNN and non-LNN circuits, forL = 5 to L = 8

L LNN Circuit non-LNN Circuit
5 5978 5639
6 9766 9275
7 14866 14195
8 21470 20591

The scaling in the QPF subroutine shown by our simulations can be utilised when testing such a
complex quantum circuit for evidence of quantum processing. As mentioned previously, peaks within
the probability spectrum ofj are indicative of quantum processing and our simulations have show that
such peaks will be present even when component precision is not bounded by1/np.

Although we are unable fit a specific curve to the data shown in figs. 3 and 4, we can consider several
different cases for the scaling of the tolerable number of errors. Sincenp ≈ O(L4) for the quantum
circuit used in the simulations, and restricting our analysis to integer powers ofL, we can safely bound
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the tolerable error scaling as at mostO(L3). If this scaling wereO(L4) then the required component
precision would scale asO(L4)/np ≈ constant, implying that as the quantum circuit increases size,
the required component precision remains constant. This argument also is valid for scaling faster than
O(L4). If such a fast scaling occurred, increasing the circuit size would lead to a decrease in required
component precision. Fig. 6 examines the required physicalcomponent precision required to observe
quantum processing in the QPF, for potential scalings of1/np (×), L/np (⋄), L2/np (△) andL3/np

( ). As a probability spectrum ofj is needed in all cases, the number of total QPF routine iterations
needed is approximately of order22L. Therefore, onlyL = 5 to L = 10 is shown, since for higher
L the total number of circuit iterations become prohibitively large. Table 4 examines the minimum

Fig. 6. Required component precision in order to observe quantum processing for small values ofL in the QPF
subroutine. Each curve represents a separate type of additional scaling demonstrated by simulations,× ≡ 1/np,
⋄ ≡ L/np, △ ≡ L2/np and ≡ L3/np

physical component precision required to observe quantum processing forL = 5 to L = 10 for a
component precision of1/np and for linear, quadratic and cubic scaling. Depending on the exact

Table 4. Minimum component precision required to apply the QPF subroutine to at leastL = 10 for various
scalings in component precision.

required component scaling component precision required
1/np 1.3× 10−6

L/np 1.3× 10−5

L2/np 1.3× 10−4

L3/np 1.3× 10−3

nature of this scaling, quantum processing can be observed for L = 5 to L = 10 with a physical
component precision between one and three orders of magnitude lower than the1/np bound.

Even though the computational resources required to effectively identify the functional form of this
scaling are unavailable, we can conclude that some non-constant scaling of component precision with
L is present leading to a reduction in the physical component precision required to observe quantum
processing for small values ofL. This result would reduce the pressure on experimental fabrication, in
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the short term, by potentially removing the need to implement complicated error correction protocols
to simply observe quantum processing in small instances of the QPF subroutine.

5 Conclusion

We have simulated the quantum part of Shor’s algorithm, the quantum period finding subroutine
(QPF). Our simulations have shown that the structure of thisquantum circuit leads to a robustness
above the naive1/np approximation for component precision, if one only wishes to demonstrate the
existence of quantum processing. Depending on the functional form of this scaling, quantum process-
ing can still be observed for error rates significantly higher that the1/np bound for small instances
of the QPF subroutine. This additional robustness is advantageous in the short term since introducing
complicated QEC protocols to simply observe quantum processing will be difficult. However, the re-
sults of our simulations suggest that for large practical problem sizes, extensive use of error correction
will be required to ensure error free calculations.

The restriction to a linear nearest neighbour design does not significantly alter the sensitivity of the
subroutine, provided that appropriate LNN circuits can be designed roughly equivalent in depth and
qubit numbers as non-LNN circuits.

Further work includes performing a detailed density matrixsimulations in order to determine an ap-
proximate functional form for this additional scaling, using an appropriate simulator such as QuID-
DPro [30].
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Appendix A

Fig. A.1. Plot showing the stability of the non-LNN (right plot) and LNN (left plot) QPF circuit forL = 5,
included on this plot are errors associated with the stochastic nature of simulations, representing the variance on
the 50 run data set used in simulations.
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Fig. A.2. Plot showing the stability of the non-LNN (right plot) and LNN (left plot) QPF circuit forL = 6,
included on this plot are errors associated with the stochastic nature of simulations, representing the variance on
the 50 run data set used in simulations.

Fig. A.3. Plot showing the stability of the non-LNN (right plot) and LNN (left plot) QPF circuit forL = 7,
included on this plot are errors associated with the stochastic nature of simulations, representing the variance on
the 50 run data set used in simulations.

Fig. A.4. Plot showing the stability of the non-LNN (right plot) and LNN (left plot) QPF circuit forL = 8,
included on this plot are errors associated with the stochastic nature of simulations, representing the variance on
the 50 run data set used in simulations.
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