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Continuous and Discrete Similarity Coefficient for Identifying
Essential Proteins Using Gene Expression Data

Jiancheng Zhong�, Zuohang Qu, Ying Zhong, Chao Tang, and Yi Pan�

Abstract: Essential proteins play a vital role in biological processes, and the combination of gene expression profiles

with Protein-Protein Interaction (PPI) networks can improve the identification of essential proteins. However, gene

expression data are prone to significant fluctuations due to noise interference in topological networks. In this work,

we discretized gene expression data and used the discrete similarities of the gene expression spectrum to eliminate

noise fluctuation. We then proposed the Pearson Jaccard coefficient (PJC) that consisted of continuous and discrete

similarities in the gene expression data. Using the graph theory as the basis, we fused the newly proposed similarity

coefficient with the existing network topology prediction algorithm at each protein node to recognize essential

proteins. This strategy exhibited a high recognition rate and good specificity. We validated the new similarity

coefficient PJC on PPI datasets of Krogan, Gavin, and DIP of yeast species and evaluated the results by receiver

operating characteristic analysis, jackknife analysis, top analysis, and accuracy analysis. Compared with that of

node-based network topology centrality and fusion biological information centrality methods, the new similarity

coefficient PJC showed a significantly improved prediction performance for essential proteins in DC, IC, Eigenvector

centrality, subgraph centrality, betweenness centrality, closeness centrality, NC, PeC, and WDC. We also compared

the PJC coefficient with other methods using the NF-PIN algorithm, which predicts proteins by constructing active

PPI networks through dynamic gene expression. The experimental results proved that our newly proposed similarity

coefficient PJC has superior advantages in predicting essential proteins.
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1 Introduction

Proteins are often deeply involved and play an
irreplaceable role in biological processes[1]. Proteins
are usually classified as essential and non-essential,
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the essential one generally exists in the complexes;
the former generally exists in complexes, and their
loss is prone to abnormal life activities and even the
extinction of organisms[2]. Identifying essential proteins
helps us understand the nature of cell life and discover
human disease genes. Essential proteins play a decisive
role in cell development and are closely related to the
life activities of organisms. Their deficiency may be
the fundamental factor of an organism’s disease. To
some extent, this condition can directly affect the vital
functions of some cells, leading to some diseases and
eventually promoting function loss or even death of
the organism[3]. The prediction of essential proteins
provides a further guarantee for proteomics and medical
research in biological aspects[4].
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In the early stage of studying essential proteins,
biologists mainly observed the influences of the loss
of some proteins on the activity characteristics of
organisms and then utilized single-gene knockout[5],
RNA interference[6], conditional knockout[7], and other
methods in biological experiments to judge whether
these proteins are essential. Although these methods are
effective, they have certain limitations, such as extended
time and high cost. Some researchers use computational
thinking to solve such problems. With the rapid
development of high-throughput proteome technology
and the continuous improvement of experimental
biological data, computational thinking has become
a method to identify essential proteins. Jeong et al.[8]

proposed the lethality and centrality rule, which states
that hub points are nodes with many degrees or those
with many adjacent proteins in the network structure.
Hub points are usually located in the center of the
network and greatly influence the topology of the entire
network. The loss of hub points (essential proteins)
may be devastating to the whole network, suggesting
its massive negative effect on biological activities. With
the improvement of the lethality and centrality rule and
the protein-protein interaction data, several centrality
measures for node topologies based on protein networks
have been derived. Degree Centrality (DC) refers to
the degree of nodes in the network. This method is
feasible and straightforward, but the predicted number
of essential proteins is poor[9]. Betweenness Centrality
(BC) refers to the number of shortest paths between
a node and others and reflects the density of node
positions; however, the calculation cost is high[10].
Closeness Centrality (CC) surveys the dependence of
nodes on the information propagation of other nodes,
but this method primarily depends on the network’s
topology[11]. Subgraph Centrality (SC) indicates the
significance of a node according to the number of
closed loops it forms with other nodes in the network[12].
Eigenvector Centrality (EC) measures the importance
of a protein by the components of each vertex in the
principal vector of the network adjacency matrix[13].
Information Centrality (IC) uses the average sum of
the paths that each node passes through as the starting
point to measure the essentiality of each protein node[14].
Although these measures consider the topological
properties of the PPI network, they ignore some possible
false negative and false positive data in PPIs, thus
affecting the prediction of essential proteins. Some
researchers have combined biological information to

eliminate the impact of false positive data on PPI
networks. Li et al.[15] and Tang et al.[16] proposed basic
protein prediction methods called PeC and Weighted
Degree Centratily (WDC) that combine PPI network
and gene expression information. Compared with non-
essential proteins, essential proteins tend to be conserved.
Based on this observation, Peng et al.[17] utilized
homologous information and PPI networks to predict
essential proteins. Li et al.[18] used the Extended Pareto
Optimality Consensus model to find the triangular
structure in the PPI network and fused orthogonal
information to predict essential proteins. Li et al.[19]

transferred original PPI networks into weighted PPI
networks by implementing the Pearson Correlation
Coefficient (PCC) and combined the information on
orthologous proteins, some critical network topological
features, and protein functional features to predict
essential proteins. Zhu et al.[20] proposed a novel
iterative method to identify potential essential proteins
according to topological features, gene expression data,
subcellular localization, and homologous information.
Zhao et al.[21] constructed a diffusion distance network
to predict essential proteins by combining PPI topology
characteristics with orthologous proteins and subcellular
localization information of proteins. Some researchers
recognized essential proteins by fusing the time series
data of gene expression, constructing a protein dynamic
network according to the dynamic characteristics of
gene expression, and depicting the protein interaction at
different times. Lichtenberg et al.[22] constructed a time
series dynamic network by combining PPI interactions
and gene expression data at different time points. Xiao
et al.[23] proposed a time series model based on a
static PPI network and constructed NF-PIN dynamic
network using the three-sigma principle to eliminate
gene expression noise. Li et al.[24] constructed a TS-
PIN dynamic network to predict essential proteins by
combining gene expression profiles and subcellular
localization information. Zhang et al.[25] proposed a
novel method for the identification of essential proteins
by fusing the dynamic PPI networks of different time
points.

The PPI network contains false positive and
false negative data for protein interactions, which
increases computational complexity and deteriorates
the performance of existing basic protein prediction
methods. Introducing gene expression data into PPI
networks can solve this problem to some extent.
However, the gene expression data applied in existing
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methods are prone to fluctuations, reducing the accuracy
of essential protein identification. In this work, the
gene expression data were discretized, and the discrete
similarity of gene expression profiles in the PPI network
was applied to eliminate the fluctuation. A coefficient
named Pearson Jaccard Coefficient (PJC) consists of
continuous and discrete similarities in gene expression
profiles. On the basis of the above analysis, the newly
proposed similarity coefficient PJC was combined with
node-based network topology centrality to improve
the number of essential proteins. Experimental results
proved that the proposed new similarity coefficient PJC
can greatly help and improve the prediction performance
of essential proteins by DC, CC, SC, IC, BC, EC, NC,
PeC, and WDC methods.

2 Method

Owing to the use of different sources and instruments
in biological experiments, a weak correlation between
algorithms based on biometric information and protein
network characteristics is found among various essential
protein recognition methods. However, both algorithms
aim to analyze the proteins of specific species.
Therefore, high complementarity theoretically exists
between the essential protein prediction algorithms
based on biological characteristics and protein network
characteristics. Hence, these two kinds of information
could be combined to predict essential proteins.

Gene expression data provide genomic information
under many different research conditions, and the PCC
is often used to determine the similarity between two
consecutive gene expression values. However, gene
expression data have a large number of inherent noises,
which can be eliminated by discretizing the gene
expression spectrum using the threshold method. Given
its wide usage in calculating the similarity of two
discrete variables, the Jaccard similarity coefficient
can be applied to measure the similarity of discretized
gene expression between two proteins. The PCC and
the Jaccard similarity coefficient are both similarity
measures based on gene expression data; however, one
is discrete and the other is continuous. Hence, these two
can be simultaneously utilized to fill the gap between
PPI and gene expression data.

Undirected graphs reveal two research directions:
edges or points. From the perspective of edges, PeC
and WDC are based on the Edge Clustering Coefficient
(ECC) and PCC to add the weight values of different

protein edges in adjacent fields of nodes. Zhong et
al.[26] proposed a method named JDC using the ECC
of the PPI network and the Jaccard similarity coefficient
of gene expression data to integrate the weights of
the different protein edges in the region adjacent to
the nodes. Sun et al.[27] proposed a cross entropy
based method for essential protein identification by
using the weights of topological features of the PPI
network and the PCC of gene expression data. From
the perspective of nodes, we proposed a new similarity
coefficient named PJC based on each protein node.
The method of PJC can be divided into the following
steps: (1) The continuous correlation coefficient between
adjacent nodes is calculated according to the gene
expression profile of each protein node. (2) Coding
gene expression data are discretized by the threshold
method, and the discrete similarity coefficient between
each node is then obtained. (3) The network topology
centrality characteristics of each node are calculated.
(4) The continuous correlation coefficient of the adjacent
edges of each node is weighted to obtain the sum
of continuous similarity eigenvalues of the point (the
same technique is applied to calculate the sum of
discrete similarity eigenvalues of each node). (5) PJC
consisting of the continuous and discrete similarities in
gene expression data is proposed. This new coefficient
is formed by combining the continuous and discrete
similarity eigenvalues of each point. (6) Different protein
centrality characteristics are fused by the newly proposed
similarity coefficient PJC to calculate the score of each
node, and the number of essential proteins is determined
according to the score ranking. (7) Experimental analysis
is performed, and a comparison is conducted between the
centrality algorithm using the new similarity coefficient
PJC and the essential protein prediction algorithm
based on the same input data of network topology
characteristics.

2.1 Continuous and discrete correlation coefficient

A new similarity coefficient containing continuous and
discrete similarities named PJC based on the gene
expression profile was proposed. PJC is flexible and can
be superimposed on any topological centrality method
to improve the identification of essential proteins. We
introduced the various components of the new similarity
coefficient PJC step by step and explained how this
coefficient fuses node-based topology centrality.
2.1.1 Continuous correlation coefficient
The gene expression data are continuous data generated
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by microarray experiments. PCC is widely used to
measure the strength of the linear relationship between
two objects. For two sequences of gene expressions,
such as X D .x1; : : : ; xl/ and Y D .y1; : : : ; yl/, PCC
could be defined as

PCC D

lX
iD1

.xi � xi / � .yj � yj /vuut lX
iD1

.xi � x
2
i / �

lX
jD1

.yj � y
2
j /

(1)

P.p/ D
X

q2Dp

PCC (2)

The PCC of each pair of interacting proteins is
calculated according to the gene expression profile, and
the obtained value is between �1 and 1. We defined
the value of PCC as the similarity of gene expression
data of protein p and protein q in PPI network cluster D.
P.p/ is the sum of the PCC of all the edges connected
to protein p.
2.1.2 Discretization of gene expression data
Gene expression data are generated by microarray or
next-generation sequencing technology. This kind of
high-throughput data has inevitable noise and is usually
prone to large fluctuations. Genes exhibit dynamically
active and inactive expression trends at different times.
Sahoo[28] performed experiments on mouse B cells
and conducted a Boolean analysis to understand gene
regulation and gene function. In this study, threshold
screening is used to discretize the gene expression data,
and the characteristics of discrete data can be utilized to
eliminate the influence of large fluctuation noise in the
coding gene expression profiles.

The gene expression data obtained using the
experimental techniques of biologists are constructed
into a matrix S,

S D

0B@S11 � � � S1M

:::
: : :

:::

SN1 � � � SNM

1CA (3)

where N is the number of genes, M refers to the
expression cycle of genes.
Sp;t is the expression level of the p-th gene at time t. If

the expression value of Sp;t is higher than the specified
threshold, then the expression of the “active” gene is
defined as “1”. If the value of Sp;t does not exceed the
specified threshold, then the “inactive” gene expression
is defined as “0”. The screening threshold is shown in
the following:

S 0p;t D

8̂̂<̂
:̂
1; Sp;t > U.p/C

U.p/C 2 � ı.p/

1C ı2.p/
I

0; Sp;t 6 U.p/C
U.p/C 2 � ı.p/

1C ı2.p/

(4)

where S is updated to a discretization matrix with only 0
and 1, which reflect the “active” and “inactive” states of
gene expression; U(p) is the mean of gene expression of
the value of protein; ı.p/ is the standard deviation; and
.U.p/C 2� ı.p/=.1C ı2.p/// represents the threshold
for the activity of gene expression value of protein p.

2.1.3 Discrete similarity coefficient
The Jaccard similarity coefficient is generally used to
measure the similarity of two discrete variables. In
this work, this parameter is applied to measure the
fluctuation degree of protein nodes in the PPI network
and is estimated as follows:

J.p/ D
X

q2Dp

Jaccard.p; q/ D
X

q2Dp

Sp \ Sq

Sp [ Sq

(5)

where Sp and Sq represent the discrete values of the gene
expression data of protein p and protein q, respectively,
and the Jaccard coefficient is between 0 and 1. We
defined the value of the Jaccard coefficient as the activity
expression similarity of protein p and protein q in PPI
network cluster D, that is, the similarity of discretized
gene expression data between the two proteins. J.p/
represents the superposition of the Jaccard coefficient of
the domain edges in protein node p.

2.1.4 Fusion of PJC and node-base centrality
The PCC and the Jaccard similarity coefficient are both
similarity measures based on gene expression data;
one is discrete and the other is continuous. Hence,
the combination of these two measures is appropriate
for supplementing topological centrality. The discrete
similarity and continuous similarity at each point are
combined to obtain the new similarity coefficient PJC,
and the calculation formula is as follows:

PJC.p/ D P.p/ � J.p/ (6)

Node-based network topology centrality algorithms
are the basis for predicting essential proteins. We
adopted nine commonly used algorithms for predicting
essential proteins: DC, CC, SC, IC, EC, BC, NC, PeC,
and WDC. These basic methods were then combined
with the new similarity coefficient PJC to obtain the final
score. The calculation formula is as follows:

PJCCscore.p/ D PJC.p/ � Ci .p/ (7)

where Ci .p/ is the eigenvalue of protein p with different
prediction algorithms. The application of the PJC
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similarity coefficient is described in detail based on the
nodes in graph theory analysis, as shown in Algorithm 1.

Algorithm 1 applying the new similarity coefficient
PJC mainly consists of seven steps. Step 1 is to calculate
the different topological centralities of each node, and
the time complexity is O.n/, where n represents the
number of protein nodes. In Step 2, the continuous
correlation coefficient between each node and its
adjacent edge is calculated and superimposed, and the
time complexity is O.n2 C n/. Step 3 is to construct the

Algorithm 1 Application of the PJC similarity coefficient

Input: PPI network G D .V;E/, gene expression dataset,
protein nodes p
Output: Proteins in the top N% of the PJCCscore.p/

Step 1: Calculate the topological eigenvalues of different
proteins:

for each p 2 V do
Calculate DC.p/;CC.p/;SC.p/; IC.p/;EC.p/;BC.p/;

NC.p/;PeC.p/, and WDC.p/.
end for

Step 2: Calculate the sum of the continuous correlation
coefficient of all the edges connected to protein p:

for each p 2 V do
Calculate P.p/ according to Eq. (1)

end for
Step 3: Construct discrete values matrix based on Eq. (3):

for each p 2 V do
for each t 2M do

If the expression level of the p-th gene at time t >
discrete threshold U.p/C 2 � ı.p/=.1C ı2.p//

the expression level S 0
.p;t/

D 1

else
the expression level S 0

.p;t/
D 0

end if
end for

end for
Step 4: Calculate the superposition of the discrete coefficient
of the domain edges in protein node p:

for each p 2 V do
Calculate J.p/ according to Eq. (5)

end for
Step 5: Calculate continuous and discrete similarity coefficient
PJC of each protein node:

for each p 2 V do
Calculate PJC.p/ according to Eq. (6)

end for
Step 6: Calculate the fusion score of each protein node:

for each p 2 V do
Calculate PJCCscore.p/ according to Eq. (7)

end for
Step 7: Rank all proteins in descending order by PJCCscore.p/

score and output the top K% of all proteins.

discrete gene expression matrix, and the time complexity
is O.n �m/, where m refers to the expression cycle of
genes. In Step 4, the discrete coefficient between each
node and its adjacent edge is calculated and summed, and
the time complexity is O.n2 C n/; Step 5 is to calculate
the continuous and discrete similarity coefficient PJC
of each protein node, and the time complexity is O.n/.
Step 6 combines the topological centrality of Step 1
with the PJC coefficient of Step 5 to obtain the score,
and the time complexity is O.n/. In Step 7, the first
K% proteins are selected as the essential protein output
in descending order of score, and the time complexity
is O.n/.

3 Experimental Result and Analysis

3.1 Experimental dataset

Yeast PPI and essential protein data are the most
complete and reliable among all species. Therefore,
we use yeast protein as the experimental object to verify
the effectiveness of our algorithm.

(1) The data of Bakers’ yeast and DIP’ yeast are
used in our study. The Bakers’ yeast has two sets of
PPI network data, namely, Krogan and Gavin. The
PPI data of Krogan and Gavin are from the BioGRID
database[29], and the data of Saccharomyces cerevisiae
are obtained from the DIP database. These PPI data
are then preprocessed to remove self-interaction and
repeated interactions.Table 1 shows the details of these
three PPIs.

(2) Essential protein data: The standard essential
protein data include 1285 essential proteins, which are
mainly derived from MIPS[30], SGD[31], DEG[32], and
SGDP[33]. Among them, 1167 essential proteins are
obtained from the yeast PPI network.

(3) Gene expression data: Yeast gene expression
data are downloaded from NCBI (GSE3431) Gene
Expression Omnibus website, and contain 9336 genes
at 36-time points across three cell metabolic cycles. A
total of 6777 gene products and 36 samples are obtained
after pretreatment and normalization. About 98.88% of
the proteins are covered in the Krogan data and 99.16%
in the Gavin data.

Table 1 Details about Krogan, Gavin, and DIP databases.

Dataset
Number of

proteins
Number of

interaction edges
Number of

essential proteins
Krogan 2674 7075 784
Gavin 1430 6531 617
DIP 5093 24 743 1167
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3.2 Prediction performance evaluation analysis
based on Receiver Operating Characteristic
(ROC) curve and AUC

ROC curve analysis can reveal the performance in
binary classification. Hence, the ROC curve is used
to evaluate the overall performance of each method. The
experimental results with the Krogan database are shown
in Fig. 1. We selected the top 784 proteins, 617 proteins,
and 1167 proteins in each method as thresholds for
predicting the AUC of essential proteins in the Krogan,
Gavin, and DIP databases.

Figure 1 shows the different centrality measures
(DC, CC, SC, IC, BC, EC, NC, PeC, and WDC) in
the Krogan database and the ROC curves of these
nine essential protein prediction algorithms under
different states. When combined with the newly proposed
similarity coefficient PJC (measures are added with �PJC,
for example, DC�PJC; added with �P meaning only
combined the continuous correlation coefficient with the
DC algorithm), the AUC values for these nine essential
protein prediction methods are 0.6407, 0.6387, 0.6326,
0.6417, 0.6161, 0.6306, 0.6242, 0.6317, and 0.6830.
Although the overall AUC of DC combined with the

similarity coefficient PJC is slightly lower than that of
the original method, the subsequent top-rank analysis
shows that the new similarity coefficient PJC helps the
DC algorithm to predict a great number of essential
proteins and produce a reliable prediction score. IC and
NC show a similar situation to DC. We only combine
the continuous correlation coefficient with different
prediction algorithms for comparison with PJC.

In the binary classification system, the protein
node recognition algorithm based on the continuous
and discrete similarity coefficient PJC and multiple
biological characteristics can obtain a high true positive
rate while maintaining a low false positive rate. To
ensure the versatility of our method, we also compare the
ROC curves of the nine prediction methods for essential
proteins in the Gavin and DIP databases. The ROC
values for the Gavin and DIP database are shown in
Figs. 2 and 3, respectively. The AUC predicted by
the new similarity coefficient PJC is improved to a
certain extent compared with that of different prediction
methods, except for the special cases of DC, IC, and
NC. To further illustrate the superiority of the newly
proposed PJC, we also compare the results of combining
the topological eigenvalues of different basic centrality

Fig. 1 ROC curves and AUC values of different prediction methods in the Krogan database.
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Fig. 2 ROC curves and AUC values of different prediction methods in the Gavin database.

Fig. 3 ROC curves and AUC values of different prediction methods in the DIP database.
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methods with PCCs. Given that PCC has already been
used for PeC and WDC, it will not be applied in
this study. Hence, the discrete coefficient is directly
combined with PeC and WDC. According to the
above analysis, the prediction algorithm integrating the
similarity coefficient PJC and multibiological features
exhibit superior performance. This finding further
demonstrate the strong correlation between protein
topology networks and prediction characteristics.

3.3 Prediction performance evaluation based on
top analysis

To further verify the performance of our method, we
combine the new similarity coefficient PJC with seven
centrality prediction methods that have topological
features (DC, IC, EC, SC, BC, CC, and NC) and
prediction methods with the same input data (PeC and
WDC) to achieve the top analysis. We also integrate
the continuous correlation coefficient into different
prediction algorithms for comparison. We select 1%, 5%,
10%, 15%, 20%, and 25% of proteins according to the
descending order of each method score and determine
how many of them are essential proteins.

Table 2 shows that when we select the top 1% proteins
in Krogan database, the DC, BC, CC, EC, SC, IC, NC,

PeC, and WDC applying the similarity coefficient PJC
can identify 22, 21, 23, 22, 23, 23, 23, 23, and 22
essential proteins, respectively. According to the number
of times exceeded by different prediction methods in the
Over times column of Table 2, PJC can identify a large
number of essential proteins. As shown in Tables 3 and 4,
the number of essential proteins identified by combining
the continuous and discrete similarity coefficient PJC is
substantially increased at each percentage in the Gavin
and DIP databases. However, the top 15%, 20%, and
25% of the WDC algorithm do not perform well because
the number of protein nodes in the Gavin database is
higher than that of the edges. Hence, the proteins are
less affected by interaction fluctuations.

3.4 Prediction performance evaluation based on
accuracy analysis

Sensitivity (SN), specificity (SP), False Positive Rate
(FPR), Negative Predictive Value (NPV), Positive
Predictive Value (PPV), F-measure, accuracy (ACC),
and Matthew Correlation Coefficient (MCC) are also
applied for the validation of essential protein discovery
methods, the definitions are as follows:

SN D
TP

TP C FN
(8)

Table 2 Prediction results of nine algorithms’ top analysis in the Krogan database.
Method 1% 5% 10% 15% 20% 25% Over times

DC 12 81 147 214 266 318 0
DC*P 20 95 170 226 274 319 0

DC*PJC 22 96 172 231 294 335 6
BC 11 62 118 159 206 248 0

BC*P 17 82 146 198 245 291 0
BC*PJC 21 92 159 224 269 311 6

CC 9 50 104 145 194 239 0
CC*P 20 96 165 225 264 317 0

CC*PJC 23 96 173 239 289 341 6
EC 20 60 109 149 203 253 0

EC*P 21 80 155 208 261 313 0
EC*PJC 22 94 168 227 279 327 6

SC 20 63 118 175 227 280 0
SC*P 21 80 156 211 260 310 0

SC*PJC 23 90 166 225 267 326 6
IC 12 81 147 214 266 318 0

IC*P 21 96 168 222 273 320 0
IC*PJC 23 95 172 237 294 340 6

NC 22 91 161 229 286 325 1
NC*P 22 99 176 229 272 321 0

NC*PJC 23 104 180 234 284 336 5
PeC 19 100 174 226 274 318 0

PeC*J 23 104 180 236 285 336 6
WDC 21 100 176 235 278 333 0

WDC*J 22 102 182 239 300 355 6
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Table 3 Prediction results of nine algorithms’ top analysis in the Gavin database.
Method 1% 5% 10% 15% 20% 25% Over times

DC 12 47 91 144 185 221 0
DC*P 12 46 94 146 192 233 0

DC*PJC 12 53 98 147 194 234 5
BC 7 42 77 114 143 172 0

BC*P 8 42 86 127 161 193 0
BC*PJC 10 47 88 135 173 207 6

CC 9 36 70 109 143 173 0
CC*P 13 51 101 150 186 222 1

CC*PJC 13 56 106 148 189 230 4
EC 13 51 87 127 156 192 0

EC*P 13 53 96 134 167 209 0
EC*PJC 13 53 99 138 178 227 4

SC 13 51 88 127 157 194 0
SC*P 13 53 96 130 162 204 0

SC*PJC 12 54 99 133 173 218 5
IC 12 47 91 144 185 221 0

IC*P 12 48 98 146 189 224 0
IC*PJC 13 56 106 148 193 233 6

NC 13 52 109 156 200 252 1
NC*P 13 53 105 159 203 236 1

NC*PJC 13 55 109 154 205 238 2
PeC 14 58 110 157 199 233 1

PeC*J 14 57 112 158 203 241 4
WDC 13 53 107 159 208 247 3

WDC*J 13 58 108 153 199 241 2

Table 4 Prediction results of nine algorithms’ top analysis in the DIP database.

Method 1% 5% 10% 15% 20% 25% Over times
DC 22 101 207 320 413 502 0

DC*P 31 145 274 380 463 535 0
DC*PJC 32 156 289 391 481 548 6

BC 24 95 182 271 361 433 0
BC*P 26 122 246 345 438 497 0

BC*PJC 29 140 263 370 464 522 6
CC 24 104 193 284 364 448 0

CC*P 36 162 280 378 449 513 0
CC*PJC 36 169 295 397 474 535 5

EC 24 96 195 279 377 467 0
EC*P 29 137 261 357 451 514 0

EC*PJC 33 154 285 379 468 542 6
SC 24 96 195 279 377 467 0

SC*P 26 135 248 336 433 507 0
SC*PJC 28 149 266 366 462 532 6

IC 24 102 210 316 406 504 0
IC*P 36 159 280 376 455 521 0

IC*PJC 36 168 295 401 477 536 5
NC 32 159 282 372 464 544 0

NC*P 36 169 295 397 483 554 2
NC*PJC 35 168 304 409 492 562 4

PeC 40 174 294 388 466 543 0
PeC*J 44 188 317 395 481 553 6
WDC 36 164 303 400 487 566 0

WDC*J 45 192 319 422 497 567 6
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SP D
TN

TN C FP
(9)

FPR D
FP

TN C FP
(10)

NPV D
TN

TN C FP
(11)

PPV D
TP

TP C FP
(12)

F -measure D
2 � TP

2 � TP C FP C FN
(13)

ACC D
TP C TN

TP C TN C FP C FN
(14)

MCC D
TP � TN � FP � FNp
.TP C FP / � .TP C FN/

�

1p
.TN C FP / � .TN C FN/

(15)

where TP represents the number of true positive proteins,
which are truly essential proteins that are correctly
predicted to be essential. FP denotes the number of
false positive proteins, which are non-essential proteins
that are wrongly predicted to be essential. TN is the

number of true negative proteins, which are non-essential
proteins that are accurately predicted to be non-essential.
FN refers to the number of false-negative proteins, which
are truly essential proteins that are mistakenly predicted
to be non-essential. The results on Krogan, Gavin, and
Yeast data are shown in Tables 5, 6, and 7, respectively.

As shown in Table 5, the SN values of DC, BC, CC,
EC, SC, IC, PeC, and WDC combined with the new
similarity coefficient PJC on the Krogan database are
0.4694, 0.4355, 0.4681, 0.4617, 0.4521, 0.4764, 0.4687,
and 0.4962, respectively. Each evaluation criterion of
the centrality method using the new similarity coefficient
PJC is better than the original prediction methods, except
for the NC algorithm. Table 5 shows that NC using PJC
slightly underperforms relative to the original NC in
predicting the number of top essential proteins. For the
Gavin database in Table 6, IC and NC show the same
trend as the NC of the Krogan database. One reason
is that we focus on the number of essential proteins
predicted at the top of the list. In the previous top
analysis, PJC combined with NC and IC predicts more
protein quantities than the original. Another reason is
that the Gavin database has many redundancy nodes
and the edge effect is relatively small. The similarity

Table 5 SN, SP, FPR, PPV, NPV, F-measure, ACC, and MCC of various methods for the total ranked proteins in the Krogan
database.

Method SN SP FPR PPV NPV F-measure ACC MCC
DC 0.4554 0.7741 0.2259 0.7741 0.4554 0.4554 0.6806 0.2294

DC*P 0.4521 0.7726 0.2274 0.7730 0.4515 0.4518 0.6788 0.2246
DC*PJC 0.4694 0.7799 0.2201 0.7799 0.4694 0.4694 0.6889 0.2493

BC 0.3673 0.7376 0.2624 0.7376 0.3673 0.3673 0.6290 0.1049
BC*P 0.4145 0.7571 0.2429 0.7571 0.4145 0.4145 0.6567 0.1717

BC*PJC 0.4355 0.7657 0.2343 0.7661 0.4349 0.4352 0.6690 0.2012
CC 0.3533 0.7317 0.2683 0.7317 0.3533 0.3533 0.6208 0.0851

CC*P 0.4457 0.7700 0.2300 0.7704 0.4452 0.4454 0.6750 0.2156
CC*PJC 0.4681 0.7794 0.2206 0.7794 0.4681 0.4681 0.6881 0.2475

EC 0.3737 0.7402 0.2598 0.7402 0.3737 0.3737 0.6328 0.1139
EC*P 0.447 0.7705 0.2295 0.7709 0.4464 0.4467 0.6758 0.2174

EC*PJC 0.4617 0.7767 0.2233 0.7767 0.4617 0.4617 0.6844 0.2385
SC 0.4082 0.7545 0.2455 0.7545 0.4082 0.4082 0.6530 0.1627

SC*P 0.4337 0.7651 0.2349 0.7651 0.4337 0.4337 0.6679 0.1988
SC*PJC 0.4521 0.7726 0.2274 0.7730 0.4515 0.4518 0.6788 0.2246

IC 0.4528 0.7730 0.2270 0.7730 0.4528 0.4528 0.6791 0.2258
IC*P 0.4515 0.7725 0.2275 0.7725 0.4515 0.4515 0.6784 0.2240

IC*PJC 0.4764 0.7827 0.2173 0.7831 0.4758 0.4761 0.6930 0.2589
NC 0.4592 0.7757 0.2243 0.7757 0.4592 0.4592 0.6829 0.2348

NC*P 0.4503 0.7720 0.2280 0.7720 0.4503 0.4503 0.6776 0.2222
NC*PJC 0.4566 0.7746 0.2254 0.7746 0.4566 0.4566 0.6814 0.2312

PeC 0.4592 0.7757 0.2243 0.7757 0.4592 0.4592 0.6829 0.2348
PeC*J 0.4687 0.7795 0.2205 0.7799 0.4681 0.4684 0.6885 0.2481
WDC 0.4732 0.7815 0.2185 0.7815 0.4732 0.4732 0.6911 0.2547

WDC*J 0.4962 0.7910 0.2090 0.7910 0.4962 0.4962 0.7046 0.2872
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Table 6 SN, SP, FPR, PPV, NPV, F-measure, ACC, and MCC of various methods for the total ranked proteins in the Gavin
database.

Method SN SP FPR PPV NPV F-measure ACC MCC
DC 0.5673 0.6716 0.3284 0.6716 0.5673 0.5673 0.6266 0.2388

DC*P 0.5592 0.6654 0.3346 0.6654 0.5592 0.5592 0.6196 0.2246
DC*PJC 0.5754 0.6777 0.3223 0.6777 0.5754 0.5754 0.6336 0.2531

BC 0.4700 0.5978 0.4022 0.5978 0.4700 0.4700 0.5427 0.0678
BC*P 0.5154 0.6322 0.3678 0.6322 0.5154 0.5154 0.5818 0.1476

BC*PJC 0.5446 0.6544 0.3456 0.6544 0.5446 0.5446 0.6070 0.1989
CC 0.4992 0.6199 0.3801 0.6199 0.4992 0.4992 0.5678 0.1191

CC*P 0.5332 0.6458 0.3542 0.6458 0.5332 0.5332 0.5972 0.1790
CC*PJC 0.5559 0.6630 0.3370 0.6630 0.5559 0.5559 0.6168 0.2189

EC 0.5284 0.6421 0.3579 0.6421 0.5284 0.5284 0.5930 0.1704
EC*P 0.5365 0.6482 0.3518 0.6482 0.5365 0.5365 0.6000 0.1847

EC*PJC 0.5494 0.6581 0.3419 0.6581 0.5494 0.5494 0.6112 0.2075
SC 0.5300 0.6433 0.3567 0.6433 0.5300 0.5300 0.5944 0.1733

SC*P 0.5397 0.6507 0.3493 0.6507 0.5397 0.5397 0.6028 0.1904
SC*PJC 0.5511 0.6593 0.3407 0.6593 0.5511 0.5511 0.6126 0.2103

IC 0.5673 0.6716 0.3284 0.6716 0.5673 0.5673 0.6266 0.2388
IC*P 0.5430 0.6531 0.3469 0.6531 0.5430 0.5430 0.6056 0.1961

IC*PJC 0.5640 0.6691 0.3309 0.6691 0.5640 0.5640 0.6238 0.2331
NC 0.5964 0.6937 0.3063 0.6937 0.5964 0.5964 0.6517 0.2902

NC*P 0.5575 0.6642 0.3358 0.6642 0.5575 0.5575 0.6182 0.2217
NC*PJC 0.5640 0.6691 0.3309 0.6691 0.5640 0.5640 0.6238 0.2331

PeC 0.5365 0.6482 0.3518 0.6482 0.5365 0.5365 0.6000 0.1847
PeC*J 0.5559 0.6630 0.3370 0.6630 0.5559 0.5559 0.6168 0.2189
WDC 0.5981 0.6950 0.3050 0.6950 0.5981 0.5981 0.6531 0.2930

WDC*J 0.5867 0.6863 0.3137 0.6863 0.5867 0.5867 0.6434 0.2731

Table 7 SN, SP, FPR, PPV, NPV, F-measure, ACC, and MCC of various methods for the total ranked proteins in the DIP
database.

Method SN SP FPR PPV NPV F-measure ACC MCC
DC 0.4002 0.8217 0.1783 0.8217 0.4002 0.4002 0.7251 0.2219

DC*P 0.4310 0.8309 0.1691 0.8309 0.4310 0.4310 0.7393 0.2619
DC*PJC 0.4473 0.8357 0.1643 0.8357 0.4473 0.4473 0.7467 0.2830

BC 0.3505 0.8069 0.1931 0.8069 0.3505 0.3505 0.7023 0.1574
BC*P 0.4087 0.8242 0.1758 0.8242 0.4087 0.4087 0.7290 0.2330

BC*PJC 0.4310 0.8309 0.1691 0.8309 0.4310 0.4310 0.7393 0.2619
CC 0.3548 0.8082 0.1918 0.8082 0.3548 0.3548 0.7043 0.1630

CC*P 0.4165 0.8265 0.1735 0.8265 0.4165 0.4165 0.7326 0.2430
CC*PJC 0.4422 0.8342 0.1658 0.8342 0.4422 0.4422 0.7444 0.2763

EC 0.3676 0.8120 0.1880 0.8120 0.3676 0.3676 0.7102 0.1796
EC*P 0.4147 0.8260 0.1740 0.8260 0.4147 0.4147 0.7318 0.2408

EC*PJC 0.4404 0.8337 0.1663 0.8337 0.4404 0.4404 0.7436 0.2741
SC 0.3676 0.8120 0.1880 0.8120 0.3676 0.3676 0.7102 0.1796

SC*P 0.3676 0.8120 0.1880 0.8120 0.3676 0.3676 0.7102 0.1796
SC*PJC 0.4336 0.8316 0.1684 0.8316 0.4336 0.4336 0.7404 0.2652

IC 0.4010 0.8220 0.1780 0.8220 0.4010 0.4010 0.7255 0.2230
IC*P 0.4259 0.8293 0.1707 0.8293 0.4259 0.4259 0.7369 0.2552

IC*PJC 0.4439 0.8347 0.1653 0.8347 0.4439 0.4439 0.7451 0.2786
NC 0.4353 0.8321 0.1679 0.8321 0.4353 0.4353 0.7412 0.2674

NC*P 0.4482 0.8360 0.1640 0.8360 0.4482 0.4482 0.7471 0.2841
NC*PJC 0.4559 0.8383 0.1617 0.8383 0.4559 0.4559 0.7506 0.2941

PeC 0.4362 0.8324 0.1676 0.8324 0.4362 0.4362 0.7416 0.2686
PeC*J 0.4499 0.8365 0.1635 0.8365 0.4499 0.4499 0.7479 0.2863
WDC 0.4353 0.8321 0.1679 0.8321 0.4353 0.4353 0.7412 0.2674

WDC*J 0.4584 0.8390 0.1610 0.8390 0.4584 0.4584 0.7518 0.2975
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coefficient PJC has an excellent value of eight evaluation
criteria in the DIP database, as shown in Table 7. A low
FPR indicates that the method is good at predicting. In
Tables 5–7, the numbers in boldface refer to relative
optimal result.

3.5 Prediction performance evaluation based on
Jackknife analysis

Jackknife methodology is used to evaluate and predict
the performance differences of essential proteins. For
each prediction method, we evaluate its performance by
calculating the sum of the actual essential protein and the
predicted number of essential proteins. The Jackknife
curve evaluation and analysis results of Krogan, Gavin,
and DIP databases are shown in Figs. 4, 5, and 6,
respectively.

We ranked the prediction results of each method in
descending order. Figures 4 and 6 show that DC, IC, EC,
SC, BC, CC, NC, WDC, and PeC have higher curves
and larger AUC areas when combined with the newly
proposed similarity coefficient PJC, indicating that PJC
can improve the accuracy of essential protein prediction.
However, Fig. 5 reveals that the areas of AUCs of PeC
and WDC only slightly increase upon the combination
with PJC. A possible explanation is that these two

prediction algorithms may be relatively stable and have
minimal dependence on our correlation coefficients.
Further improvement of this simple fusion coefficient
consisting of continuous and discrete similarities in gene
expression data will be investigated in a future study.

3.6 Prediction performance evaluation based on
NF-PIN dynamic network

In the previous chapter, the newly proposed similarity
coefficient PJC is fused with various protein prediction
methods based on a static PPI network, and the
experimental results show that PJC can improve the
accuracy of predicting essential proteins. To further
prove the superiority of PJC, we incorporate it into
the dynamic NF-PIN network, which also uses gene
expression data, and then fuse it with node-base
topological centrality. Meanwhile, the topological
centrality method of the dynamic NF-PIN network is
used for comparison, and the DIP database is selected
for the experiment.

The coefficient PJC consisting of continuous and
discrete similarities based on gene expression data in
a dynamic network can also help improve the number
of predicting essential proteins to some certain extent.
Figure 7 shows that combined with the similarity

Fig. 4 ROC curves and AUC values of different prediction methods in the Krogan database.



Jiancheng Zhong et al.: Continuous and Discrete Similarity Coefficient for Identifying Essential Proteins Using : : : 197

Fig. 5 ROC curves and AUC values of different prediction methods in the Gavin database.

Fig. 6 ROC curves and AUC values of different prediction methods in the DIP database.
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Fig. 7 Histogram of top 100 essential proteins in NF-PIN dynamic network in DIP database.

coefficient PJC in NF-PIN dynamic network, the
quantity of the top 100 essential proteins in DC, BC,
CC, EC, SC, IC, PeC, and WDC is 64, 57, 70, 64, 61,
71, 79, and 76, respectively. All of these values imply
a certain improvement compared with the topological
centrality in the NF-PIN network. Whether in static or
dynamic networks, the combination of continuous and
discrete similarity coefficients of gene expression data is
feasible and reliable.

4 Conclusion

In this study, we proposed a new coefficient named
PJC consisting of continuous and discrete similarities
based on gene expression data. The discrete similarity
coefficient was obtained by discretizing the gene
expression data and then fused with the continuous
correlation coefficient of the gene expression profile
to obtain the similarity coefficient PJC. PJC eliminates
the influence of large noise fluctuations on PPI network
data and gene expression data. We analyzed biological
characteristics and the topology centrality of protein
networks in the essential protein algorithms and showed
that they can be highly complementary. Therefore, the
newly proposed similarity coefficient PJC can be flexibly
applied to PPI network topology centrality to improve
the identification efficiency of essential proteins. We
described the similarity coefficient PJC in detail and
carried out experiments using Krogan, Gavin, and DIP’s
PPI network in yeast datasets. ROC analysis, jackknife

analysis, top analysis, and accuracy analysis revealed
that node-base topology centrality fused with the new
similarity coefficient PJC has superior advantages in
predicting essential proteins. The topological centrality
method fused with PCC was also added for comparison
and also showed high accuracy and precision.
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