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Abstract

Whitney’s inequality established an important connection between vertex and edge con-
nectivity, and the degree of a graph, which was later generalized to digraphs and undirected
hypergraphs. Here we show, using the most common definitions of connectedness for di-
rected hypergraphs, that an analogous result holds for directed hypergraphs. It relates the
vertex connectivity under strong vertex elimination, edge connectivity under weak edge
elimination, and a suitable degree-like parameter and it is a proper generalization of the
situation in both digraphs and undirected hypergraphs. We furthermore relate the connec-
tivity parameters of directed hypergraphs with those of its directed bipartite König repre-
sentation.
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1 Introduction

Directed hypergraphs naturally arose as a model of dependencies e.g. in propositional logic,
database theory, and model checking, see e.g. [3, 7] for reviews. Recently they also received
increasing attention as models of biological [6, 9], chemical [2, 11], and transportation
networks [10]. Connectivity parameters are one of the most fundamental characteristics of
a network, and hence are also of directed practical relevance for applications of directed
hypergraphs [6].

It is important to note that directed hypergraphs give rise to many different notions of
connectedness. Here, we only consider the simplest, least restrictive, construction of hy-
perpath, requiring only a single vertex in the overlap of the head of one directed hyperedge
and the tail of the following one. In particular in chemical reactions networks, much more
restrictive notions path and reachability are also of interest, see e.g. [1, 2, 6]. The concepts
of connectivity explored here remain closely related to those of bipartite graphs representa-
tion of directed hypergraphs [12] and, as we shall see, admit generalizations of well-known
results for graphs and digraphs.

The connectivity in an undirected graph G is described by two parameters, the vertex
connectivity index κ and the edge connectivity index κ′. They are defined as the minimum
number of vertices or edges, respectively, whose removal disconnects G or gives a triv-
ial graph. Hassler Whitney [13] showed that all undirected graphs satisfy the inequality
κ ≤ κ′ ≤ δ, where δ denotes the minimal vertex degree in G. Later Geller and Harary
found a generalization to digraphs [8]. In hypergraphs, the situation becomes more compli-
cated because there are different, natural ways to delete vertices and hyperedges and thus
to derive sub-hypergraphs [4]. Nevertheless, Whitney’s inequalities for the connectivity
parameters generalize to (undirected) hypergraphs [5].

In the present contribution we show that analogous results also hold for directed hy-
pergraphs with respect to both strong and unilateral connectedness. In Section 2.1 we
introduce the notation and give some simple preliminary results for later use. Section 3
introduces the various connectivity indices and established some universal inequalities be-
tween them. For many pairs of indices, however, we show that they are not comparable in
general. The main theorem, a generalization of Whitney’s inequalities, is the topic of Sec-
tion 4. In the final Section 5 we explore relations between connectivities of Section 5 we
explore relations between connectivities of directed hypergraphs and their bipartite digraph
representation.

2 Notation and preliminaries

2.1 Directed hypergraphs

A directed hypergraph H = (V,E) consists on a vertex set V and a set of directed hyper-
edges or hyperarcs E = {(T (e), H(e))} | T (e) ⊆ V and H(e) ⊆ V }, where H(e) 6= ∅
and T (e) 6= ∅. The sets T (e) and H(e) are called the tail and the head of e, respectively.
The support of a hyperedge e ∈ E is the pair supp(e) = T (e) ∪H(e). A directed hyper-
graph is called k-uniform if |T (e)| = |H(e)| = k for all e ∈ E. Two edges e, e′ ∈ E are
said to be parallel if T (e) = T (e′) andH(e) = H(e′). A directed hypergraphH = (V,E)
is called simple if it has neither parallel hyperarcs and nor loops, that is, edges e with
T (e)∩H(e) = ∅. A (directed) hypergraph is trivial if |V | = 1 and E = ∅, i.e., H consists
of a single vertex.
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We say that u, v ∈ V are adjacent if there exists a hyperarc e ∈ E such that u ∈ T (e)
and v ∈ H(e). The neighborhood of a vertex v in a hypergraph (or graph) is the set of all
the vertices adjacent to v not including v. The indegree of a vertex v, denoted as d−(v)
in H , is defined as the number of hyperarcs that contain v in their head. The outdegree
of a vertex v, denoted as d+(v) in H , is defined as the number of hyperarcs that contain
v in their tail. The minimum indegree and minimum outdegree of H will be denoted by
δ−(H) = min{d−(v)}v∈V and δ+(H) = min{d+(v)}v∈V , respectively. The number of
arcs parallel to e (including e) is the multiplicity of e and it is denoted as mH(e).

Every directed hypergraph H = (V,E) can be represented as a bipartite digraph G(H)
with vertex set V ∪ E and directed arcs x → e iff x ∈ T (e) and e → x iff x ∈ H(e).
The arcs of G(H) are called the bits of the directed hypergraph. The graph G(H) is
called the incidence digraph, Levi digraph, or König digraph of H . There is a one-to-one
correspondence between directed hypergraphs and bipartite graphs for which one partition
(the one corresponding to the hyperarcs E) has neither sources nor sinks (since we do not
allow hyperarcs with empty heads or tails.) For details we refer to [12].

2.2 Subhypergraphs

Substructures of directed hypergraphs can be constructed in two ways: In strong substruc-
tures the hyperedges are either retained or removed as an entity. In weak substructures,
hyperedges can be restricted to a subset of vertices as long as their heads and tails remain
non-empty. More precisely, following [5] we define:

A directed hypergraph H ′ = (V ′, E′) is a weak subhypergraph of the directed hyper-
graphH = (V,E) if V ′ ⊂ V andE′ consists of edges e′ with T (e′) = {v | v ∈ T (e)∩V ′}
and H(e′) = {v | v ∈ H(e) ∩ V ′} for some e ∈ E. A directed hypergraph H ′ = (V ′, E′)
is a weak induced subhypergraph of the directed hypergraph H = (V,E) if V ′ ⊂ V and
edge set E′ = {(T (e) ∩ V ′, H(e) ∩ V ′)|e ∈ E ∧ T (e) ∩ V ′ 6= ∅ ∧H(e) ∩ V ′ 6= ∅}. A
directed hypergraph H ′ = (V ′, E′) is called a strong subhypergraph of the directed hyper-
graphH = (V,E) if V ′ ⊂ V andE′ ⊂ E. A strong subhypergraphH ′ = (V ′, E′) ofH =
(V,E), is induced by V ′ if supp(e) ⊆ V ′ and it is induced byE′ if V ′ =

⋃
e′∈E′ supp(e′).

H ′ = (V ′, E′) is a spanning subhypergraph of H = (V,E) if V ′ = V .
The deletion of vertices and edges from a directed hypergraph will play a key role in

this contribution. Just as the formation of subhypergraphs this can be done in two ways:

Strong vertex deletion of v ∈ V removes v and all hyperarcs that are incident to v.
Thus it creates the strong subhypergraph H ′ = (V ′, E′) of H = (V,E) with vertex set
V ′ = V \ {v} and edge set E′ = {e ∈ E | v /∈ T (e) ∪H(e)}. For a subset X ⊂ V we
write H\SX to denote the directed hypergraph formed by strongly deleting all the vertices
of X from H .

Weak vertex deletion of v ∈ V removes v from the vertex set, and all occurrences of
v from the hyperarcs of the directed hypergraph H . This creates the hypergraph H ′ =
(V ′, E′) where V ′ = V \{v} and E′ = {(T (e) ∩ V ′, H(e) ∩ V ′)|e ∈ E ∧ T (e) ∩ V ′ 6=
∅∧H(e)∩V ′ 6= ∅}. We use the notation H\W v to denote the directed hypergraph formed
by weakly deleting the vertex v fromH . For any subsetX of V we writeH\WX to denote
the directed hypergraph formed by weakly deleting all the vertices of X from H .
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Strong deletion of the hyperarc e ∈ E removes e from the hypergraph and weakly
deletes all the vertices incident with e. Thus it produces the weak subhypergraph H ′ =
(V ′, E′) with V ′ = V \supp(e) and E′ = {(T (e)∩ V ′, H(e)∩ V ′)|e ∈ E ∧ T (e)∩ V ′ 6=
∅∧H(e)∩V ′ 6= ∅}. We writeH\Se to denote the hypergraph formed by strongly deleting
the edge e fromH . For any subset F ofE, we useH\SF to denote the directed hypergraph
formed by strongly deleting all the hyper arcs of F from H .

Weak deletion of the hyperarc e ∈ E simply removes the hyperarc e without affecting
the rest of the hypergraph. Thus it leads to the strong subhypergraph H ′ = (V,E′) with
E′ = E \ {e}. We write H\W e to denote the directed hypergraph formed by weakly
deleting the hyperarc e from H . For any subset F of E, we write H\WF to denote the
directed hypergraph formed by weakly deleting all the hyperarcs of F from H .

It follows directly from the definition that the order in which vertices or edges are
deleted has no impact on the final result. Thus the hypergraphs H\SX , H\WX , H\SF ,
and H\WF are well-defined.

2.3 Connectedness

A directed walk in a hypergraph H = (V,E) is a sequence Pv0,vk
=

(v0, e1, v1, e2, ..., ek, vk) where e1, ..., ek ∈ E and v0, ..., vk ∈ V , such that vi−1 6= vi,
vi−1 ∈ T (ei) and vi ∈ H(ei). A directed p-path is a walk where the vertices v0, ..., vk
are all distinct. A directed cycle is a directed walk with k distinct hyperarcs and k distinct
vertices such that v0 = vk. The length of a directed walk, directed path, or cycle is the
number of hyperarcs in the sequence; i.e., it is k in the foregoing definitions. Let e ∈ E
where T (e) = {u1, ..., uk} andH(e) = {v1, ..., vl} then the reverse hyperarc of e is ē ∈ E
such that H(ē) = {u1, ..., uk} and T (ē) = {v1, ..., vl}.

Definition 2.1. We say that y is reachable from x in H if there is a directed p-path from x
to y in H . For two hyperarcs e and e′ we say that e′ is reachable from e in H if there is x
in H(e) and y ∈ T (e′) such that y is reachable from x. Furthermore, we say v is reachable
from u in G(H) if there is a directed path from u to v.

There are three natural notions of connectedness in digraphs: A digraph is said to be
strongly connected if, for every pair of vertices x, y ∈ V , x is reachable from y and y
is reachable from x. It is said to be unilaterally connected if, for every pair of vertices
x, y ∈ V , x is reachable from y or from y is reachable from x. A bipartite graph with
vertex set V1 ∪V2 is unilaterally connected on V1 if for every pair u, v ∈ V1, v is reachable
from u or u is reachable from v. Finally, a digraph is weakly connected if its underlying
graph, i.e without direction, is connected. These definitions can be generalized immediately
to hypergraphs.

Definition 2.2. A directed hypergraph H is strongly connected if for every pair of vertices
u, v ∈ V , u is reachable from v and v is reachable from u. It is unilaterally connected if
for every two pair of vertices u, v ∈ V , v is reachable from u or u is reachable from v. It is
(weakly) connected if the underlying hypergraph, is connected.

Corollary 2.3. For every directed hypergraph, “strongly connected” implies “unilaterally
connected”, which in turn implies “weakly connected”.
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Lemma 2.4. A directed hypergraph H is strongly, unilaterally, or weakly connected if and
only if its incidence (di)graph G(H) is strongly connected, unilaterally connected on V ,
and weakly connected, respectively.

Proof. An undirected hypergraph is connected if and only if its (undirected) incidence
graph is connected, see e.g. [4, 5], hence the statement is true for weak connectedness.

To show the statement for unilateral and strong connectedness we first show that for all
x, y ∈ V there is hyperpath from x to y in H if and only if there is a path from x to y in
G(H). First assume that a directed hyperpath x = v0, e1, v1, e2, . . . , vk−1, ek, vk = y in
H exists. Then the bits (v0, e1), (e1, v2), . . . , (ek−1, vk) form a directed path for x to y
in G(H). Conversely, suppose such a directed path exists in G(H). We note that the arcs
(vi−1, ei) and (ei, vi) in G(H) by construction are bits induced by a hyperedge ei with
vi−1 ∈ T (ei) and vi ∈ H(ei). Thus the sequence x = v0, e1, v1, e2, . . . , vk−1, ek, vk = y
is a directed hyperpath in H .

If G(H) is strongly connected then in particular there is a directed hyperpath in H
between any pair of vertices, and thusH is strongly connected. Conversely, ifH is strongly
connected, we know that there is a directed path between any pair x, y in V . To see that
every e ∈ E is reachable from every x ∈ V in G(H) we recall that every T (e) 6= ∅, i.e.,
there is u ∈ T (e). We already know that there is a directed path from x to u in G(H),
which can be extended by the bit (u, e) to a directed path from x to e. Using that H(e) 6= ∅
we see that every x ∈ V is reachable from every e ∈ E. Concatenating a directed from e
to x and from x to e′ we finally see that every e′ ∈ E is reachable from every e ∈ E, and
thus G(H) is strongly connected.

It follows immediately that H is unilaterally connected if for every x, y ∈ V there is a
directed path from x to y or from y to x in G(H), i.e., if G(H) is unilaterally connected
on V .

Note that unilateral connectedness of H does not imply unilateral connectedness of
G(H). As a counterexample consider the directed (hyper)graph H with V = {u, v, w, x}
and hyperarcs e1 = (u, v), e2 = (v, w), e3 = (w, x), and e4 = (u, x). H is unilaterally but
not strongly connected but there is no directed path from e2 to e4 or vice versa in G(H).

In the following we say that H = (V,E) is C -connected with C ∈ {S ,U ,W } is
strongly, unilaterally, or (weakly) connected. Correspondingly, we shall say that H is C -
disconnected if it is not C -connected.

3 Connectivity in directed hypergraphs
The degree of connectedness in an undirected hypergraph H is described by invariants
describing the minimal number of vertices or edges that must be removed by either weak
or strong elimination to disconnect the hypergraph or leave on a trivial hypergraph behind
[5]. The situation becomes even more involved because each of these invariants or indices
can be defined with respect to each of the three concepts of connectedness. We write κxC

and κ′xC , where the prime refers to edge deletion, x ∈ {s, w} indicates strong or weak
vertex/edge deletion and refers to strong, unilateral, or weak connectedness. The numbers
κxC and κ′xC , are the minimum numbers of vertices and hyperedges, respectively, such
that their x-elimination leaves a hypergraph C -disconnected or trivial.

Let H = (V,E) be a directed hypergraph. A vertex v ∈ V is called a strong (weak) C -
cut vertex of H if H\sv (H\wv) is C -disconnected or trivial. X is a strong (weak) vertex
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Figure 1: Left: Tk is the tournament of k vertices, where k is even. In this hypergraph
κsS = 1, κwS = k

2 , κsU = 1, κwU = k, the minimum strong vertex, for sS and sU
cut is {v} and a minimum weak vertex cut for wS is {u1, u3, ..., uk−1} and a weak vertex
cut for wU is {u1, v2, u3, v4, ..., vk} . As k increases, an infinite family of hypergraphs for
which this difference grows linearly is obtained. Right: Tk is the tournament of k vertices,
where k is even. In this hypergraph κ′sS = κ′sU = 1 ((u, v) is a disconnecting arc),
κ′wS = k

2 (all the arcs that have tail v), κ′wU = k + 1(all the arcs that have tail or head u).

C -cut of H if H\sX (H\wX) is C -disconnected or trivial. We adopt the convention that
κxC = 1 for trivial hypergraphs and κxC = 0 for null hypergraphs. A subset F ⊆ E is
called a strong (weak) C -disconnecting set of H if H\sF (H\wF ) is C -disconnected or
trivial. We set κ′xC = 1 for trivial hypergraphs and κ′xC = 0 for null hypergraphs.

The following inequalities hold for all directed hypergraphs as an immediate conse-
quence of the definition and the implications between the connectedness classes for both
x = s and x = w.

κxS ≤ κxU ≤ κxW κ′xS ≤ κ′xU ≤ κ′xW (3.1)

Since W -connectedness coincides with the connectedness of undirected hypergraphs we
focus on C ∈ {S ,U } in the following. The case of undirected hypergraphs is studied in
detail in [5]. We first consider the relationships between strong and weak elimination:

Lemma 3.1. Let H = (V,E) be a directed hypergraph. Then κsC ≤ κwC for C ∈
{S ,U }.

Proof. If H is trivial or null, there is nothing to show. If H is C − disconnected, then
κxC = κ′xC = 0, and the inequalities hold trivially. Now suppose that H is nontrivial and
C -connected. We note that H\sX is a spanning strong subhypergraph of H \w X for all
X ⊆ V . This implies immediately that κsC ≤ κwC for C ∈ {S ,U }.

It is worth noting that κwC is a poor upper bound for κsC . Indeed, the difference
between κwC −κsC can become arbitrarily large as shown in Figure 1(left). It is important
to notice that not every strong vertex cut is contained in a weak vertex cut. The situation
on the left hand side of Figure 1 is an example.

Whitney’s inequalities [5] and their generalization to directed graphs [8] and undirected
hypergraphs [13] relate the connectivity indices with each other. In the case of directed
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Figure 2: Left: In this hypergraph κsS = κsU = 1 since v is a cut vertex; κwS = 2
since {v2, v4} is a minimum weak vertex cut; κ′sU = κ′sS = 2 since {(v5, v4), (v2, v3)}
is a strong disconnecting set. Right: The hyperarcs in this hypergraph are e1 =
({v1, ..., vk}, {u1, ..., uk}), ē1, e2 = ({u1, ..., uk}, {w1, ..., wk}), ē2. We have κ′wS = 1
by removal of any hyperarc and κwS = k since {u1, ..., uk} is the minimal weak vertex.

hypergraphs, however, some of these quantities do not fulfill universal inequalities. We
give some simple counterexamples:

κsU Q κwS . In a directed cycle Cn of length n > 3 we have κsU = 2 and κwS = 1.
Therefore κsU > κwS . On the other hand, the left hand side of figure 2 shows an
example where κsU = 1 and κwS = 2, i.e., κsU < κwS .

κ′sU Q κ′wS . In a directed cycle Cn of length n > 4 we have κ′wS = 1 and κ′sU = 2.
Therefore κ′sU > κ′wS . The hypergraph on the right hand side of Figure 1 has
κ′sU = 1 and κ′wS = k

2 . For k > 3 we therefore have κ′sU < κ′wS .

κsS Q κ′sU . The hypergraph in Figure 2(left) satisfies κsS < κ′sU . Now consider the
hypergraph in Figure 1(right) with all reverse hyperarcs added. Here, κ′sU = 1 and
κsS = 2 since {u, v} is a vertex cut. Thus κ′sU < κsS .

κsU Q κ′sU . The hypergraph in Figure 2(left) satisfied κsU < κ′sU , while the hypergraph
in Figure 1(right) satisfies κsU = 2 ({u, v} is a minimal strong the vertex cut) and
κ′sU = 1. Therefore κ′sU < κsU .

κ′sU Q κwS . In a directed cycle Cn of length n > 4 we have κwS = 1 and κ′sU = 2, i.e.,
κwS < κ′sU . Again, we consider the hypergraph in Figure 1(right) with the reverse
hyperarcs added. It satisfies κ′sU = 1 and κwS = 2, i.e., κ′sU < κwS .

κwS Q κ′wS . The hypergraph in Figure 2(right) satisfies κ′wS = 1 and κwS = k, i.e.,
κ′wS < κwS . For the hypergraph in Figure 1(right) we have κwS = 2 due to the
weak way the vertex cut {u, v}. Furthermore, for k ≥ 4 we have κ′wS = k

2 and thus
κwS < κ′wS .

κ′wU Q κwS . The hypergraph in Figure 1(right) satisfies κwS = 2, the set {u, v} being a
minimum vertex cut. On the other hand, we have κ′wU = k+1 in the same example,
hence, for k > 2, we have κwS < κ′wU . The hypergraph in Figure 2(right) satisfies
κwS = k and κ′wU = 2, since {e1, ē1} is a minimal disconnecting set. Thus, for
k > 2, we have κ′wU < κwS .

κwS Q κ′sU . The hypergraph in Figure 2(right) satisfied κ′sU = 1 since every hyperarc
contains a strong cut vertex. On the other hand we have κwS = k and this, for



8 Art Discrete Appl. Math. 5 (2022) #P1.01
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Figure 3: In this hypergraph with even k we have κwS = κwU = 1 since the vertex v is a
cut vertex; κ′sU = κ′sS = 1+ k

2 since {(v, {u1, ..., uk}), (v1, v2), (v3, v4), ..., (vk−1, vk)})
is a strong disconnecting set.

k > 1, κ′sU < κwS . In a directed cycle Cn with n > 5 we have κwS = 1 and
κsU = 2 and therefore κwS < κsU .

κwU Q κ′wS . In a directed cycle of length n > 3 we have κ′wS = 1 and κwU = 2

and this κ′wS < κwU . The hypergraph in Figure 1(right) satisfied κ′wS = k
2 and

κwU = 2 since the set {u, v} is a weak vertex cut. Thus, for k > 4, we have
κwU < κ′wS .

κwU Q κ′wU . The hypergraph in Figure 2(right) satisfies κ′wU = 2 and κwU = k. Thus,
for k > 2 we have κ′wU < κwU . The hypergraph in Figure 1(right) satisfied κwU =
2 and κ′wU = k + 1. This, for k > 2 we have κwU < κ′wU .

κsU Q κ′wS . In a directed cycle Cn of length n > 3 we have κ′wS = 1 and κsU = 2, i.e.,
κ′wS < κsU . The hypergraph in Figure 1(right) satisfies κsU = 2 and κ′wS = k

2 .
Thus, for k > 4 we have κsU < κ′wS .

κ′sS Q κsU . The hypergraph in Figure 1(right) satisfied κ′sS = 1 and κsU = k + 1, i.e.,
κ′sS < κsU . For the hypergraph in Figure 2(left) we have κsU = 1 and κ′sS = 2
and thus κsU < κ′sS .

κ′sS Q κsS . The hypergraph in Figure 1(right) satisfies κ′sS = 1 and κsS = 2, and thus
κ′sS < κsS . For the hypergraph in Figure 2(left) we have κsS = 1 and κ′sS = 2,
and therefore κsS < κ′sS .

κ′sC Q κwC . The hypergraph in Figure 3 satisfies that κ′sC = 1 + k
2 and κwC = 1, hence

for k > 2 we have κ′sC > κwC . The hypergraph in Figure 2(right) satisfies κ′sC = 1
and κwC = k, thus for k > 1 we have κ′sC < κwC .

κ′sS Q κwU . The hypergraph in Figure 3 satisfies κ′sS = 1 + k
2 and κwU = 1 thus for

k > 2 we have κ′sS > κwU . The hypergraph in Figure 2(right) satisfies κ′sS = 1
and κwU = k, hence for k > 1 we have κ′sS < κwU .

κ′sC Q κ′wC . The hypergraph in Figure 3 satisfies κ′sC = 1 + k
2 and κ′wC = 1, hence for

k > 2 we have κ′sC > κwC . The hypergraph in Figure 1(left) satisfies κ′sC = 1 and
κ′wC = k

2 , hence for k > 1 we have κ′sC < κ′wC .

κ′sS Q κ′wU . The hypergraph in Figure 3 satisfies κ′sS = 1 + k
2 and κ′wU = 1, hence

for k > 2 we have κ′sS > κwU . The hypergraph in Figure 1(left) satisfies κ′sS = 1
and κ′wU = k

2 , hence for k > 1 we have κ′sS < κ′wU .
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4 Whitney’s theorem for directed hypergraphs
Let H = (V,E) a directed hypergraph (or digraph) and v ∈ V . The total degree of the
vertex v is dt(v) = d+(v) + d−(v). Denote by δid, δod, and δW the minimum of d−, d+

and dt over all v ∈ V , respectively. Furthermore we introduce

δU
id = min

v∈V
{d−(v) + δid(H \w v)} and δU

od = min
v∈V
{d+(v) + δod(H \w v)}.

With this notation we define δS = min{δid, δod} and δU = min{δU
id , δ

U
id }. These param-

eters are direct generalizations of the corresponding quantities for directed hypergraphs,
see e.g. [8].

The next theorem is a generalization of Whitney’s inequalities for directed hypergraphs.
The proof follows ideas from [8] for the analogous result for digraphs.

Theorem 4.1. Let H = (V,E) a directed hypergraph. Then κsU (H) ≤ κ′wU (H) ≤
δU (H) and κsS (H) ≤ κ′wS (H) ≤ δS (H).

Proof. If H is trivial or null, the statements of the theorem are obviously valid.
Let H be a U -connected hypergraph and let u, v ∈ V such that d−(u) = δid(H) and

d−(v) = δid(H \w u). Weakly eliminate the hyperarcs such that their heads contain u and
v; in this way, there is no (u, v)-directed path and there is no (v, u)-directed path on H . So
κ′wU (H) ≤ δU

in . Applying the same dual argument we conclude that κ′wU (H) ≤ δU
od and

so κ′wU (H) ≤ δU .
On the other hand, if κ′wU (H) = 1, there is e ∈ E, such that H\we is not U -

connected. If we eliminate in a strong way the vertex v ∈ T (e) ∪ H(e) then H\sv is
not U -connected, so κsU (H) = 1 and the result is valid. Let κ′wU (H) > 1, for prov-
ing that κsU (H) ≤ κ′wU (H) let weakly eliminate set of hyperarcs F , the cardinality
of F is κ′wU (H) − 1 such that the directed hypergraph H ′ = (V ′, E′) = H\wF has
κ′wU (H ′) = 1. Let e ∈ (E′) a hyperarc such that H ′\we is not unilaterally connected.
Now we strongly eliminate the set of vertices X ∈ V such that each vertex on X is in ex-
actly one hyperarc of F (there are enough vertices due to | e |> 1 for all e ∈ E), we denote
this directed hypergraphH ′′ = (V ′′, E′′). If e /∈ E′′ thenH ′′ is not unilaterally connected,
so κsU (H) < κ′wU (H). If e ∈ E′′ then κ′wU (H ′′) = 1 and κsU (H ′′) = κ′wU (H ′′) = 1
so κsU (H) = κ′wU (H).

Let H be S -connected hypergraph and let v ∈ V such that d−(v) = δid(H). Weakly
eliminate the hyperarcs such that their heads contain v; in this way, there is no (u, v)-
directed path on H for all u ∈ V . So κ′wS (H) ≤ δin. Applying the same dual argument
we conclude that κ′wS (H) ≤ δod and so κ′wS (H) ≤ δS .

The proof that κsS (H) ≤ κ′wS (H) parallels the proof of the inequality κsU (H) ≤
κ′wU (H).

Note that Theorem 4.1 reduces the corresponding statement for digraphs whenever all
e ∈ E hyperarcs satisfy |T (e)| = |H(e)| = 1.

Corollary 4.2. Let H = (V,E) a directed hypergraph. Then κsS ≤ κwU and κsS ≤
κ′wU .

Proof. The first inequality follows from the note at the beginning of the previous section
and Lemma 3.1. The second inequality follows from Theorem 4.1 and Equation 3.1.
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Tq
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Figure 4: Left: Construction (A); Right: Construction (B)

We next show that the parameters κsC (H), κ′sC (H), κwC (H) and κ′wC (H) are inde-
pendent for strongly or unilaterally connected directed hypergraphs satisfying κsC (H) ≤
min{κwC (H), κ′wC (H)}.

Theorem 4.3. For every choice of natural numbers a, b, c, d, and e with a ≤ min{c, d},
b ≤ c and max{b, c, d} ≤ e and connectedness classes C ∈ {S ,U ,W } there exists a
directed hypergraph such that κsC (H) = a, κ′sC (H) = b, κwC (H) = c, κ′wC (H) = d
and δC (H) = e.

Proof. We explicitly construct hypergraphs with the desired properties.
Consider unilateral connectedness, i.e., C = U . We construct a hypergraph A form

by five disjoint components: Two tournaments T ′p and T ′′p on p vertices, a tournament Tq ,
and two single vertices w1 and w2; each arc in the tournaments T ′p and T ′′p has multiplicity
e−p+1 and each arc in Tq has multiplicity e−q+1. We then insert r hyperarcs consisting
of one vertex from T ′p and Tq in its tail and a vertex from T ′′p in its head involved, with all
reverse hyperarcs added and with one of these hyperarcs with multiplicity t. Finally, we
insert t arcs from w1 to T ′p and e arcs from w2 to T ′′p with all reverse arcs added. The arcs
are inserted in such a way that the vertices of the tournaments are covered as uniformly as
possible. The construction is illustrated in Figure 4(left).

Let a = q, b = r, c = p, d = t. The minimum strong vertex cut in A is V (Tq), the
minimum strong disconnecting set is the r different hyperarcs, a minimum weak vertex cut
is the set V (T ′p) and the minimum weak disconnecting set is the t arcs (recall that one of the
r hyperarcs has multiplicity t); then q = κsU , r = κ′sU , p = κwU and t = κ′wU . Finally
δU = e because d−(w1) = 0 and d−(w2) = e, since all the vertices in the tournaments
have in-degree and out-degree at least e, because of the multiplicities of the arcs inside the
tournaments.

Next we consider strongly connectedness, C = S . We construct a hypergraph B form
by five disjoint components: Two tournaments T ′p and T ′′p on p vertices, a tournament Tq ,
and a tournament Te; each arc in the tournaments T ′p and T ′′p has multiplicity e − p + 1
and each arc in Tq has multiplicity e− q + 1. We then insert r hyperarcs consisting of one
vertex from T ′p and Tq in its tail and a vertex from T ′′p in its head involved, with all reverse
hyperarcs added and with all of these hyperarcs with multiplicity t. The arcs are inserted
in such a way that the vertices of the tournaments are covered as uniformly as possible.
Finally, we insert t hyperarcs consisting of at least one vertex from Te in its tail and a
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vertex from T ′′p in its head involved, all vertices in Te are in a head of these hyperarcs, all
the reverse hyperarcs are added. The construction is illustrated in Figure 4(right).

Let a = q, b = r, c = p, and d = t. The minimum strong vertex cut in B is V (Tq), the
minimum strong disconnecting set is the r different hyperarcs, the minimum weak vertex
cut is the set V (T ′′p ) and a minimum weak disconnecting set is the t arcs from Te to T ′′p
(don’t forget that each of the r hyperarcs has multiplicity t); then q = κsS , r = κ′sS ,
p = κwS and t = κ′wU . Finally δS = e because all the vertices in Te have indegree and
outdegree e (all the vertices in the other tournaments have indegree and outdegree at least
e, because of the multiplicities of the arcs inside the tournaments).

Next, we consider weak connectedness, C = W . We construct a hypergraph C form
by five disjoint components: Two complete graphs K ′p and K ′′p on p vertices, a complete
graph Kq , and a complete graph Ke; each edge in the complete graphs K ′p and K ′′p has
multiplicity e−p+1 and each edge inKq has multiplicity e−q+1. We then insert r edges
consisting of one vertex from K ′p, Kq and K ′′p , with all of these edges with multiplicity t.
The edges are inserted in such a way that the vertices of the complete graphs are covered
as uniformly as possible.

Finally, we insert t edges consisting of at least one vertex from Te and one vertex from
T ′′p , all vertices in Te are incident with these edges. The explanation of why this hypergraph
has the desired parameters is analogous to the strong case.

5 König digraph of a directed hypergraph
The connectivity invariants in digraphs are defined in the same way as in directed hy-
pergraphs, the difference is that the weak or strong elimination of vertices or arcs is not
relevant so we only have to consider a single connectivity index for each connectedness
class, which we denote by κC and κ′C with C ∈ {S,U}.

Lemma 5.1. Let H = (V,E) be a directed hypergraph and let G(H) = (V ∪E,A) be its
König digraph. Then

κsC (H) ≤ κC(G(H)) ≤ min{κwC (H), κ′wC (H)} (5.1)

holds for C ∈ {U, S}.

Proof. Let S ⊆ V ∪ E be a vertex cut in G(H) with |S| = κC(G(H)).
Case 1: S ⊆ V , then S = {v1, ..., vk} is a weak vertex cut in H and so it is a strong vertex
cut in H , so κsC (H) ≤ κC(G(H)).
Case 2: Suppose S ⊆ E. We step-wisely construct a vertex cut S′ as follows by interacting
over the hyperedges in S. In each step we add to S′ a single vertex vi ∈ ei that is not
contained in

⋃
j<i supp(ej). By construction we have |S′| ≤ |S|. Since H \s S′ is not

strongly or unilaterally connected we have κsC (H) ≤ κC(G(H)).
Case 3: Suppose S ∩ V 6= ∅ and S ∩E 6= ∅. We write S = {v1, ..., vl, el+1, ..., ek} where
vi ∈ V for i ∈ {1, ..., l} and ei ∈ E for i ∈ {l + 1, ..., k}. Let S′ = {v1, .., vl}. We iterate
over the ei ∈ S ∩ E and, in each step, we add to S′, if it exists, a vertex vi ∈ ei satisfying
vi /∈ S ∩ V and vi /∈

⋃
j<i supp(ej). This yields a strong vertex cut containing S ∩ V and

at most one vertex from each ei ∈ S ∩ E, thus |S′| ≤ |S|. So H \s S′ is not strongly or
unilaterally connected and κsC (H) ≤ κC(G(H)).

Considering the other inequality, let S ⊆ V be a minimal weak vertex cut in H with
|S| = κwC (H). SinceH\wS is not strongly or unilaterally connected, then by Lemma 2.4,
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Figure 5: Left: König graph G(H) of a hypergraph with κ′wU (H) = κwU (H) = k + 1
and κ′wS (H) = κwS (H) = k

2 + 1. Middle: König graph G(H) of a hypergraph with
κsC (H) = κ′sC = 1, κU (G(H)) = k+1 and κS (G(H)) = k. Right: König graphG(H)
of a hypergraph with κwC (H) = κ′wC (H) = 2, κ′U (G(H)) = 2k and κ′S(G(H)) = k+ k

2 .

GH \ S is not strongly or unilaterally connected on V \ S, so κC(G(H)) ≤ κwC (H). Let
F ⊆ E be a minimal weak disconnecting set in H with |S| = κwC (H), as H \w F is not
strongly or unilaterally connected, then by Lemma 2.4,GH\F is not unilaterally connected
on V , so κC(G(H)) ≤ κ′wC (H). Then κC(G(H)) ≤ min{κwC (H), κ′wC (H)}.

In practice, however, min{κwC (H), κ′wC (H)} is not a particularly good upper bound
for κC(G(H)) for either strong or unilateral connectedness. We show that the difference,
in fact, can become arbitrarily large. Similarly, the difference κC(G(H)) − κsC (H) can
also become arbitrarily large for both strong and unilateral connectedness.

The graph in the left panel of Figure 5 is the König digraph G(H) of a directed hyper-
graph H = (V,E) with κU (G(H)) = κS(G(H)) = 2 (as seen by removing the vertices
that are not in any Tk,k subgraph). On the other hand, removing only vertices in V , we
need to eliminate k + 1 vertices for G(H) to destroy unilateral connectedness, namely k
vertices in one of the Tk,k in the V set partition, and one vertex V that is not in these com-
plete digraphs. We need to remove k

2 + 1 vertices for G(H) not being strongly connected,
k
2 vertices in any of the Tk,k in the V set (the ones that are in- or out-neighbors of a vertex
in E that is not in any Tk,k), and a vertex V that is not in any Tk,k digraph. Therefore
κwU

(H) = k + 1 and κwS (H) = k
2 + 1. The same argument is correct for eliminating

vertices only in E so κ′wU (H) = k + 1 and κ′wS (H) = k
2 + 1 . As k increases, an infi-

nite family of hypergraphs for which the difference min{κwC (H), κ′wC (H)}−κC(G(H))
grows linearly is obtained.

The middle panel of Figure 5 shows the König graph G(H) of a directed hypergraph
H = (V,E) with κU (G(H)) = k+1 (removing the k vertices in of one partition set in Tk,k
and one in the same partition set in the adjacent complete digraph) and κS (G(H)) = k
(removing the k vertices in of one partition set in Tk,k subgraph and then any neighbor of
any vertex in the other partition set of the same subgraph). In the hypergraph, on the other
hand, it suffices to strongly eliminate any vertex in G(H) to destroy strong connectedness,
since this amount to removing a vertex together with its neighborhood from G(H). Thus
κsC (H) = 1. Therefore, κC(G(H)) − κsC (H)k. As k increases, we obtain an infinite
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family of hypergraphs for which this difference grows linearly.

Lemma 5.2. LetH = (V,E) be a directed hypergraph andG(H) = (V ∪E,A) its König
digraph. Then for C ∈ {U ,S } holds

max{κwC (H), κ′wC (H)} ≤ κ′C(G(H)) ≤ δC(G(H)). (5.2)

Proof. Let S ⊆ A be a minimal disconnecting set in G(H) with | S |= κ′C(G(H)) = k
and let S′ = {v ∈ V |v ∈ supp(e)∧e ∈ S}. Note that | S′ |≤| S |. G(H)\S′ is not strong
or unilaterally connected (and in particular not unilaterally connected on V ). Therefore S′

is a weak disconnecting set inH by Lemma 2.4, and thus we have κwC (H) ≤| S′ |≤| S |=
κ′C(G(H)). An analogous argument using F = {e ∈ E|e ∈ supp(e′) ∧ e′ ∈ S} yields
κ′wC (H) ≤| S |= κ′C(G(H)). The remaining inequalities are the Whitney inequalities for
digraphs [8].

Recall that in general we have δC (H) ≤ δC (G(H)). The inequality is strict for some
hypergraphs. This is the case even if max{κ′wC (H), κwC } = κwC . For example in Fig-
ure 2 (right) we have κwC (H) = k and δC (H) = 1 for both unilateral and strong connec-
tedness assuming max{κ′wC (H), κwC } = κwC .

We note, finally, that the difference κ′C(G(H))−max{κwC (H), κ′wC (H)} can be ar-
bitrarily large. The right panel of Figure 5 shows the König digraph G(H) of a directed
hypergraph H = (V,E) with even k is even and the arcs (v1, a1), (v2, a2) are k parallel
arcs of each direction between these vertices. We κ′U (G(H)) = 2k (due to removal of the
2k arcs incident with v1 or v2 or a1 or a2) and κ′S(G(H)) = k + k

2 (due to removal of the
k arcs with tail (or head) any of the vertices v1, v2, a1, a2). In the hypergraph H , {v1, v2}
is a weak vertex cut, hence κwC (H) = 2. The same is true for removing {a1, a2}, thus
κ′wC (H) = 2. Thus κ′C(G(H)) −max{κwC (H), κ′wC (H)} ≥ k + k

2 − 2. We therefore
obtain an infinite family of hypergraphs for which this difference grows linearly with k.

6 Concluding remarks
We have seen that some of the connectivity invariants of directed hypergraphs are “ill-
behaved” in the sense that they are not bounded by any other connectivity invariant. This
is in particular the case for κ′sC . It is an interesting open question, therefore, whether there
are interesting structural constraints on the directed hypergraph for which κ′sC is bounded
by some of the other connectivity parameters. A class of hypergraphs that is relevant in this
context are those whose minimal cut sets are covered by collections of hyperedges that form
a disconnecting set. It remains a question for future research whether such connectivity
properties are related to classes of hypergraphs that have already received attention in the
literature.
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