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Big Data Analysis
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Abstract: Distributed computing frameworks are the fundamental component of distributed computing systems.

They provide an essential way to support the efficient processing of big data on clusters or cloud. The size of big

data increases at a pace that is faster than the increase in the big data processing capacity of clusters. Thus,

distributed computing frameworks based on the MapReduce computing model are not adequate to support big data

analysis tasks which often require running complex analytical algorithms on extremely big data sets in terabytes.

In performing such tasks, these frameworks face three challenges: computational inefficiency due to high I/O and

communication costs, non-scalability to big data due to memory limit, and limited analytical algorithms because

many serial algorithms cannot be implemented in the MapReduce programming model. New distributed computing

frameworks need to be developed to conquer these challenges. In this paper, we review MapReduce-type distributed

computing frameworks that are currently used in handling big data and discuss their problems when conducting big

data analysis. In addition, we present a non-MapReduce distributed computing framework that has the potential to

overcome big data analysis challenges.

Key words: distributed computing frameworks; big data analysis; approximate computing; MapReduce computing

model

1 Introduction

In the era of big data, an overwhelming amount of
data of various types is generated at all times from
different channels, such as social networks, the Internet
of Things, business transactions, finance networks, and
personal media[1]. As a consequence, the explosive
growth of global data has led to a fast increase in
scales of accumulated data in data centers all over the
world[2, 3]. Through an analysis of big data, valuable
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information and knowledge can be obtained, which
benefits people from all walks of life and government
and industry decision-makers[4, 5]. In this scenario,
distributed computing plays the most important role in
storing, processing, and analyzing big data.

Distributed computing frameworks are the
fundamental component of distributed computing
systems. Using the divide-and-conquer strategy[6, 7],
they provide an essential way to support the efficient
processing of big data on clusters or cloud. In these
frameworks, a big data file is partitioned into a number
of small files called data block files, which are stored
in a distributed fashion on the nodes of a cluster and
managed by using a distributed file system such as
Google File System (GFS)[8] and Hadoop Distributed
File System (HDFS)[9–11].

To process big data files on a cluster made of
independent servers as nodes based on the shared-
nothing architecture, local data block files are processed
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first on the local nodes in parallel, and then the
local results are integrated into the global results[9].
Currently, as an industrial quasi-standard distributed
computing platform, Apache Hadoop is widely used
for handling big data. MapReduce is widely adopted
as a general programming/computing model for
implementing/executing distributed algorithms that can
run on clusters and cloud. Other systems, such as
Spark, Storm, and Flink, are also integrated into the
Apache platform to provide different sets of functions
for processing big data of different types and enrich the
big data technology stack to support broad applications.

Today, the size of big data files is increasing at a pace
that is much faster than the increase in the capacity of big
data platforms to process and analyze them. When big
data files exceed certain sizes, e.g., several gigabytes or
a few terabytes, the big data platforms currently used in
many organizations are inadequate for big data analysis
tasks due to the hardware and software limits of big
data platforms. These systems have three challenges:
they are computationally inefficient due to high I/O
and communication costs, unscalable to big data due to
memory limits, and lack available analytical algorithms
because many serial algorithms cannot be implemented
in a MapReduce fashion.

Many efforts are being devoted to developing new
technologies to tackle these challenging problems in
big data analysis. An innovative approach to solving
big data analysis problems was recently proposed in
Refs. [12, 13]. In this approach, a random sample
partition (RSP) data model is defined to represent a
distributed big data file as a set of RSP data blocks,
which are the random samples of big data files, and the
RSP data blocks are saved in an HDFS file. When the
big data file is analyzed, a set of RSP data blocks are
randomly selected[14], and each data block is analyzed in
each local node to produce the block-level result. Finally,
all block-level results are integrated into the final result
which represents the approximate estimate of the result
that would be computed from the entire data file. The
RSP approach is a promising technology for big data
analysis because of its high computational efficiency,
high scalability to big data, and non-MapReduce way of
executing analytical algorithms.

In this paper, we first give a brief overview of
available technologies and systems for handling big
data. Then, we review three MapReduce-type distributed
computing frameworks: Hadoop MapReduce, Haloop,
and Spark, and discuss their problems in supporting big

data analysis. After that, we present a non-MapReduce
distributed computing framework enabled by the RSP
data model[13]. The new non-MapReduce distributed
computing framework has the following advantages: it
significantly reduces communication cost; it is scalable
to big data; it is able to run serial algorithms; and it
supports approximate computing for big data analysis.
Therefore, it is a promising approach to overcome big
data analysis challenges.

The remainder of this paper is organized as follows.
Section 2 gives a broad overview of technologies for
handling big data. Section 3 discusses MapReduce-
type distributed computing frameworks in the context
of big data analysis. Section 4 is devoted to the non-
MapReduce distributed computing framework. Section
5 presents the evaluations of current data analysis
systems over nine parameters, which indicate the big
data analysis ability. Finally, Section 6 concludes the
survey.

2 Distributed Technologies for Handling Big
Data

In this section, we present a brief overview of
the available technologies for handling big data,
including the system architectures of clusters and
high-performance computing (HPC), distributed file
systems, MapReduce programming model, middleware
for distributed computing, Hadoop, and Spark, as well
as other packages, such as Flink, Storm, Hive, and Pig
Latin, which form the distributed computing technology
stack for handling big data.

2.1 Clusters and HPC

Storing and processing big data files require a large
amount of hardware resources: hard disks, memory,
CPU/GPU, communication network bandwidth, and I/O
speed. Physically and economically, using one big server
to handle big data computing tasks is no longer an
option. Therefore, clusters of servers are built based
on the divide-and-conquer strategy to enable parallel and
distributed computing for big data. Clusters have become
ubiquitous for storing, processing, and analyzing big
data.

Two mainstream system architectures are available
for building parallel and distributed computing systems:
HPC and cluster computing. The first one is used to
build ultra-HPC systems called supercomputers, which
integrate thousands of computing nodes and millions
of CPU/GPU cores to perform various operations
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in parallel[15–18] to solve computationally intensive
computing tasks such as weather forecasting, high-
energy physics, genetic analysis, and atmospheric
science[19, 20].

A cluster computing system connects multiple
computing nodes through a network to form a cluster
of computers, which complete segmented computing
tasks through distributed computing and communication
between nodes[21]. Compared with a supercomputer,
a computing cluster can be easily built at a low
cost. Cloud computing virtualizes the storage, memory,
CPU, and network bandwidth resources to optimize
resource utilization and provides users with virtual and
transparent computing services for data management and
processing[22–24].

Currently, the clusters and cloud are widely used in
big data processing and analysis applications due to their
availability, low cost, and usability. Although many
studies have been conducted in the research community
on using HPC systems in machine learning and data
mining, these systems are not good choices in real
applications because they are expensive to build and
difficult to use. Although many machine learning
algorithms have been parallelized to run on HPC systems,
they are not scalable to big data, and some do not have a
high performance[25–31]. In this paper, we will focus on
the clusters of distributed computing in big data analysis.

2.2 Distributed file systems

With the use of the divide-and-conquer strategy in
distributed computing, a big data file is partitioned
into a number of small files, called data blocks, which
are stored in a distributed manner on the disks of
cluster nodes to improve I/O performance. A big data
file stored in this way is called a distributed data file,
which is managed on the cluster with a distributed
file system[32, 33], e.g., GFS[8], HDFS[34], Taobao file
system (TFS)[35, 36], and FastDFS[37]. The distributed file
systems provide an important technical foundation for
big data analysis[38].

GFS is a Linux-based distributed file system
developed by Google to meet the needs of individual
companies[39]. TFS is a high-availability, high-
performance distributed file system developed by Taobao
to meet the storage requirements of unstructured small
files (usually no more than 1 MB). FastDFS is a
lightweight open-source distributed file system that is
especially suitable for online services using files as the
carrier[37].

HDFS, which was developed in the Apache Hadoop
project, was designed to overcome the challenges of
distributed data processing in a large-scale cluster. It
is a fault-tolerant data storage file system that runs on
commodity hardware and is suitable for handling big
data. Therefore, HDFS is widely adopted in the industry
for big data processing and analysis.

2.3 MapReduce

The distributed file system divides big data files,
and the MapReduce programming model divides the
algorithm into pieces, which can run on the data blocks
in a distributed fashion to gain a good computing
performance. MapReduce was first developed by Google
and later adopted in the Apache Hadoop project to
rewrite serial algorithms in a MapReduce style, which
can run efficiently on a cluster[40, 41].

A MapReduce program is made up of two basic
operations: Map and Reduce[42]. The Map operation
is performed on the data blocks of a node to generate
a local result. The Map operation is executed on the
multiple nodes in parallel and independently to generate
the local results on the corresponding nodes and gain a
high computing performance[43]. The Reduce operation
operates on the local results to generate a global result.
In doing so, all local results are transferred to the nodes
that perform the Reduce operation. This stage generates
a high data communication cost due to the data shuffling
and transformation among the nodes. After all local
results are fetched to the Reduce nodes, a global result
is generated by the Reduce operation[44].

If a data computing task can be completed in one
pair of Map and Reduce operations, e.g., counting the
word frequencies from a large number of web pages,
then the MapReduce program can run efficiently over
a big data file, because it can be executed in a large-
scale cluster with thousands of nodes. However, if an
iterative algorithm is rewritten as a sequence of Map
and Reduce pairs, then the algorithm will not be able
to run efficiently on a big distributed dataset due to the
I/O, communication, and computing costs[45]. Therefore,
the MapReduce programming model is not a choice for
big data analysis[46]. We will discuss the reasons in
Section 3.

2.4 Middleware

The distributed file system HDFS and MapReduce
programming/computing model, the two core
technologies of cluster computing for processing
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distributed big data. They enable the divisions of both
big data sets and algorithms for distributed computing
based on the divide-and-conquer strategy. However, they
cannot work without the support of other technologies.
Cluster middleware was developed to support the
execution of MapReduce programs and schedule the use
of resources to optimize the executions.

The most popular middleware is YARN[47], which
is a framework for resource management and task
scheduling[48, 49]. When a job is submitted, YARN will
allocate suitable computing resources to execute the
sequence of subtasks in the job (often a sequence of pairs
of Map and Reduce operations on HDFS data blocks)
and then recycle resources until the job is complete.
YARN uses one of the strategies, namely, first in and
first out, fair, or capacity scheduler, to schedule multiple
jobs.

YARN is a distributed middleware used on various
platforms such as Hadoop and Spark. It enables the
platform to allocate and monitor computing resources
and efficiently promote the execution of distributed
computing tasks. In addition, Spark can also be deployed
with Mesos and standalone middleware[50].

2.5 Hadoop platform

Apache Hadoop is an open-source software platform
that manages data storage and processing for big
data applications. The Hadoop platform integrates a
number of software packages that provide different
functions for different applications. For example, HDFS
is software for distributed file management, and Hadoop
MapReduce is a software framework for implementing
MapReduce algorithms for processing large distributed
datasets on clusters. The Hadoop platform enables these
software packages to run in a computing cluster or
cloud in coherence to complete the tasks of different
applications[51–53].

Hadoop uses a master-slave architecture to efficiently
store and process large amounts of data. In the process
of executing a computing task, the master node assigns
subtasks to the slave nodes. The slave nodes store the
local data block files and execute the local calculations
on the local data[54]. All intermediate results generated
during this period can be cached by HDFS. Theoretically,
Hadoop can process unlimited data but also incurs severe
I/O costs.

2.6 Spark

Apache Spark, which was originally developed at the
University of California, Berkeley, is an open-source

unified engine for large-scale data processing. Unlike
Hadoop MapReduce, Spark caches all intermediate
results in the data structure of a Resilient Distributed
Dataset (RDD) in the memory to reduce I/O costs[1].
It also introduces a directed acyclic graph (DAG)
task segmentation mechanism to operate on RDD
in a way similar to MapReduce. Spark in-memory
computing is much faster than Hadoop, which makes
Spark the current mainstream batch big data analysis
platform[55–57]. The pros and cons of Spark in big data
analysis will be discussed in the next section.

The in-memory computing technology used by Spark
reduces the I/O overhead because the data are loaded
into the memory for computing[58]. However, with the
rapid expansion of the data scale, a memory bottleneck
is unavoidable if the data size is larger than the memory.
In this sense, data scalability is limited by the available
memory, although it can be improved by adding nodes
and more memory at a high cost. In addition, because
many algorithms cannot be rewritten as MapReduce
operations, MLlib and machine learning (ML) libraries
in Spark have only limited algorithms available[59].
Nevertheless, as an efficient data processing engine,
Spark is widely used in many applications.

2.7 Other packages

Hadoop and Spark, used as batch processing platforms,
play an important role in offline big data processing
and analysis. Other packages have been developed for
handling big data of different types. We briefly review
four packages for streaming data handling and database,
as well as data warehouse applications.

When handling data streams, stream processing
platforms, such as Flink and Storm, have performance
advantages[60]. These stream processing platforms also
use the divide-and-conquer strategy to divide data
streams into pieces that are processed concurrently on
each resource unit[61, 62]. Apache Flink is a distributed
processing engine for stateful computations over
unbounded and bounded data streams. It runs in cluster
environments and performs computations at in-memory
speed and at any scale. Flink has a Hadoop compatibility
package to wrap functions implemented in Hadoop
MapReduce and embeds them in Flink programs. In this
way, a bounded data stream can be handled as a batch of
processed data in Hadoop MapReduce[63, 64]. Storm is
more focused on low-latency real-time computing[65, 66]

and does not run on the Hadoop platform.
For database query and data warehouse applications,
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Hadoop platform provides Hive and Pig Latin packages,
which use MapReduce programs to process data queries
over big data files in HDFS[67, 68]. Both have a high-
level language to assist users in generating jobs without
knowing the details of HDFS and MapReduce. The
difference between them is that Hive is mainly used for
structured data[69], while Pig Latin is a more lightweight
data flow scripting language that is more suitable for
unstructured data[70].

2.8 Stack for big data platform

Figure 1 shows a technology stack of distributed
computing for handling big data. The technologies are
summarized according to the functions of common
components in the big data platform stack[71, 72].

The data acquisition and transmission layer are
the data sources for big data analysis. The purpose
is to provide the functions for data collection and
preprocessing and to facilitate the preservation of the
data storage layer. For example, Flume is a distributed
and highly available data collection, aggregation, and
movement tool. Canal is an open-source tool used to
extract data from MySQL databases and output it to any
target storage. Kafka and Sqoop are used for the same
purpose in different data environments[73, 74].

The data storage layer includes the tools for data
storage and management. For example, HBase is
Hadoop’s distributed and scalable big data store[75]

for data management. This layer also includes the
various distributed file systems (HDFS, GFS, etc.) and
databases (Redis, TiDB, etc.) suitable for different data
scenarios[76, 77].

The analysis layer includes several distributed
computing frameworks, such as Hadoop, Spark, Storm,
and Hive, which are used for big data processing and
analysis. Some parallel algorithm libraries are also
included, such as Mahout and SparkML[78, 79].

The online analysis processing layer contains tools
for applications of business intelligence. These tools
allow users to quickly read, observe, and explore
multidimensional big data from different angles to assist
in decision-making. Examples are Druid, Kylin, Impala,
and Presto[80, 81].

The resource management layer shows the general
tools for the resource allocation and scheduling of
various distributed computing tasks on distributed
computing platforms. Examples are YARN[82],
Kubernetes, and Mesos[83].

Ambari and Zookeeper are two commonly used
service software that supports the distributed computing
framework installation and deployment[84, 85]. They
provide the functions of monitoring, management, and
configuration of most components and computing nodes.

3 Distributed Computing Frameworks for
Big Data Analysis

In the previous section, we reviewed the technologies
for handling big data in cluster systems or cloud.
In this section, we review the distributed computing
frameworks for supporting big data analysis tasks. We
particularly focus on the analysis tasks that require
complex iterative algorithms. These algorithms iterate
on the dataset many times to obtain a final result.

Fig. 1 Distributed computing technology stack for handling big data.
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Therefore, executing a complex iterative algorithm over
a big data set on a cluster efficiently is a challenge. A
distributed computing framework is essential to support
the execution.

3.1 Basic steps of distributed computing

On the basis of the divide-and-conquer strategy, a big
data set to be analyzed is partitioned into small data
block files, which are stored in a distributed manner
on the nodes of a cluster and managed in a distributed
file system, e.g., HDFS. The following two basic
steps of distributed computing are used to compute
the big data set on a cluster with the shared-nothing
architecture[86, 87].

(1) Local operation. On each node, the local data files
are read into the memory of local nodes and computed
by the local operations to produce the local results. The
local operations are executed independently on each
node and in parallel among the nodes of the cluster. This
step is called the Map operation in MapReduce.

(2) Global operation. The local results are transferred
to some nodes, e.g., the master node, on which the global
results are computed from the local results by the global
operations. This step is called the Reduce operation in
MapReduce.

Figure 2 illustrates the two basic steps of distributed
computing. The data block files are stored on the disks of
N nodes. The local operation is assigned to each node to
operate on the local data blocks. On each node, it reads
the local data block file into the memory and operates
on it to generate the local result, which may be written
back to the local disk, e.g., Hadoop MapReduce. The
global operation takes the local result from each node
and transfers it to the master node to generate the global

result. The total computation cost of the two steps can
be divided into three parts.

(1) Cost of reading and writing local files on each
node called I/O costs;

(2) Cost of transferring local results to the nodes
for calculating the global results called communication
costs;

(3) Cost of executing the local and global operations
called computing costs.

All costs occur once if a computing task is completed
by a distributed algorithm in one iteration on the dataset,
e.g., the computing task of counting the word frequencies
of web pages. However, if a distributed dataset is
analyzed by an iterative algorithm, then the above costs
will repeatedly occur with respect to the number of
iterations to complete the computation. Therefore, an
important task is to minimize these costs in designing
distributed computing frameworks and algorithms for
big data analysis. In the following subsections, we review
how the above costs in the two basic steps of distributed
computing are handled in Hadoop MapReduce, Haloop
and Spark systems.

3.2 Hadoop MapReduce

Hadoop is a quasi-standard platform for distributed
big data applications[88]. In the Hadoop MapReduce
computing framework, an iterative algorithm is
decomposed into a sequence of pairs of mapper and
reducer operations, that are executed sequentially in a
pipeline manner[89]. One pair of mapper and reducer
operations is taken as an example.

(1) In the mapper phase, the data block files stored in
HDFS are read into the memory of local nodes separately.
The predefined mapper operation is performed on each

Fig. 2 MapReduce-type distributed computing framework. Hadoop and Haloop iterative algorithms generate I/O,
communication, and computing costs repeatedly, whereas Spark reduces I/O costs significantly by using in-memory computing.
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local node independently and in parallel. When the
operation is complete, the local result is written to the
local disk. The local result is read back into the memory
in the reducer operation that follows.

(2) Before the reducer operation, the internal shuffle
operation fetches all local results from the local
nodes, shuffles the local data on the reduce keys, and
temporarily saves the corresponding data blocks to the
nodes[90] where the reducer operations will be performed.
Then, the reducer operation reads the shuffled local result
data to the memory of the reduce node and operates on
the data to generate the global results as the intermediate
results for the next pair of mapper and reducer operations
if the current pair is not the last one or as the final
results of the algorithm if the pair is the last one. In
this step, the shuffle operation requires the local results
to be transferred to corresponding reduce nodes, which
increases communication costs.

Evidently, expensive communication costs occur
from the mapper operation to the reducer operation
in each pair. If the sequence of mapper and reducer
operations contains a large number of pairs, then
the shuffle operation will repeatedly occur and
generate high communication costs. Unfortunately,
this communication cost cannot be avoided in the
MapReduce computing framework.

When the iterative algorithms are executed, the I/O
cost is also high in Hadoop MapReduce because the I/O
operations occur in each mapper and reducer operation.
Both mapper and reducer operations are performed in
fkey, valueg data format; thus, implementing an iterative
algorithm in this style is not always efficient. This
implementation style affects the execution efficiency of
some algorithms.

3.3 Haloop

Haloop is a Hadoop variant that retains the same
computing mechanism as Hadoop[91]. It was designed to
improve the computing efficiency of Hadoop on iterative
tasks with the following modifications.
� A loop control mechanism is used in Haloop to

control the number of iterations by grouping several
pairs of mapper and reducer operations in a subtask to
reduce the number of subtasks, each group being carried
out in one iteration.
� The invariant data multiplexed in the iterative

calculation is cached and indexed to local disks to avoid
unnecessary network I/O operations[92, 93].
� To reduce the communication cost, the task is

scheduled to run on the local data as much as possible[94].
With the above modifications on Hadoop, Haloop only

partially reduces the I/O, communication and computing
costs, and increases the overall computing performance
over Hadoop. However, these three types of costs are
still high for complex iterative tasks over big data sets
because they are not completely removed from the
computing framework. Therefore, Haloop is not widely
used in real applications.

3.4 Spark

Spark is a distributed computing system for big data
analysis that was designed and implemented from
scratch. It adopts the in-memory computing technology
to improve the computing performance of big data
analysis. To reduce I/O costs, Spark uses a unique read-
only data structure called RDD to hold a distributed data
file in memory[95] to avoid repeated I/O operations.

An RDD consists of a set of partitions, and each
partition holds one data block of a distributed data set on
a local node. The set of partitions is distributed among
the nodes of a cluster. An RDD is used to hold the input
dataset or an intermediate result. The transformation
operators are defined to operate on existing RDDs and
the results are saved in a new RDD. A data analysis
task is implemented as a sequence of transformation
operators on a set of RDDs, and the sequence is
represented as a DAG that can be decomposed into
stages that represent the topological sorting of the overall
computing[96].

Each stage in a DAG diagram is composed of a set of
RDDs for interactive computing, which are encapsulated
into tasksets in a one-to-one correspondence with
TasksetManager. Spark DAGScheduler schedules the
execution of DAG to complete distributed computing as
follows.

(1) The local data block files are read into
the partitions of input RDD on the local nodes.
TaskScheduler selects a taskset without pre-dependency
from the DAG and distributes tasks to each computing
node. Each node completes the calculation locally and
in parallel with other nodes.

(2) The local partition on each node is aggregated
through the shuffle operation, and the results are saved
in the memory for use in the following stages. When
the execution reaches the last stage which is an action
operator, the global result is written to HDFS.

A Spark data analysis application is performed
through a sequence of operators on a set of RDDs.
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Some operators operate on local partitions independently
without considering other partitions. Some operators
operate on partitions on different nodes, requiring data
join or shuffle operations, which result in increased data
communication costs. Therefore, the spark system for
big data analysis cannot avoid communication costs but
can avoid many I/O operations and improve computing
efficiency.

Compared with the operations on local partitions that
run independently, the join and shuffle operations are
still not efficient due to data transfer between nodes.
Therefore, Spark-based big data analysis still has high
communication costs. Another bottleneck in Spark-
based big data analysis is that the input data cannot
exceed the memory capacity. Otherwise, Spark will
become slow in carrying out such applications or will
be unable to do so if the input dataset is too big.
As such, Spark is still not scalable to big data sets,
e.g., in terabytes. Another problem is that the iterative
algorithms still need to be rewritten in MapReduce for
distributed computing, thus hampering the use of many
good serial algorithms in big data analysis.

3.5 Discussions

To improve the performance of distributed computing
for big data analysis, the I/O, communication, and
computation costs must be minimized. One solution is
to enhance the hardware components, such as by using
high-speed solid state drives (SSDs) on the nodes to
speed up the I/O operations, using the high-speed cluster
switch to speed up the data transfer among the nodes,
and the using a high-speed CPU and large memory to
speed up the local and global computation. However, this
solution will increase financial costs because expensive
hardware needs to be purchased.

Other solutions enhance the computing frameworks
to reduce the total cost of distributed computing for big
data analysis. For example, Haloop enhanced Hadoop
MapReduce by reducing the I/O and communication
costs. Spark took a revolutionary step to define the
RDD to store data in the memory to support in-memory
computing, thus increasing the computing efficiency of
data analysis algorithms. However, the communication
costs still occur because of its MapReduce style of
distributed computing.

Another issue is that the above-mentioned computing
frameworks require the computation of an entire dataset
because missing any data blocks of a big data set can
result in inaccurate or incorrect results. Therefore, they

are not scalable to extremely big data sets in terabytes
or greater. In the next section, we review a new non-
MapReduce distributed computing framework for big
data analysis, which is scalable to very big data sets and
supports approximate big data computing.

4 Non-MapReduce Distributed Computing
for Big Data Analysis

The distributed computing frameworks discussed in the
previous section have two issues that still affect the
computing performance of big data analysis: high costs
of data communication among the nodes and scalability
to big data sets that are much larger than the memory size.
The first issue is caused by the MapReduce programming
model of implementing iterative algorithms on the
distributed computing frameworks. In this model, an
iterative algorithm has to be rewritten as a sequence of
Map and Reduce operations and executed in steps under
the distributed computing framework. The algorithm
also requires taking the whole dataset to compute the
final result, which affects the scalability due to the
memory limit.

In this section, we review a new approach of
distributed computing for big data analysis to solve the
above two problems.

4.1 RSP data model

To reduce the costs of data communication among the
nodes, a new data representation method called the RSP
data model was proposed in Refs. [12, 97] to enable the
computation for distributed big data analysis in one pair
of local and global operations, even with an iterative
algorithm. In the RSP data model, a big data file is
partitioned into a set of disjoint RSP data blocks[13],
which can be stored as an HDFS file. The difference
between this new data representation from an ordinary
HDFS file is that the collective frequency distributions
of RSP data blocks are similar to each other and to the
collective frequency distributions of the entire big data
file[14, 98, 99]. As such, the RSP data blocks can be used
as random samples of a big data file to estimate the
statistical results of the big data file.

Representing a big data file as a set of RSP data blocks
enables a new distributed big data analysis approach,
in which an approximate result of a big data set can
be computed from a series of randomly selected RSP
data blocks. The data block is analyzed by a serial
algorithm running on a node to produce the approximate
result. To improve the result accuracy, multiple RSP data



162 Big Data Mining and Analytics, June 2023, 6(2): 154–169

blocks can be selected randomly and analyzed by the
same algorithm on different nodes independently and in
parallel to produce multiple approximate results. These
results are transferred to the master node and integrated
into the final result through the global operation.

With the use of the new approach in big data analysis,
an important step is to convert the data blocks of a big
HDFS file to a set of RSP data blocks, which are also
saved as an RSP-HDFS file. An algorithm was proposed
to complete this conversion in two stages[100]. In the
first stage, each HDFS data block is randomized using a
shuffle operation, and the intrablock shuffle operation is
not involved in any mutual data communication between
nodes. In the second stage, the shuffled data block is
partitioned to a number of subblocks equal to the number
of the RSP data blocks to be converted. Then, the
same number of containers is created, and one subblock
is randomly selected without replacement from each
shuffled data block and stored in the container. The
same operation is performed on all shuffled HDFS data
blocks in parallel. Finally, after all containers are filled
with data results, they are saved as an RSP-HDFS file.

The conversion from an HDFS file to an RSP data
model is a one-off operation that can be performed
offline[101, 102]. The RSP data model also enables block-
level sampling, which is much faster than record-level
sampling, which is time consuming on big distributed
data files. The RSP data blocks are persistent as the
local data files; thus, if an RSP block file is selected as a
random sample, then it is read into memory in seconds.
Therefore, taking multiple random samples from a big
distributed data file is no longer a time-consuming task.

At the same time, the diversity of sample data blocks
and the consistency of feature distributions are ensured,
thereby enabling approximate computing on large-scale
data and reducing the computing overhead of big data
analysis significantly.

4.2 Non-MapReduce distributed computing
framework

A non-MapReduce distributed computing framework
enabled by the RSP data model is illustrated in Fig. 3.
This computing framework also supports the two basic
operations of distributed computing: local operation
and global operation. However, unlike in Fig. 3,
the local and global operations in this framework are
separately conducted, i.e., the local operation first and
then the global operation. When an iterative algorithm is
involved in the local operation, it completes all iterations
in the memory of its local node to generate the local
result before the global operation starts. What this
process entails is only one data communication cost,
i.e., transferring the local results to the nodes of global
operation. As such, the data communication costs are
significantly reduced in this non-MapReduce distributed
computing framework.

Another important feature of this computing
framework is that the data analysis algorithm is run
independently to analyze an RSP data block on a local
node, and it does not need to be rewritten as a sequence
of Map and Reduce operations. Any serial algorithm
is applicable in this fashion, and the extensive effort to
reimplement the serial algorithms for parallel executions
in distributed computing can be saved. Serial algorithms
that cannot be parallelized effectively can be directly

Fig. 3 Non-MapReduce distributed computing framework. Enabled by the RSP data model, this framework reduces both
I/O and communication costs significantly when running iterative algorithms and supports approximate computing, thus being
efficient and scalable to big data.
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used in this framework for distributed computing.
Unlike the MapReduce distributed computing

framework, which requires dividing both the big data
set into data blocks and the algorithm into pairs of
mapper and reducer operations, the non-MapReduce
framework requires only the division of the big data
set into RSP data blocks. The RSP data blocks are the
random samples of big data sets; thus, the algorithm can
analyze them independently and in parallel to produce
unbiased estimate results. To improve the accuracy of
big data analysis, the local results are integrated into
the final result with the global operation. Not only is
the final result better than the local results according
to the central limit theorem, but the confidence interval
of the final result can also be computed with a given
significance level. Therefore, the final result computed
with the non-MapReduce computing framework is an
estimation of big data statistics, not an exact computed
result. It computes only a few randomly selected RSP
data blocks; therefore, it holds the whole dataset in
memory, like Spark does, thus removing the memory
bottleneck. In this sense, it is scalable to extremely big
data sets whenever their RSP data models are available.

4.3 Approximate computing for big data analysis

Approximate computing can be defined as a computing
strategy that uses a part of the entire big data set to
compute an approximate result as an estimate of the
result that is computed from the entire big data set. In
statistical analysis, approximate computing is equivalent
to using a random sample to compute an estimate of
the population. The approximate result is required to be
unbiased and accurate. Taking random samples from a
big distributed file is time consuming[103–109], which is
why the traditional MapReduce distributed computing
frameworks do not support approximate computing
efficiently.

The non-MapReduce distributed computing
framework was designed to support approximate
computing for big data analysis[110]. The RSP data
model provides ready-to-use random samples for
approximate computing. Instead of record-level
sampling that needs to go through the entire set of
records, block-level sampling is used to randomly
select RSP blocks and read the RSP blocks into the
memory of local nodes for the algorithm to analyze. This
approach essentially solves the problem of sampling
a big distributed data file on a cluster[97, 111, 112]. The
sampling time is reduced from minutes or even hours

to seconds when an extremely big data file is being
sampled.

The non-MapReduce distributed computing
framework supports approximate computing of multiple
random samples because multiple RSP data blocks are
used in the local operation to compute the multiple
approximate results. Then, the multiple approximate
results are integrated into the ensemble result which is
statistically better than any individual local approximate
result. In the meantime, the distribution of the statistic or
the random function computed from the random sample
can be estimated from the set of local approximate
results, and the confidence interval of the ensemble
result can also be calculated. The estimation quality
can be improved by increasing the number of selected
RSP data blocks, and more RSP data blocks do not
affect the computing efficiency considerably. As such,
approximate computing has statistical advantages over
the exact computing of the whole dataset. It is scalable
to big data sets and produces ensemble models that are
more accurate than the single model from the whole
dataset.

4.4 Discussion

The non-MapReduce distributed computing framework
provides the following advantages to support big data
analysis.

(1) It reduces the data communication costs
significantly when an iterative algorithm is executed
because the RSP data representation allows each RSP
data block to be analyzed as a random sample of the big
data file by the algorithm locally and independently. No
data communication is required when multiple RSP data
blocks are computed in parallel on different nodes.

(2) It supports the running of serial algorithms over
local RSP data blocks on multiple nodes independently
without the needs of rewriting them in MapReduce.
Therefore, more analytical algorithms can be used in
distributed big data analysis.

(3) It supports approximate computing so that the
memory is no longer a bottleneck because the entire
dataset does not need to be read into memory. Therefore,
it is scalable to ultra-large-scale data in terabytes.

Aside from having the above advantages, the new
computing framework also ensures excellent fault
tolerance because the final result can be computed from
the subset of the approximate local results if some local
nodes fail. It also improves the efficiency of big data
exploration and cleaning[113].
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5 Evaluation

In this section, we use nine metrics to evaluate three
distributed computing frameworks with respect to big
data analysis, together with two systems that are widely
used in data analysis, namely, Python and R. Haloop is
not included because it is a variant of Hadoop and is
not widely used. The results are given in Table 1. The
first three metrics are I/O costs, communication costs,
and computing costs, which were explained before. The
other six metrics are defined as follows.
� Computing efficiency. Given the same computing

resources and the same dataset, this metric measures the
completion time of the same algorithm that runs on the
same big data set in a different computing framework.
A short completion time corresponds to high computing
efficiency.
� Computing style. We have two styles of

computing, e.g., exact computing, which uses the entire
dataset to compute an exact result and approximate
computing, which uses a small subset of random data
blocks to compute an approximate result. Given that
only a small and representative portion of big data
is computed, approximate computing is much more
efficient than exact computing in big data analysis.
� Scalability. This metric measures whether a

computing framework can scale as the size of input
datasets increases, the data analysis algorithms still run,
and the final result can be produced on a fixed hardware
resource.
� Algorithm serialization. This metric measures

whether the serial algorithms can be used in a computing
framework directly without the need to rewrite in
MapReduce style. We can see that only the non-
MapReduce framework in distributed computing allows
the direct execution of serial algorithms.
� Data throughput. This metric measures how big

a dataset can be computed in a certain time.

� Iteration support. This metric indicates whether a
framework can support the efficient execution of iterative
data analysis algorithms.

From Table 1, we can see that Python and R are not
suitable for big data analysis because they run on limited
computing resources. Data scientists usually use these
systems to analyze samples of big data sets. However,
for complex big data, a sample itself is a big data set in
its own right and requires heavy computing resources
for analysis.

For the three distributed computing frameworks,
Hadoop MapReduce is not suitable for big data analysis
by using complex iterative algorithms because of its
low computing efficiency, low scalability, and data
throughput. Spark has a high computing efficiency if the
big data set can be held in memory. However, if the size
of the big data set is larger than the memory of the cluster
system, then its computing efficiency will become low.
Therefore, Spark is not scalable to the data when the
size of big data exceeds the size of the system memory.
Both Hadoop and Spark cannot use serial algorithms
directly in distributed computing. Comparatively, the
non-MapReduce distributed computing framework has
clear advantages in big data analysis. It is efficient
and scalable to big data, has high data throughput,
and can directly use serial algorithms in distributed
computing. Although it produces approximate results
from multiple samples of a big data set, statistically, the
error of approximation can be controlled in an acceptable
confidence interval by increasing the size and number
of RSP data blocks. Therefore, the non-MapReduce
computing framework has the potential to become the
main distributed computing framework to support big
data analysis.

6 Conclusion

In this paper, we reviewed the distributed computing
frameworks that were designed for handling big data in

Table 1 Evaluations of computing frameworks for big data analysis.
Hadoop Spark Non-MapReduce Python and R

I/O costs High Low Low Low
Communication costs High High Low No

Computing costs High Middle Low High
Computing efficiency Low High Very high Low

Computing style Exact Exact Approximate Exact
Scalability No No Yes No

Algorithm serialization No No Yes Yes
Data throughput Low High (in-memory) High Low
Iteration support Low High (in-memory) High Low
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general and supporting big data analysis in particular.
These frameworks were designed for clusters of
shared-nothing architecture, which supports distributed
computing based on the divide-and-conquer strategy.
The classical MapReduce type of distributed computing,
which divides both data and algorithms, processes big
data efficiently using non-iterative algorithms. However,
it is not efficient for big data analysis when the
complex iterative algorithms are used due to the data
communication costs and in-memory computing of the
whole dataset.

The non-MapReduce distributed computing
framework runs serial algorithms on local data
blocks independently and in parallel to generate local
results and then integrate the local results into the final
result. This strategy only divides the big data set but
does not parallelize the serial algorithm to produce
the local results. Therefore, the data communication
costs only occur in the integration of local results, thus
reducing the data communication costs significantly.
Other two important advantages are the direct use of
serial algorithms in generating local results and the
approximate computing ability, which uses only a
subset of randomly selected data blocks to compute
an approximate result in a range of user-controlled
accuracy. These two advantages are enabled by the
RSP data model. The non-MapReduce distributed
computing framework can be expected to appear in the
new generation of big data computing technology and
platforms because it is efficient in big data analysis and
scalable to extremely big data in terabytes and greater.
Therefore, non-MapReduce distributed computing and
related topics are likely to become interesting new
research directions in big data computing.
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